Catharina Stroppel - List of students

Current PhD students:

  • Tashi Walde (jt. with T. Dyckerhoff, Bonn)
    • 2-Segal spaces as invertible 1-operads arxiv
    • Master Thesis: Hall monoidal categories and categorical modules (supervised by T. Dyckerhoff)
  • Tomasz Przedzieck (jt. with Gwyn Bellamy, Glasgow)
    • C*-actions on generalized Calogero Moser spaces and Hilbert schemes arxiv
  • Anna Mkrtchyan

Former PhD students:

  • Arik Wilbert
    • Two-block Springer fibers of types C and D: a diagrammatic approach to Springer theory arxiv
    • Singular TQFTs, foams and type D arc algebras arxiv with M. Ehrig, D. Tubbenhauer
    • Topology of two-row Springer fibers for the even orthogonal and symplectic group, arxiv to appear in Trans. Math.
    • PhD Thesis:Two-row Springer fibres, foams and arc algebras of type D
  • Joanna Meinel
    • Duflo Theorem for Generalized Weyl algebras arxiv J. Algebra Appl., 14, (2015), no. 10, 1550147, 21pp.
    • (with G. Benkart) The center of the affine nilTemperley-Lieb algebra   arxiv Math. Z. 284 (2016), no. 1-2, 413–439.
    • PhD Thesis: Affine nilTemperley-Lieb Algebras and Generalized Weyl Algebras (2016)
  • Antonio Sartori
    • Categorification of tensor powers of the vector representation of Uq(gl(1/1)). Selecta Math. (N.S.) 22 (2016), no. 2, 669–734.
    • The degenerate affine walled Brauer algebra. J. Algebra 417 (2014), 198-233. (journal, arxiv version)
    • A diagram algebra for Soergel modules corresponding to smooth Schubert varieties. Trans. Amer. Math. Soc. 368 (2016), no. 2, 889–938. arxiv
    • (with C. Stroppel) Walled Brauer algebras as idempotent truncations of level 2 cyclotomic quotients. J. Algebra 440 (2015), 602–638.
    • The Alexander polynomial as quantum invariant of links. Ark. Mat. 53 (2015), no. 1, 177–202.arxiv
    • (with C. Stroppel) Categorification of tensor product representations of 𝔰𝔩k and category . J. Algebra 428 (2015), 256–291
    • PhD Thesis: Categorification of tensor powers of the vector representation of  Uq(gl (1|1)) arxiv 2013.
  • Hoel Queffelec
    • Skein modules from skew Howe duality and affine extensions SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015).
    • (with H. M. Russell) Chebyshev polynomials and the Frohman-Gelca formula. J. Knot Theory Ramifications 24 (2015), no. 4.
    • PhD Thesis: Categorification des invariants quantiques des variations en dimension 3 (supervised with C. Blanchet)
    • Khovanov homology is a skew Howe 2-representation of categorified quantum sl(m) , Algebr. Geom. Topol. 15 (2015), no. 5, 2517-2608.

Current Master students:

  • Vincent Gajda
  • Heike Herr
  • Fabian Lenzen
  • Uran Meha

Former Master students

Current Bachelor students:

  • Jonas Antor
  • Till Werhan

Former Bachelor students

Back
Last update: October 9, 2017 by m-moewes (at) math.uni-bonn.de