Catharina Stroppel - List of students

Current PhD students:

Till Wehrhan

Former PhD students:

  • Tashi Walde
      • Higher Segal spaces via higher excision arxiv
      • Homotopy coherent theorems of Dold-Kan type arxiv
      • 2-Segal spaces as invertible infinity-operads arxiv
      • Generalised BGP reflection functors via the Grothendieck construction arxiv
      • Simplicial structures in higher Auslander-Reiten theory arxiv
      • Master Thesis: Hall monoidal categories and categorical modules (supervised by T. Dyckerhoff)
      • PhD Thesis: On the Theory of Higher Segal Spaces
    • Arik Wilbert
      • Two-block Springer fibers of types C and D: a diagrammatic approach to Springer theory pdf
      • Singular TQFTs, foams and type D arc algebras arxiv with M. Ehrig, D. Tubbenhauer
      • Topology of two-row Springer fibers for the even orthogonal and symplectic group, arxiv to appear in Trans. Math.
      • PhD Thesis:Two-row Springer fibres, foams and arc algebras of type D
    • Joanna Meinel
      • Duflo Theorem for Generalized Weyl algebras arxiv J. Algebra Appl., 14, (2015), no. 10, 1550147, 21pp.
      • (with G. Benkart) The center of the affine nilTemperley-Lieb algebra   arxiv Math. Z. 284 (2016), no. 1-2, 413–439.
      • PhD Thesis: Affine nilTemperley-Lieb Algebras and Generalized Weyl Algebras (2016)
    • Antonio Sartori
      • The degenerate affine walled Brauer algebra. J. Algebra 417 (2014), 198-233. (journal of Algebra, arxiv version)
      • A diagram algebra for Soergel modules corresponding to smooth Schubert varieties. Trans. Amer. Math. Soc. 368 (2016), no. 2, 889–938. arxiv
      • (with C. Stroppel) Walled Brauer algebras as idempotent truncations of level 2 cyclotomic quotients. J. Algebra 440 (2015), 602–638.
      • The Alexander polynomial as quantum invariant of links. Ark. Mat. 53 (2015), no. 1, 177–202.arxiv
      • (with C. Stroppel) Categorification of tensor product representations of 𝔰𝔩k and category . J. Algebra 428 (2015), 256–291
      • PhD Thesis: Categorification of tensor powers of the vector representation of Uq(gl(1/1)).
    • Hoel Queffelec
      • Skein modules from skew Howe duality and affine extensions SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015).
      • (with H. M. Russell) Chebyshev polynomials and the Frohman-Gelca formula. J. Knot Theory Ramifications 24 (2015), no. 4.
      • PhD Thesis: Categorification des invariants quantiques des variations en dimension 3 (supervised with C. Blanchet)
      • Khovanov homology is a skew Howe 2-representation of categorified quantum sl(m) , Algebr. Geom. Topol. 15 (2015), no. 5, 2517-2608.

    Current Master students:

  • Tim Bloedtner
  • Lukas Bonfert
  • Berthold Lorke
  • Jonas Nehme
  • Patrick Seifner
  • Timm Perenboom
  • Liao Wang
  • Former Master students

    Current Bachelor students:

    The Bachelor Theses are available on request. Please send an email to stroppel@math.uni-bonn.de

    Former Bachelor students

    Back

    Last update: January 18,  2021 by m-moewes (at) math.uni-bonn.de