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In this article we construct various models for singularity
categories of modules over differential graded rings. The
main technique is the connection between abelian model
structures, cotorsion pairs and deconstructible classes, and
our constructions are based on more general results about
localization and transfer of abelian model structures. We
indicate how recollements of triangulated categories can be
obtained model categorically, discussing in detail Krause’s
recollement Kac(Inj(R)) → K(Inj(R)) → D(R). In the special
case of curved mixed Z-graded complexes, we show that one
of our singular models is Quillen equivalent to Positselski’s
contraderived model for the homotopy category of matrix
factorizations.
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0. Introduction

Let R be a Noetherian ring and Dsg(R) = Db(R -mod)/Perf(R) its singularity cate-
gory. We ask if it is possible to realize Dsg(R) as the homotopy category of a stable model
category attached to R. Firstly, the singularity category is essentially small, whereas the
homotopy category of a model category in the sense of [12] always has arbitrary small co-
products [12, Example 1.3.11]. This forces us to think first about how to define a “large”
singularity category for R (admitting arbitrary small coproducts) in which Dsg(R) natu-
rally embeds. Secondly, if this is done, we can try to find a model for this large singularity
category.
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Given a locally Noetherian Grothendieck category A with compactly generated de-
rived category D(A ), Krause [16] proved that the singularity category
Db(Noeth(A ))/D(A )c of A (the Verdier quotient of the bounded derived category
of Noetherian objects of A by the subcategory of compact objects of D(A )) is up to
direct summands equivalent to the subcategory of compact objects in the homotopy
category Kac(Inj(A )) of acyclic complexes of injectives, and that there is even a recolle-
ment Kac(Inj(A )) K(Inj(A )) D(A ). This suggests firstly that we should attempt
to construct a model for Kac(Inj(A )) and secondly that such a model might be obtained
by localizing a suitable model for K(Inj(A )) with respect to D(A ), whatever this should
mean precisely.

If A = R -Mod for a Noetherian ring R, Positselski [20, Theorem 3.7] showed that
K(Inj(A )) is equivalent to what he calls the coderived category Dco(R) of R, defined
as the Verdier quotient K(R)/Acycco(R), where Acycco(R) is the localizing subcategory
of K(R) generated by the total complexes of short exact sequences of complexes of
R-modules; objects of Acycco(R) are called coacyclic complexes. In particular, Krause’s
“large” singularity category Kac(Inj(R)) is equivalent to a Verdier quotient Dco(R)/D(R).

All in all, the last paragraphs suggest that a model for the singularity category could
be obtained by lifting the quotient Dco(R)/D(R) to the world of model categories. For
D(R) there are the well-known projective and injective models, and for Dco(R) a model
has been constructed by Positselski [20]. Moreover, these models are abelian, i.e. they
are compatible with the abelian structure of Ch(R -Mod) in the sense of [13, Defini-
tion 2.1]. By [13, Theorem 2.2] an abelian model structure is completely determined by
the classes C, W, F of cofibrant, weakly trivial and fibrant objects, respectively, and the
triples (C,W,F) arising in this way are precisely those for which W is thick and both
(C,W ∩ F) and (C ∩ W,F) are complete cotorsion pairs. For example, in the injective
model Minj(R) for D(R), everything is cofibrant, the weakly trivial objects W inj are
the acyclic complexes and the fibrant objects F inj are the dg-injectives. In Positselski’s
coderived model Mco(R) for Dco(R), again everything is cofibrant, but the weakly trivial
objects Wco are the coacyclic complexes (see Proposition 1.3.6) and the fibrant objects
Fco are the componentwise injective complexes of R-modules. In particular, we see that
both model structures are injective in the sense that everything is cofibrant, and that
Wco(R) ⊂ W inj(R) and F inj(R) ⊂ Fco(R).

In order to construct the desired localization, we show (Proposition 1.4.2) that given
an abelian category A with two injective abelian model structures Mi = (A ,Wi,Fi),
i = 1, 2, satisfying F2 ⊂ F1 (hence W1 ⊂ W2), there is another new abelian model
structure M1/M2 on A with C = W2 and F = F1 (the class W of weakly triv-
ials is determined by this and described explicitly in the proposition), called the right
localization of M1 with respect to M2. Moreover, we show (Proposition 1.5.3) that
M1/M2 is a right Bousfield localization of M1 with respect to {0 → X | X ∈ F2}
in the sense of [11, Definition 3.3.1(2)], and that on the level of homotopy cate-
gories we get a colocalization sequence [16, Definition 3.1] of triangulated categories
Ho(M2) → Ho(M1) → Ho(M1/M2).
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Applied to the injective model Minj(R) for the ordinary derived category D(R) and
Positselski’s coderived model Mco(R) for the contraderived category Dco(R), we get
another abelian model structure Mco

sing(R) = Mco(R)/Minj(R) on Ch(R -Mod), called
the (absolute) singular coderived model, where the cofibrant objects are the acyclic com-
plexes of R-modules and the fibrant objects are the componentwise injective complexes
of R-modules. In particular, Ho(Mco

sing(R)) ∼= Kac(Inj(R)) and there is a colocalization
sequence D(R) → Dco(R) ∼= K(Inj(R)) → Kac(Inj(R)).

More generally, we construct a relative singular coderived model Mco
sing(A/R) for any

morphism of dg rings ϕ : R → A as follows: first we show that the coderived model
structure Mco(R) on R -Mod pulls back to a model structure ϕ∗Mco(R) on A -Mod
(Proposition 2.1.1), and then (Definition 2.1.2) we define Mco

sing(A/R) as the right local-
ization Mco(A)/ϕ∗Mco(R). In case R is an ordinary ring of finite left-global dimension,
this will be seen to be equal to the absolute singular coderived model Mco

sing(A) as defined
above (Proposition 1.3.11).

At this point we have succeeded in constructing models for singularity categories,
but we cannot yet explain from the model categorical perspective why the sequence
Kac(Inj(A)) → K(Inj(A)) → D(A) is not only a localization sequence but in fact a
recollement, as is known at least in the case A is an ordinary Noetherian ring by [16,
Proposition 3.6]. For this, we show that the absolute (it is important to restrict to the
absolute case) singular model structure Mco

sing(A), which is a “mixed” model structure
in the sense that usually neither everything is fibrant nor everything is cofibrant, ad-
mits a certain (Quillen equivalent) injective variant iMco

sing(A). The construction of this
model structure is presented in Proposition 2.2.1. The point is that while the iden-
tity on A -Mod is right Quillen Mco(A) → Mco

sing(A) and provides a right adjoint of
Kac(Inj(A)) → K(Inj(A)), it is left Quillen Mco(A) → iMco

sing(A), providing a left ad-
joint of Kac(Inj(A)) → K(Inj(A)) and proving that Kac(Inj(A)) → K(Inj(A)) → D(A) is
a recollement (Corollary 2.2.2).

Moreover, we can now right-localize Minj(A) at iMco
sing(A) to obtain another “mixed”

model structure mMinj(A), which turns out to be another model for D(A) Quillen equiv-
alent to the injective model Minj(A), explaining the existence of the left adjoint of
K(Inj(A)) → D(A). We see that the recollement Kac(Inj(A)) → K(Inj(A)) → D(A) un-
folds to a butterfly of model structures and Quillen functors as follows (L denotes left
Quillen functors and R denotes right Quillen functors). For more details on the properties
of the butterfly, see Proposition 2.2.4.

Mco
sing(A) Minj(A)

Mco(A)

iMco
sing(A) mMinj(A)

LR RL
L

R

R
L

L
R

R
L
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All the constructions mentioned so far also work in the projective/contraderived set-
ting, yielding absolute and relative singular contraderived model structures on categories
of modules over a dg ring, as well as a projective variant and a butterfly unfolding the
recollement Kac(Proj(A)) → K(Proj(A)) → D(A).

We discuss two examples. Firstly, let R be a Gorenstein ring in the sense of [5], i.e. R
is Noetherian and of finite injective dimension both as a left and as a right module over
itself. Then the 0-th cosyzygy functor Ch(R -Mod) → R -Mod is a (left) Quillen equiva-
lence between the absolute singular contraderived model Mctr

sing(R) on Ch(R -Mod) and
Hovey’s Gorenstein projective model structure on R -Mod [13, Theorem 8.6]. Similarly,
the 0-th syzygy functor is a (right) Quillen equivalence between the absolute singular
coderived model Mco

sing(R) and Hovey’s Gorenstein injective model on R -Mod. These
two results are proved in Section 3.1.

Secondly, we consider matrix factorizations. Fix any ring S with a central element
w ∈ Z(S) and let KS,w = S[s]/(s2) be the Koszul algebra of (S,w), i.e. deg(s) = −1
and d(s) = w. Modules over KS,w can be identified with complexes of S-modules X

equipped with a square-zero nullhomotopy s : X → Σ−1X for X ·w−−→ X, i.e. they can
be thought of as “curved” mixed complexes with curvature w. For any such curved mixed
complex (X, d, s) we can form the sequences

∏
Xeven d+s−−−→

∏
Xodd d+s−−−→

∏
Xeven and⊕

Xeven d+s−−−→
⊕

Xodd d+s−−−→
⊕

Xeven, called the folding with products and folding with
sums of (X, d, s) and denoted foldΠ X and fold⊕ X, respectively. Since ds + sd = w

we see that (d + s)2 = w, and hence fold⊕(X) and foldΠ(X) are (S,w)-duplexes, i.e.
matrix factorizations of type (S,w) with possibly non-free components. The category of
(S,w)-duplexes is the same as the category of curved dg modules over the Z/2Z-graded
curved dg ring Sw with (Sw)0 = S, (Sw)1 = 0 and curvature w ∈ Z(S), and in particular
it carries Positselski’s contraderived model structure Mctr(Sw). We then prove that fold⊕

and foldΠ are left resp. right Quillen equivalences Mctr
sing(KS,w/S) → Mctr(Sw).

Structure: In Sections 1.1 and 1.2 we recall the definition of abelian model categories
as well as their relation to complete cotorsion pairs and deconstructible classes. In
Section 1.3 we use this relation to give self-contained constructions of the injective,
projective, contraderived and coderived model structures on the category of modules
over a dg ring. Next, in Section 1.4 we prove Proposition 1.4.2 providing a method for
the construction of localizations of abelian model structures. In the intermediate Sec-
tion 1.5, which is not needed anywhere else in this article, we show that these new model
structures can be described as Bousfield localizations in the classical sense (Proposi-
tion 1.5.3). Then, in Section 2.1 we turn to the construction of the relative and absolute
singular contraderived and coderived model structures as well as their projective and
injective variants. In Section 2.2 we construct the butterfly of Quillen functors lifting
Krause’s recollement to the level of model categories. Sections 3.1 and 3.2 contain the
discussion of the examples of Gorenstein rings and matrix factorizations. In Appendix A
we prove that pullbacks of deconstructible classes along cocontinuous, monadic functors
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between Grothendieck categories are deconstructible (Proposition A.6), a fact which is
used several times in Section 1.3.

The question of finding and studying models for the stable derived category of a ring
has been addressed independently by Daniel Bravo [3]. Given a ring R, he proves (in our
terminology) that iMco

sing(R) is indeed a cofibrantly generated abelian model structure
and establishes one half of the butterfly of Proposition 2.2.4. Although he also relies
on Hovey’s theorem on abelian model structures, his arguments are more direct and
concrete than ours, in particular exhibiting concrete cofibrant generators for iMco

sing(R)
and reproving that Ho(iMco(R)) ∼= Kac(Inj(R)) is compactly generated in case R is
Noetherian. He also studies in detail the case R = k[x, y]/(x2, xy, y2) for a field k.
Further extensive treatments of recollements from model structures on abelian and even
exact categories can be found in [7,8,4].

1. Abelian model categories

1.1. Basic definitions

We begin by recalling the definition of (abelian) model structures and their homotopy
categories, focusing on the abelian case.

Definition 1.1.1. A model structure M on a category C is a triple (Cof,W,Fib) of classes
of morphisms, called cofibrations, weak equivalences and fibrations, respectively, such that
the following axioms are satisfied:

(1) W satisfies the 2-out-of-3 axiom, i.e. given two composable morphisms f, g in M, if
two of f, g, gf belong to W, then so does the third.

(2) Cof,W and Fib are closed under retracts.
(3) In any commutative square

A X

B Y

f g

the dashed arrow exists, making everything commutative, provided that either f ∈
Cof and g ∈ W ∩ Fib or f ∈ Cof ∩W and g ∈ Fib.

(4) Any morphism f factors as f = β ◦ α with α ∈ Cof, β ∈ W ∩ Fib.
(5) Any morphism f factors as f = β ◦ α with α ∈ Cof ∩W, β ∈ Fib.

A model category is a bicomplete category (i.e. a category possessing arbitrary small
limits and colimits) equipped with a model structure. Given a model category, we will
sometimes drop the classes Cof,W,Fib from the notation.
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Notation 1.1.2. Given a model category (C ,M), an object X ∈ C is called weakly trivial if
0 → X ∈ W (equivalently, X → 0 ∈ W). Similarly, it is called cofibrant if 0 → X ∈ Cof,
and it is called fibrant if X → 0 ∈ Fib. The classes of cofibrant, weakly trivial, and
fibrant objects will be denoted C, W and F , respectively. The homotopy category is the
localization C [W−1] and is denoted Ho(M).

In this article we will mainly be concerned with model structures on abelian categories
“compatible” with the abelian structure in the following way:

Definition 1.1.3. A model structure on an abelian category is called abelian if cofibra-
tions equal monomorphism with cofibrant kernel and fibrations equal epimorphisms with
fibrant kernel. An abelian model category is a bicomplete abelian category equipped with
an abelian model structure.

Remark 1.1.4. There are other definitions of abelian model structures around, e.g. [13,6];
though they seem different at first, they are both equivalent to our definition by [13,
Proposition 4.2].

Requiring that any cofibration (resp. fibration) should be a monomorphism (resp.
epimorphism) is not as automatic as it might appear at first: for example, given a ring
R the standard projective model structure on Ch�0(R -Mod) [21] is not abelian since
fibrations are required to be epimorphisms only in positive degrees. As a positive example,
the standard injective and projective model structures on the category Ch(R -Mod) of
unbounded chain complexes of R-modules are abelian:

Proposition 1.1.5. (See [12].) Let R be a ring.

(1) There exists a cofibrantly generated abelian model structure on Ch(R -Mod) with
C = Ch(R -Mod), W = Acyc(R -Mod) and F = dg-Inj(R), called the standard
injective model structure on Ch(R -Mod).

(2) There exists a cofibrantly generated abelian model structure on Ch(R -Mod) with
F = Ch(R -Mod), W = Acyc(R -Mod) and C = dg-Proj(R), called the standard
projective model structure on Ch(R -Mod).

The standard projective and injective model structures on Ch(R -Mod) are denoted
Mproj(R) and Minj(R), respectively.

Proof. The existence and cofibrant generation of injective and projective model struc-
tures on Ch(R -Mod) is proved in [12, Theorems 2.3.11 and 2.3.13], and [12, Proposi-
tions 2.3.9 and 2.3.20] show that they are abelian. �

Another example of an abelian model structure is Hovey’s model for the singularity
category of a Gorenstein ring. Recall that a ring R is Gorenstein [5] if R is Noetherian
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and of finite injective dimension both as a left and as a right module over itself. An
R-module is called Gorenstein projective if it arises as the 0-th syzygy of an acyclic
complex of projective R-modules, and it is called Gorenstein injective if it arises as the
0-th syzygy of an acyclic complex of injective R-modules. The classes of Gorenstein
projective and Gorenstein injective R-modules are denoted G-proj(R) and G-inj(R),
respectively.

Proposition 1.1.6. (See [13, Theorem 8.6].) Let R be a Gorenstein ring.

(1) There exists an abelian model structure on R -Mod, called the Gorenstein projective
model structure and denoted MG-proj(R), with C = G-proj(R), W = P<∞(R) (the
modules of finite projective dimension) and F = R -Mod.

(2) There exists an abelian model structure on R -Mod, called the Gorenstein injective
model structure and denoted MG-inj(R), with C = R -Mod, W = P<∞(R) and
F = G-inj(R).

Moreover, both MG-proj(R) and MG-inj(R) are cofibrantly generated.

Right from the definition we know that an abelian model structure is determined by
the triple of cofibrant, weakly trivial and fibrant objects. The question which such triples
actually give rise to abelian model structures was solved in [13] in terms of complete
cotorsion pairs:

Definition 1.1.7. A subcategory W of an abelian category A is called thick if it is closed
under summands and if it satisfies the 2-out-of-3 property, i.e. whenever two out of three
terms in a short exact sequence lie in W, then so does the third.

Theorem 1.1.8. (See [13, Theorem 2.2].) Let A be a bicomplete abelian category and C,
W and F classes of objects in A . Then the following are equivalent:

(i) There exists an abelian model structure on A where C is the class of cofibrant, F is
the class of fibrant, and W is the class of weakly trivial objects.

(ii) W is thick and both (C,F ∩ W) and (C ∩ W,F) are complete cotorsion pairs [13,
Definition 2.3].

Slightly abusing the notation, given a triple (C,W,F) as above we will often denote its
induced abelian model structure (C,W,F) as well.

We call an abelian model structure M = (C,W,F) hereditary if their associated
cotorsion pairs (C,W ∩ F) and (C ∩ W,F) are hereditary. In view of the 2-out-of-3
property of W, this is equivalent to saying that C is closed under taking kernels of
epimorphisms and F is closed under taking cokernels of monomorphisms. Note that
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Gillespie [6] even obtained a version of Theorem 1.1.8 for exact categories endowed with
model structures compatible with the exact structure. Moreover, he does not assume the
existence of arbitrary small colimits and limits, as is done here and in [12], for example.

Let us consider the extreme cases of projective (resp. injective) abelian model struc-
tures, i.e. model structures where everything is fibrant (resp. cofibrant).

Corollary 1.1.9. Let A be a bicomplete abelian category and C,W ⊂ A classes of objects
in A . Then the following are equivalent:

(i) (C,W,A ) gives rise to an abelian model structure on A .
(ii) A has enough projectives, (C,W) is a complete cotorsion pair with C ∩W = P(A )

and W satisfies the 2-out-of-3 property.

Dually, for classes of objects W,F ⊆ A the following are equivalent:

(i) (A ,W,F) gives rise to an abelian model structure on A .
(ii) A has enough injectives, (W,F) is a complete cotorsion pair with W ∩F = I(A )

and W satisfies the 2-out-of-3 property.

Proof. By Theorem 1.1.8, (C,W,A ) giving rise to an abelian model structure on A

is equivalent to W satisfying the 2-out-of-3 property and (C,W ∩ F) = (C,W), (C ∩
W,F) = (C ∩ W,A ) being complete cotorsion pairs. The latter means that A has
enough projectives and C ∩W = P(A ). The second part is dual. �

We will see how complete cotorsion pairs can be constructed in the next section.
Concerning the 2-out-of-3 property, the next lemma will be useful.

Lemma 1.1.10. Let (W,F) be a cotorsion pair in an abelian category A with enough
injectives. Consider the following statements:

(1) (W,F) is coresolving.
(2) ExtkA (W,F ) = 0 for all W ∈ W, F ∈ F and k � 1.
(3) W satisfies the 2-out-of-3 property.

Then (1) ⇔ (2). If (W,F) is complete with W ∩F = I(A ), then also (2) ⇒ (3).

Proof. (2) ⇒ (1) follows from the long exact Ext-sequence. Now assume (1) holds. For
F ∈ F , pick an embedding i : F ↪→ I with I ∈ I(A ) ⊂ F . Then ΣF := coker(i) ∈ F
by assumption, and ExtkA (−, F ) ∼= Extk−1

A (−, ΣF ) for all k � 2. Inductively, we deduce
(2). This shows (1) ⇔ (2), so it remains to show (2) ⇒ (3) in case (W ,F) is complete
and W ∩ F = I(A ). If 0 → W1 → W2 → W3 → 0 is a short exact sequence with at
least two of the Wi belonging to W, we have Ext2A (Wi,F) = 0 for all i = 1, 2, 3. It is
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therefore sufficient to show that any X ∈ A satisfying Ext2A (X,F) = 0 actually satisfies
Ext1A (X,F) = 0, i.e. X ∈ W. For this, pick F ∈ F arbitrary and choose an exact
sequence 0 → F ′ → I → F → 0 with F ′ ∈ F and I ∈ I(A ). Such a sequence exists
since (W ,F) has enough projectives, F is closed under extensions and W ∩ F = I(A )
by assumption. Then Ext1A (X,F ) ∼= Ext2A (X,F ′) = 0, and hence X ∈ W. �

Combining Lemma 1.1.10 with its dual (note that (2) ⇒ (1) did only use the existence
of Ext∗ and the long exact Ext∗-sequence) shows that in case A has enough injectives,
then (W,F) being coresolving implies (W,F) being resolving. Dually, if A has enough
projectives, then (W,F) being resolving implies (W,F) being coresolving. Restricting to
complete cotorsion pairs, the existence of enough projectives or injectives is not necessary:

Proposition 1.1.11. Let A be an abelian category, (X ,Y) be a complete, coresolving co-
torsion pair and ω := X ∩Y. Then X/ω = ‡(Y/ω), Y/ω = (X/ω)‡ in A /ω. Here A /ω,
X/ω and Y/ω denote the stable categories and ‡ denotes the Hom-orthogonal (because
⊥ is already occupied). Moreover, (X ,Y) is resolving.

Proof. Given Y ∈ Y, in a sequence 0 → Y ′ → X → Y → 0 with Y ′ ∈ Y and X ∈ X we
have X ∈ X ∩ Y = ω since Y is extension-closed. As X → Y is an X -approximation, it
follows that any map X ′ → Y for some other X ′ ∈ X factors through ω, hence vanishes
in A /ω.

Next, let A ∈ A and pick exact sequences 0 → Y → X → A → 0 and 0 → X →
I → X ′ → 0 with X,X ′ ∈ X , I ∈ ω and Y ∈ Y. Taking pushout yields a commutative
diagram with exact rows and columns, and a bicartesian upper right square:

0 0

0 Y X A 0

0 Y I Y ′ 0

X ′ X ′

0 0

Moreover, since Y is closed under taking cokernels of monomorphisms by assumption, we
also have Y ′ ∈ Y. Now, in case A ∈ ‡(Y/ω) the map A → Y ′ factors through an object
in ω, hence through I → Y ′ as Y = ker(I → Y ′) ∈ Y ⊂ ω⊥. Since the upper right square
is cartesian, any such factorization A → I gives rise to a splitting of X → A, and hence
A ∈ X . Similarly, if A ∈ (X/ω)‡, the map X → A factors through an object in ω, hence
through X → I, and since the upper right square is cocartesian, such a factorization
yields a splitting of A → Y , so A ∈ Y.
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For the last part, suppose 0 → Z → X → X ′ → 0 is an exact sequence with
X,X ′ ∈ X . We want to show that Z ∈ X , and by the above it is sufficient to show that
any morphism f : Z → Y factors through ω. But f extends to a morphism g : X → Y

(since X ′ ∈ X ) which then factors through ω (since X ∈ X ). �
Corollary 1.1.12. A complete cotorsion pair is coresolving if and only if it is resolving.
In particular, any injective/projective abelian model structure is hereditary.

Proof. The first statement follows from Proposition 1.1.11 combined with its dual. For
the second, note that if (A ,W,F) is an injective abelian model structure, then (W,F)
is a resolving cotorsion pair (since W satisfies the 2-out-of-3 property), hence hereditary
by the first part. The projective case is similar. �

We now describe the homotopy category of an abelian model category.

Proposition 1.1.13. Let A be a bicomplete abelian category and M = (C,W,F) be an
abelian model structure on A . Then the composition C ∩ F ↪→ A → Ho(M) induces an
equivalence of categories C ∩ F/ω ∼= Ho(M), where ω = C ∩W ∩ F .

Proof. See e.g. [6, Propositions 4.3, 4.7] or [2, Theorem VIII.4.2]. �
The homotopy category of a model category (A ,M) whose underlying category A is

abelian carries a natural pretriangulated structure in the sense of [2, Definition II.1.1].
This follows from [12, Section 6.5] together with the fact that any cogroup object in an
additive category is isomorphic to one of the form (X,Δ : X → X ⊕ X, 0 : X → 0)
and that giving some object Y a comodule structure over such a cogroup is equivalent
to giving a morphism Y → X. See also [12, Remark 7.1.3, Theorem 7.1.6]. Concretely if
M = (C,W,F) is an abelian model structure and X ∈ C, Y ∈ F , their suspension and
loop objects ΣX ∈ C, ΩY ∈ F can be defined by the property that they belong to exact
sequences 0 → X → I → ΣX → 0 and 0 → ΩY → P → Y → 0 with I ∈ W ∩ F and
P ∈ C ∩W. However, for X,Y ∈ C ∩F it is not clear in this situation that ΣX and ΣY

again belong to C ∩W, at least if M is not assumed to be hereditary. Hence, in this case
we don’t know how the pretriangulated structure on C ∩ F/ω obtained by pulling back
the pretriangulated structure on Ho(M) along the equivalence C ∩ F/ω → Ho(M) of
Proposition 1.1.13 can be described explicitly. Assuming that M is hereditary, however,
we have the following [6, Proposition 5.2]:

Proposition 1.1.14. Let M = (C,W,F) be a hereditary abelian model structure on an
abelian category A . Then C ∩ F , endowed with the exact structure inherited from A , is
Frobenius. Moreover, its class of projective–injective objects equals ω := C ∩W ∩F , and
C ∩ F/ω → Ho(M) is an equivalence of pretriangulated categories.

Corollary 1.1.15. A hereditary abelian model category is stable.
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1.2. Small cotorsion pairs

In the previous section we recalled the definition and properties of abelian model
structures, and in particular we discussed Hovey’s one-to-one correspondence between
abelian model structures and pairs of compatible complete cotorsion pairs. However, we
did not explain so far how one can actually construct such complete cotorsion pairs,
and this is the topic of the present section. We describe how each set S of objects in
an abelian category A yields a cotorsion pair in A , called the cotorsion pair cogener-
ated by S, and discuss when such cotorsion pairs are complete, our main source being
[22]. We then use these results to give a handy description of classes occurring as cotor-
sion classes in complete cotorsion pairs cogenerated by sets in terms of generators and
deconstructibility. This prepares the ground for the construction of the projective, in-
jective, coderived and contraderived abelian model structures for modules over (curved)
differential graded rings in the next section. We end with a theorem of Hovey connect-
ing complete cotorsion pairs cogenerated by sets to cofibrantly generated abelian model
categories.

Let A be an abelian category with small coproducts. We say that a class of ob-
jects G ⊆ A is generating or that it generates A if any object in A is the quotient
of a set-indexed coproduct of objects in G. An object G ∈ A is called a gener-
ator if {G} is generating, i.e. if any object in A is a quotient of G

∐
I for some

large enough set I (for a comparison to other definitions of generators and generat-
ing sets, see [15, Proposition 5.2.4]). We call A an (AB5 )-category if small colimits
exist in A and if filtered colimits are exact, and we say that A is a Grothendieck
category if, in addition to being (AB5), it admits a generating set of objects (or
equivalently, a generator). Note that in a Grothendieck category a class of objects
is generating if and only if it contains a generating set. We refer to [15] for gener-
alities on Grothendieck categories. For example, any Grothendieck category possesses
arbitrary small limits [15, Proposition 8.3.27(i)] and has enough injectives [15, Theo-
rem 9.6.2].

From now on let A be a Grothendieck category. A cotorsion pair (D, E) in A is
said to be cogenerated by a set if there exists a set S ⊂ D such that E = S⊥. Any set of
objects S serves as the cogenerating set for a unique cotorsion pair, namely (⊥(S⊥),S⊥).
Although trivial, this is a useful method for constructing cotorsion pairs. In order to get
abelian model structures, however, a criterion is needed to check when cotorsion pairs
cogenerated by certain sets of objects are complete, which is provided by the following
proposition:

Proposition 1.2.1. (See [22].) Let A be a Grothendieck category and (D, E) be a cotorsion
pair cogenerated by a set. Then the following hold:

(1) (D, E) has enough injectives.
(2) (D, E) has enough projectives if and only if D is generating.
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Proof. Part (1) and the implication “⇐” in (2) follow from Quillen’s small object ar-
gument and are explained very clearly in [22, Theorem 2.13] in the bigger generality of
efficient exact categories (of which Grothendieck categories are examples by [22, Propo-
sition 2.7]). It remains to check the implication “⇒” in (2): Assuming (D, E) is complete,
let G ∈ A be a generator of A and pick a short exact sequence 0 → E → D → G → 0
with E ∈ E and D ∈ D. Then D is a generator for A , too, so D is generating. �

A cotorsion pair (D, E) is called small if it is cogenerated by a set and if D is generating.
The notion of small cotorsion pairs was introduced in [13, Definition 6.4] in the study of
completeness of cotorsion pairs cogenerated by sets. The definition given here differs from
Hovey’s in that we do not assume condition (iii) of [13, Definition 6.4]. However, in our
situation that condition (iii) is automatic by [22, Proposition 2.7]. In case our underlying
category A has enough projectives (as for example in the cases of modules over dg rings
we will be studying later) any cotorsion pair cogenerated by a set is automatically small:

Corollary 1.2.2. Let A be a Grothendieck category with enough projectives. Then any
cotorsion pair cogenerated by a set is small, and in particular complete.

Proof. Since A has enough projectives it admits a projective generator. In particular,
the class of projectives is generating, and hence so is any cotorsion class. The second
part follows from Proposition 1.2.1. �

Proposition 1.2.1 and Corollary 1.2.2 allow for proving that a certain class E arises as
the cotorsionfree part of a complete cotorsion pair. To give criteria when a class D arises
as the cotorsion part in a complete cotorsion pair, we need a more concrete description
of ⊥(S⊥) for a cogenerating set S ⊆ A . For this, we recall the notion of an S-filtration.

Definition 1.2.3. (See [23, Definition 1.3].) Let A be a Grothendieck category, S a class
of objects in A and X ∈ A . An S-filtration on X consists of an ordinal τ together with
a family {Xσ}σ�τ of subobjects of X such that the following hold:

(1) X0 = 0, Xτ = X and Xμ ⊆ Xσ if μ � σ � τ .
(2) If σ � τ is a limit ordinal, Xσ =

∑
μ<σ Xμ.

(3) Xσ+1/Xσ is isomorphic to an object in S for all σ < τ .

The size of such an S-filtration is |τ |. The class of objects admitting an S-filtration is
denoted filt-S, and its closure under taking summands is denoted ⊕filt-S. A class F ⊂ A

of the form F = filt-S for some set S ⊂ A is called deconstructible.

Proposition 1.2.4. Let A be a Grothendieck category and S ⊆ A be a set of objects.
Assume that filt-S is a generating class for A . Then ⊥(S⊥) = ⊕filt-S.

Proof. This is also part of [22, Theorem 2.13]. �
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Proposition 1.2.5. Let A be a Grothendieck category and let D ⊆ A be some class of
objects. Then the following are equivalent:

(i) D arises as the cotorsion part in a small cotorsion pair.
(ii) D is generating and D = ⊕filt-S for a set of objects S.
(iii) D is generating, closed under direct summands, and deconstructible.

Proof. (1) ⇒ (2) Suppose (D, E) a small cotorsion pair cogenerated by some set S ⊆ D,
i.e. E = S⊥. By definition, D is generating and hence we may without loss of generality
assume that S is generating, too (otherwise enlarge S by a set of generators of A

inside D). We then get D = ⊥E = ⊥(S⊥) = ⊕filt-S by Proposition 1.2.4. (2) ⇒ (1):
If D = ⊕filt-S and D is generating, then so is filt-S. Hence Propositions 1.2.4 and
1.2.1 yield the small cotorsion pair (⊥(S⊥),S⊥) = (⊕filt-S,S⊥) = (D,S⊥). This shows
(1) ⇔ (2). (3) ⇒ (2) is clear and finally (2) ⇒ (3) follows from [23, Proposition 2.9(1)]
which says that given any deconstructible class in a Grothendieck category, the class of
direct summands of objects of this class is again deconstructible. �
Example 1.2.6. Let A be a Grothendieck category.

(1) Suppose G is generator of A and let S be a representative set of isomorphism classes
of quotients of G. Then A = filt-S, so A is deconstructible. As A itself is clearly
generating, we deduce from Proposition 1.2.5 that (A , I(A )) is a complete cotorsion
pair, i.e. that A has enough injectives.

(2) Assume that A has enough projectives. Then P(A ) is generating, and hence the
cotorsion pair (P(A ),A ) is small. Applying Proposition 1.2.5 shows that P(A ) is
deconstructible.

We end the section by recalling that cotorsion pairs cogenerated by sets are also
relevant because of their relation to the cofibrant generation of abelian model structures,
as is shown in the following theorem of Hovey.

Proposition 1.2.7. Let A be a Grothendieck category and let M = (C,W,F) be an abelian
model structure on A . Then the following are equivalent:

(1) M is cofibrantly generated.
(2) (C ∩W,F) and (C,W ∩F) are small.

Proof. “⇐” is proved in [13, Lemma 6.7]. “⇒” is [14, Lemma 3.1]; however, it is stated
there without proof, so we give an argument for convenience of the reader. Suppose M is
cofibrantly generated with a generating set of cofibrations I ⊆ Cof and a generating set
of trivial cofibrations J ⊂ Cof ∩W, and put S := {coker(f) | f ∈ I}. As cofibrations are
monomorphisms with cofibrant cokernel, we have S ⊆ C, and we claim that S⊥ = F∩W.
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Indeed, if X ∈ S⊥, then X → 0 has the right lifting property with respect to all maps
f ∈ I, and hence is a trivial fibration by assumption. In other words, X ∈ W ∩ F as
claimed. Similarly one shows that F = T ⊥ for T := {coker(g) | g ∈ J} ⊆ C ∩W. �

In particular, Proposition 1.2.7 shows that in case A has enough projectives M ↔
(C,W,F) gives a one-to-one correspondence between cofibrantly generated abelian model
structures on A and triples (C,W,F) such that W is thick and both (C ∩ W,F) and
(C,W ∩F) are cotorsion pairs cogenerated by sets.

1.3. Four model structures on modules over a dg ring

In this section we use the results of the previous section to construct four prominent
abelian model structures on the category of modules over a (curved) differential graded
ring (dg rings resp. cdg rings for short): Firstly, the standard injective and projective
abelian model structures for modules over a dg ring, and secondly, Positselski’s coderived
and contraderived abelian model structures for modules over a cdg ring.

Notation 1.3.1. A grading group [20, Remark preceding Section 1.2] is an abelian group
Γ together with a parity homomorphism | · | : Γ → Z/2Z and a distinguished element
1 ∈ Γ satisfying |1| = 1. A Γ -graded abelian group is a Γ -indexed family X∗ = {Xk}k∈Γ

of abelian groups, but we will often drop the index from the notation. We will also
sometimes drop Γ from the notation, in which case it is implicitly assumed that a grading
group has been fixed. Given such a Γ -graded abelian group X and some n ∈ Γ , we denote
ΣnX = X the Γ -graded abelian group given by (ΣnX)k := Xk+n and call it the n-fold
suspension of X. We also put Σ := Σ1 and Ω := Σ−1. The category of Γ -graded
abelian groups has a monoidal structure given by the tensor product (X ⊗ Y )n :=⊕

p+q=n X
p ⊗Z Y q; a Γ -graded ring is an algebra object in that monoidal category, and

a module over such an algebra object is called a Γ -graded module. A Γ -graded curved
differential graded ring (cdg ring for short) is a Γ -graded ring A together with a map
d : A → ΣA of Γ -graded abelian groups called differential and an element w ∈ A2 such
that d(w) = 0, d satisfies the Leibniz rule and for any x ∈ A we have d2(x) = [w, x]. The
Γ -graded ring underlying a Γ -graded cdg ring A is denoted A�. For a cdg ring A, a (cdg)
module over A is a Γ -graded module X over A� together with a map d : X → ΣX

of Γ -graded abelian groups satisfying the Leibniz rule and d2(x) = wx for all x ∈ X.
Given such an A-module X and n ∈ Γ , the n-fold suspension ΣnX carries a natural
A-module structure as follows: its differential dΣnX is given by dΣnX := (−1)|n|dX ,
and the action of some homogeneous a ∈ A on some x ∈ X given by (−1)|a|·|n|ax. The
A�-module underlying X is denoted X�. Given two A-modules X, Y , the (Γ -indexed)
complex of A�-linear homomorphisms X� → Σ∗Y � is denoted dg-Hom∗

A(X,Y ): for k ∈ Γ ,
its k-th component is HomA�(X�, ΣkY �), with differential sending f : X� → ΣkY � to
∂Y f − (−1)|k|f∂X . The k-th cohomology Hk(dg-Hom∗

A(X,Y )) equals the set [X,ΣkY ]
of homotopy classes of morphisms X → ΣkY . Finally, we denote A -Modproj (resp.
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A -Modinj) the class of A-modules whose underlying graded A�-modules are projective
(resp. injective).

Recall from [20] the following explicit description of the adjoints of (−)�:

Proposition 1.3.2. (See [20, Proof of Theorem 3.6].) Let A be a cdg ring and define the
functors G+, G− : A� -Mod → A -Mod as follows:

(1) G+(X) := X⊕ΩX as graded abelian groups. An element (x, y) ∈ G+(X) is denoted
x + d(y). The action of some a ∈ A on x + d(y) is given by ax − (−1)|a|d(a)y +
(−1)|a|d(ay), while the differential on G+(X) sends x + d(y) to wy + d(x).

(2) G− := Σ ◦G+.

Then there are canonical adjunctions G+ � (−)� � G−.

Note that if A is a dg ring (so that we can talk about homology of A-modules)
the images of G+ and G− consist of acyclic modules. This follows immediately from
the explicit description of G±, or alternatively by using the adjunction property:
Hn(G−(X)) ∼= [A,ΣnG−(X)] ∼= Ext1A(Ωn−1A,G−(X)) ∼= Ext1A�(Ωn−1A�, X) = 0,
where the latter equality holds because A� is projective in A� -Mod; as G+ = Ω◦G−, this
also shows the acyclicity of objects in the image of G+. Here we have used that, given a
cdg ring A and X ∈ A -Modproj, there is a canonical isomorphism Ext1A(X,−) ∼= [ΩX,−].
Similarly, if X ∈ A -Modinj, we have Ext1A(−, X) ∼= [−, ΣX]. These isomorphisms will
be used very often in what follows. We will also need the following characterization of
projective and injective objects in A -Mod:

Lemma 1.3.3. Let A be a cdg ring and X an A-module. Then X is projective in A -Mod if
and only if X� is projective in A� -Mod and X is contractible as an A-module. Similarly,
X is injective in A -Mod if and only if X� is injective in A� -Mod and X is contractible
as an A-module.

Proof. For any A-module there is a canonical epimorphism Cone(idΩX) → X in A -Mod.
Hence, if X is projective in A -Mod, it is a summand of Cone(idΩX) and hence con-
tractible as an A-module. Further, as the forgetful functor A -Mod → A� -Mod is left
adjoint to the exact functor G− (see Proposition 1.3.2), it preserves projective objects,
and hence one direction is proved. Conversely, assume that X� is projective in A� -Mod
and X is contractible as an A-module. Given another A-module Z, the projectiveness
of X� implies that there is a canonical isomorphism Ext1A(X,Z) ∼= [X,ΣZ], and the
latter group is trivial since X is contractible. It follows that X is projective in A -Mod,
as claimed.

The part on injective objects in A -Mod is similar. �



202 H. Becker / Advances in Mathematics 254 (2014) 187–232
Lemma 1.3.4. Let A be a cdg ring and (D, E) be a cotorsion pair with ΣD ⊆ D.

(1) If D ⊆ A -Modproj, then D ∩ E = P(A -Mod).
(2) If E ⊆ A -Modinj, then D ∩ E = I(A -Mod).

Proof. We only prove (1), as the proof of (2) is similar. Assuming D ⊆ A -Modproj,
we claim that D ∩ E = P(A -Mod). “⊇”: Clearly P(A -Mod) = ⊥A -Mod ⊆ ⊥E = D.
Moreover, if X ∈ P(A -Mod) and Z ∈ D ⊆ A -Modproj, we have Ext1A(Z,X) ∼= [Z,ΣX] =
0 since X is contractible (Lemma 1.3.3). This shows P(A -Mod) ⊆ D⊥ = E , and hence
P(A -Mod) ⊆ D ∩ E . “⊆”: By Lemma 1.3.3 and the assumption that D ⊆ A -Modproj
it suffices to show that any X ∈ D ∩ D⊥ is contractible as an A-module. Using that
ΣD ⊆ D by assumption, this follows from 0 = Ext1A(ΣX,X) ∼= [ΣX,ΣX]. �
Proposition 1.3.5. For a dg ring A, the following hold:

(1) There exists a unique projective abelian model structure on A -Mod, denoted
Mproj(A), with W = Acyc(A). Mproj(A) is called the standard projective model
structure on A -Mod. The class Cproj(A) of cofibrant objects in Mproj(A) is contained
in A -Modproj.

(2) There exists a unique injective abelian model structure on A -Mod, denoted Minj(A),
with W = Acyc(A). Minj(A) is called the standard injective model structure on
A -Mod. The class F inj(A) of fibrant objects in Minj(A) is contained in A -Modinj.

Moreover, Mproj(A) and Minj(A) are cofibrantly generated.

The case of a ring is treated in [12], see Proposition 1.1.5. For the general case, the
projective model structure has been constructed in [10, §3]. Positselski [20, Theorem 8.1]
constructs both model structures, leaving aside however the question of their cofibrant
generation. We therefore include a full proof of Proposition 1.3.5 as a first concrete
illustration of how abelian model structures can be obtained from cotorsion pairs and
deconstructible classes.

Proof of Proposition 1.3.5. (1) Let S := {ΣnA | n ∈ Γ}. For any n ∈ Γ and any X ∈
A -Mod we have a canonical isomorphism Ext1A(ΩnA,X) ∼= [A,Σn+1X] ∼= Hn+1(X), so
it follows that S⊥ = Acyc(A). Hence, by Corollary 1.2.2, the cotorsion pair (⊥Acyc,Acyc)
is complete. By Corollary 1.1.9 and the thickness of Acyc(A) it remains to show that
⊥Acyc ∩ Acyc = P(A -Mod), so that by Lemma 1.3.4 it suffices to show that ⊥Acyc ⊆
A -Modproj. For this, note that for any X ∈ ⊥Acyc and any Z ∈ A� -Mod, we have
0 = Ext1A(X,G−(Z)) ∼= Ext1A�(X�, Z), so that X� is projective in A� -Mod as claimed.
Here we used that the image of G− consists of acyclic A-modules.

(2) By Corollary 1.1.9 and Proposition 1.2.5 it suffices to show that Acyc(A) is gener-
ating and deconstructible, and that Acyc(A)∩Acyc(A)⊥ = I(A -Mod). By Lemma 1.3.3
P(A -Mod) ⊆ Acyc(A), so Acyc(A) is generating. The deconstructibility of Acyc(A) fol-
lows from Proposition A.10 applied to the monadic forgetful functor: A -Mod → ChΓ (Z)
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and the fact [23, Theorem 4.2(2)] that Acyc(Z) ⊂ ChΓ (Z) is deconstructible (in [23] the
result is proved for Γ = Z, but the arguments carry over to the case of a general grad-
ing group). Finally, the equality Acyc(A) ∩ Acyc(A)⊥ = I(A -Mod) again follows from
Lemma 1.3.4 once we’ve showed that for any X ∈ Acyc(A)⊥ its underlying A�-module
X� is injective. Indeed, if Z ∈ A� -Mod, we have 0 = Ext1A(G+(Z), X) ∼= Ext1A�(Z,X�),
where the first equality holds because the image of G+ consists of acyclic A-modules.

The statement about cofibrant generation follows from Proposition 1.2.7. �
Proposition 1.3.6. For a cdg ring A, the following hold:

(1) There exists a unique projective abelian model structure on A -Mod, denoted
Mctr(A), such that C = A -Modproj. Mctr(A) is called the contraderived model
structure on A -Mod.

(2) There exists a unique injective abelian model structure on A -Mod, denoted Mco(A),
such that F = A -Modinj. Mctr(A) is called the coderived model structure on
A -Mod.

Moreover, Mctr(A) and Mco(A) are cofibrantly generated.

Proof. (1) By Corollary 1.1.9 and Proposition 1.2.5 we have to show that A -Modproj

is generating and deconstructible, that A -Modproj ∩A -Mod⊥
proj = P(A -Mod) and

that A -Mod⊥
proj satisfies the 2-out-of-3 property. By Lemma 1.3.3, P(A -Mod) ⊆

A -Modproj, so A -Modproj is generating. For the deconstructibility of A -Modproj, we
again apply Proposition A.10: The forgetful functor (−)� : A -Mod → A� -Mod is
monadic, for example by the explicit description of its left adjoint G+ in Propo-
sition 1.3.2, and A -Modproj is the preimage under (−)� of P(A� -Mod), which is
deconstructible by Example 1.2.6(2). Finally, A -Modproj ∩A -Mod⊥

proj = P(A -Mod)
follows from Lemma 1.3.4, and the 2-out-of-3 property of A -Mod⊥

proj is ensured by
the dual of Lemma 1.1.10, using that A -Modproj is closed under kernels of epimor-
phisms.

(2) By definition, an A-module X belongs to A -Modinj if and only if X� ∈
I(A� -Mod), i.e. 0 = Ext1A�(Z,X�) = Ext1A(G+(Z), X) for all Z ∈ A� -Mod. In other
words, A -Modinj = G+(A� -Mod)⊥. Hence, choosing a set S ⊂ A� -Mod such that
A� -Mod = filt-S we have A -Modinj = G+(S)⊥. We conclude that (⊥Ainj, Ainj) is
a complete cotorsion pair by Corollary 1.2.2. As above, ⊥Ainj ∩ Ainj = I(A -Mod)
follows from Lemma 1.3.4, and the 2-out-of-3 property of ⊥A -Modinj follows from
Lemma 1.1.10 together with the fact that A -Modinj is closed under cokernels of
monomorphisms.

The cofibrant generation follows from Proposition 1.2.7. �
Corollary 1.3.7. For a dg ring A, the identity on A -Mod is a left Quillen functor
Mproj(A) → Mctr(A) and a right Quillen functor Minj(A) → Mco(A).
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Proof. Unraveling the definitions, this means that we have Cproj(A) ⊆ A -Modproj and
F inj(A) ⊆ A -Modinj, which was shown in Proposition 1.3.5. �

Following [20], weakly trivial objects in Mco(A) are called coacyclic, while weakly
trivial objects in Mctr(A) are called contraacyclic. We denote them Wco(A) and Wctr(A),
respectively. Corollary 1.3.7 implies that Wco(A) ⊆ Acyc(A) ⊇ Wctr(A), so coacyclic and
contraacyclic modules are in particular acyclic in the classical sense. In general, we can
only give the following description:

Proposition 1.3.8. Let A be a dg ring and X ∈ A -Mod.

(1) X is contraacyclic if and only if for each Z ∈ A -Modproj the homomorphism complex
dg-Hom∗

A(Z,X) is acyclic, if and only if [Z,X] = 0 for all Z ∈ A -Modproj.
(2) X is coacyclic if and only if for each Z ∈ A -Modinj the homomorphism complex

dg-Hom∗
A(X,Z) is acyclic if and only if [X,Z] = 0 for all Z ∈ A -Modinj.

In particular, any contractible A-module is both contraacyclic and coacyclic.

Proof. (i) follows from Ext1A(Z,−) ∼= [ΩZ,−] for Z ∈ A -Modproj and the isomorphism
Hk[dg-Hom∗

A(X,Y )] ∼= [X,ΣkY ], and (ii) follows using Ext1A(−, Z) ∼= [−, ΣZ] for Z ∈
A -Modinj. �
Lemma 1.3.9. Let A be a cdg ring and · · · p2−−→ X1

p1−−→ X0 be an inverse system of
contraacyclic A-modules with all pn being epimorphisms. Then lim←−Xn is A-contraacyclic,
too. In particular, the totalization formed by taking products of any bounded above exact
sequence of A-modules is contraacyclic.

Proof. The first statement follows from the existence of a short exact sequence 0 →
lim←−Xn →

∏
Xn →

∏
Xn → 0 and the fact that Wctr(A) satisfies the 2-out-of-3 property.

It remains to show that the totalization TotΠ(X∗) formed by taking products of an
exact, bounded above sequence of A-modules · · · f3−−→ X2

f2−−→ X1
f1−−→ X0 → 0 → · · · is

contraacyclic, which is essentially a special case of the first statement: TotΠ(X∗) is the
inverse limit of the totalizations of the soft truncations 0 → Xn/ im(fn+1) → Xn−1 →
· · · → X1 → X0 → 0, which in turn are iterated extensions of contractible A-modules,
hence contraacyclic by Proposition 1.3.8. �

In case some mild conditions on A� is satisfied, Positselski gives the following descrip-
tion of coacyclic and contraacyclic modules:

Proposition 1.3.10. (See [20, Theorems 3.7, 3.8].) Let A be a cdg ring.

(1) Suppose any countable product of projective A�-modules has finite projective di-
mension. Then Wctr(A) equals the smallest thick triangulated subcategory of
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H0(A -Mod) closed under products and containing totalizations of exact sequences of
A-modules.

(2) Suppose any countable sum of injective A�-modules has finite injective dimension.
Then Wco(A) equals the smallest thick triangulated subcategory of H0(A -Mod) closed
under coproducts and containing totalizations of exact sequences of A-modules.

The next proposition is contained in greater generality in [20, Section 3.6]. Restricting
to ordinary rings here, we give a direct proof in the setting of abelian categories.

Proposition 1.3.11. If R is an ordinary ring of finite left-global dimension (i.e.
gl.dim(R -Mod) < ∞), then Mctr(R) = Mproj(R) and Mco(R) = Minj(R).

Proof. By Corollary 1.3.7 we have Cproj(R) ⊆ Cctr(R), so it suffices to show the reverse
inclusion, i.e. that for any X ∈ ChΓ (Proj(R)) we have X ∈ ⊥Acyc(R). Suppose first that
X ∈ ChΓ (Proj(R)) ∩ Acyc(R). Since gl.dim(R -Mod) < ∞ by assumption, the syzygies
Zn(X) of X are projective in this case, and hence X is contractible. By Lemma 1.3.3,
it follows that X ∈ P(ChΓ (R)) ⊆ ⊥Acyc(R) as claimed. In the general case, pick a
cofibrant resolution p : P → X in Mproj(R), i.e. p is an epimorphism with K := ker(p) ∈
Acyc(R) and P ∈ Cproj(R). As the components of X are projective, p is degree-wise
split, so K ∈ Acyc(R)∩ChΓ (Proj(R)) ⊆ ⊥Acyc(R) by the first case. Moreover, applying
dg-Hom∗

R(−, Z) to 0 → K → P → X → 0 for Z ∈ Acyc(R) and taking cohomology
shows [X,Z] = 0 as claimed. The proof of Mco(R) = Minj(R) is similar. �

Morphisms of dg rings induce Quillen adjunctions between the four models:

Proposition 1.3.12. Let ϕ : R → A be a morphism of dg rings and let Uϕ : A -Mod →
R -Mod be the forgetful functor.

(1) A⊗R − � Uϕ is a Quillen adjunction Mproj(R) � Mproj(A).
(2) A⊗R − � Uϕ is a Quillen adjunction Mctr(R) � Mctr(A).
(3) Uϕ � dg-HomR(A,−) is a Quillen adjunction Minj(A) � Minj(R).
(4) Uϕ � dg-HomR(A,−) is a Quillen adjunction Mco(A) � Mco(R).
(5) If A� is projective as an R�-module, then Uϕ � dg-HomR(A,−) is a Quillen adjunc-

tion Mctr(A) � Mctr(R).

Proof. Omitted. �
Remark 1.3.13. The results of this section generalize to the case where we replaced
our base category of abelian groups by any Grothendieck category A equipped with
a closed symmetric monoidal tensor product − ⊗ − : A × A → A . Given a grad-
ing group Γ , the category A Γ of Γ -indexed objects in A and the category ChΓ (A )
of Γ -indexed complexes in A are again Grothendieck and inherit a closed symmetric
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monoidal tensor product; one can then speak about algebra objects in these categories
(Γ -graded rings and Γ -graded dg rings in case A = Z -Mod), and form their categories
of modules, which are again Grothendieck by Lemma A.3. The arguments of this sec-
tion carry over to this situation and show that for any Γ -graded dg ring A over (A ,⊗)
its category of modules carries the standard injective model structure, determined by
injectivity and W = Acyc(A), and the coderived model structure, determined by injec-
tivity and F = A -Modinj. The only difference is that one has to argue why Acyc(A) and
⊥A -Modinj are generating; for example, this follows from the fact that both Acyc(A)
and ⊥A -Modinj contain the class of contractible A-modules, and any A-module X is the
quotient of the contractible A-module Cone(idΩX). If A has enough projectives, then so
do A Γ , ChΓ (A ), A� -Mod and A -Mod, and we also get the standard projective and the
contraderived model structure on A -Mod, determined by projectivity and W = Acyc(A)
resp. C = A -Modproj. Also see Remarks 2.1.5 and 2.2.5.

This generalization applies for example to the case where A = QCoh(X) for a quasi-
compact and quasi-separated scheme X (see [19, Proposition 66]), or to A = OX -Mod
for some ringed space (X,OX) (see [15, Theorem 18.1.6]).

1.4. Localization of abelian model structures

Let A be a bicomplete abelian category and M1, M2 two injective abelian model
structures on A such that id : M2 → M1 is right Quillen. In this section we will
construct from this datum another hereditary (usually non-injective) abelian model
structure, called the right localization of M1 with respect to M2 and denoted M1/M2,
whose homotopy category fits into a colocalization sequence with the homotopy cat-
egories of M1 and M2. The arguments in the proof are elementary homological al-
gebra only, and in particular do not use Quillen’s small object argument. Hence, we
neither need to assume that the model structures we work with are cofibrantly gen-
erated, nor that the underlying bicomplete abelian category is Grothendieck. Instead,
the assumptions are completely self-dual, and we get a dual left localization result for
comparable pairs of projective abelian model structures. We will see in the next sec-
tion that what we call localizations here are indeed Bousfield localizations in the sense
of [11].

Fact 1.4.1. Let A be an abelian category equipped with an abelian model structure M =
(C,W,F). Then, given a morphism f : A → B the following are equivalent:

(i) f is a weak equivalence.
(ii) f factors as A

ι� X
p� B with coker(ι) ∈ C ∩W and ker(p) ∈ F ∩W.

Proof. (ii) ⇒ (i) is clear, and (i) ⇒ (ii) follows from the factorization axiom. �
Fact 1.4.1 is meant to motivate the description of W in the following proposition.
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Proposition 1.4.2. Let A be a bicomplete abelian category and M1 = (W1,F1) and
M2 = (W2,F2) be injective abelian model structures on A with F2 ⊂ F1. Then there
exists a hereditary abelian model structure on A , called the right localization of M1 with
respect to M2 and denoted M1/M2, with C = W2, F = F1 and

W := {X ∈ A | ∃ ex. seq. 0 → X → A → B → 0 with A ∈ F2, B ∈ W1}
= {X ∈ A | ∃ ex. seq. 0 → A → B → X → 0 with A ∈ F2, B ∈ W1}.

Moreover, X ∈ W if and only if it belongs to the essential image of F2 → Ho(M1).

In the course of the proof of Proposition 1.4.2 we will need the following lemmata:

Lemma 1.4.3. Let F be a Frobenius category and let I be its class of projective–injective
objects. Then the following hold:

(1) Assume F weakly idempotent complete, i.e. every split monomorphism has a coker-
nel. Then, given X,Y ∈ F , we have X ∼= Y in the stable category F/I if and only
if there exist I, J ∈ I such that X ⊕ J ∼= Y ⊕ I in F .

(2) Given an admissible short exact sequence X � Y � Z, there exists a canonical
morphism Z → ΣX in the stable category F/I such that X → Y → Z → ΣX is a
distinguished triangle in F/I.

Proof. (1) Omitted. (2) See [9, Lemma 2.7]. �
Lemma 1.4.4. Let A be an abelian category and (W,F) be a coresolving cotorsion pair
with enough injectives. Then for any short exact sequence 0 → X1 → X2 → X3 → 0 in
A there exists a commutative diagram

0 0 0

0 X1 X2 X3 0

0 A1 A2 A3 0

0 B1 B2 B3 0

0 0 0

such that Ai ∈ F , Bi ∈ W and all rows and columns are exact.

Proof. Let 0 → X1 → A1 → B1 → 0 be short exact with A1 ∈ F , B1 ∈ W. Taking the
pushout of A1 ← X1 → X2 we get a monomorphism of exact sequences
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0 X1 X2 X3 0

0 A1 Z X3 0

whose cokernel 0 → B1 → B1 → 0 → 0 is an exact sequence in W. Replacing 0 → X1 →
X2 → X3 → 0 by 0 → A1 → Z → X3 → 0 we may therefore assume A1 = X1 ∈ F right
from the beginning. In this case, choose an exact sequence 0 → X2 → A2 → B2 → 0
with A2 ∈ F , B2 ∈ W. Forming the pushout of A2 ← X2 → X3 we get the following
commutative diagram:

0 A1 X2 X3 0

0 A1 A2 Z 0

By definition, the right square is pushout, but as X2 → A2 is a monomorphism, it
is also pullback, and hence the second row is exact. Since F is closed under cokernels
of monomorphisms by assumption, we conclude Z ∈ F . Hence we have constructed a
monomorphism from 0 → A1 → X2 → X3 → 0 into a short exact sequence in F with
cokernel 0 → 0 → B2 → B2 → 0 lying in W, as required. �
Proof of Proposition 1.4.2. Recall from Corollary 1.1.12 that M1 and M2 are auto-
matically hereditary, and in particular F1 and F2 are closed under taking cokernels of
monomorphisms; this will be used several times in the proof. We begin by showing that
both definitions of W agree.

Suppose X ∈ A admits a short exact sequence 0 → A → B → X → 0 with A ∈ F2
and B ∈ W1. Since (W1,F1) is a cotorsion pair with W1∩F1 = I, we can choose a short
exact sequence 0 → B → I → B′ → 0 with I ∈ I and B′ ∈ W1. Taking pushout, we get
the following commutative diagram with exact rows and columns and bicartesian upper
right square:

0 0

0 A B X 0

0 A I A′ 0

B′ B′

0 0

As F2 is closed under cokernels of monomorphisms, we have A′ ∈ F2, and hence 0 →
X → A′ → B′ is our desired sequence.
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Reversing the argument (using that any A ∈ F2 admits a short exact sequence 0 →
A′ → I → A → 0 with I ∈ W2 ∩ F2 = I and A′ ∈ F2), we see that the existence of a
short exact sequence 0 → X → A → B → 0 with A ∈ F2 and B ∈ W1 also implies the
existence of a short exact sequence 0 → A′ → B′ → X → 0 with A′ ∈ F2 and B′ ∈ W1.
Hence the two definitions of W agree.

For the thickness and the last claim, the argument goes as follows: As (W1,F1) is
a complete cotorsion pair, for any X ∈ A there exists an exact sequence 0 → X →
A → B → 0 with A ∈ F1 and B ∈ W1. The assignment X �→ A defines an additive
functor A → F1/F1 ∩ W1 = F1/I (it is a short check that any morphism between
objects of F1 factoring through an object in W1 actually factors through some object
in F1 ∩ W1; see also Proposition 1.1.11) and in particular the object A from above is
unique up to canonical isomorphism in F1/I. Next, form the full subcategory F2/I of
F1/I consisting of objects F2 (recall that passing to the stable category does not change
objects). It is isomorphism closed by Lemma 1.4.3, and using this we see that W equals
the preimage of F2/I under A → F1/I. With this description at hand, we can now
prove the thickness of W. As the functor A → F1/I from above is additive and F2/I is
closed under direct summands in F1/I, W is closed under direct summands, too. For the
2-out-of-3 property, note that F2/I is a triangulated subcategory of F1/I, so it suffices
to show that A → F1/I turns short exact sequences into distinguished triangles, which
follows from Lemma 1.4.3(2) and Lemma 1.4.4.

It remains to show that M1/M2 is hereditary and that (C∩W,F) and (C,W∩F) are
complete cotorsion pairs. The former is true since F = F1 is closed under cokernels of
monomorphisms by assumption and C = W2 even satisfies the 2-out-of-3 property; the
latter will follow once we showed that (C∩W,F) = (W1,F1) and (C,W∩F) = (W2,F2),
as these are complete cotorsion pairs by assumption.

W ∩ F = F2: Suppose X ∈ W ∩ F = W ∩ F1 and let 0 → X → A → B → 0 be
a short exact sequence with A ∈ F2 and B ∈ W1. By definition, Ext1(W1, X) = 0, so
the sequence splits and X ∈ F2 as F2 is thick. This shows that F1 ∩W ⊂ F2, and the
reverse inclusion F2 ⊂ F1 ∩W is clear.

C∩W = W1: Suppose X ∈ C∩W = W2∩W and let 0 → A → B → X → 0 be a short
exact sequence with A ∈ F2 and B ∈ W1. Again, this sequence is split since X ∈ ⊥F2,
so X ∈ W1. Hence W2 ∩W ⊂ W1, and the reverse inclusion is clear. �
Corollary 1.4.5. In the situation of Proposition 1.4.2 the sequence

Ho(M2) R id−−−→ Ho(M1) R id−−−→ Ho(M1/M2)

is a colocalization sequence [16, Definition 3.1] of triangulated categories.

Proof. Consider the following commutative diagram
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Ho(M1/M2) Ho(M1) Ho(M2)

F1 ∩W2/I F1/I F2/I

L id

R id

L id

R id

inc

inc

∼= ∼= ∼=

By Proposition 1.4.2 the kernel of Ho(M1) → Ho(M1/M2) equals the essential image of
F2/I → Ho(M1), i.e. the essential image of R id : Ho(M2) → Ho(M1). It remains to be
shown that the derived functors R id : Ho(M2) → Ho(M1) and L id : Ho(M1/M2) →
Ho(M1) are fully faithful, which follows from the commutativity of the diagram and the
fully faithfulness of F2/I → F1/I and F1 ∩W2/I → F1/I. �

Dually, we have the following localization result for projective model structures:

Proposition 1.4.6. Let A be a bicomplete abelian category and M1 = (C1,W1) and M2 =
(C2,W2) be projective, abelian model structures on A with C2 ⊂ C1. Then there exists a
hereditary abelian model structure on A , called the left localization of M1 with respect
to M2 and denoted M2\M1, with C = C1, F = W2 and

W := {X ∈ A | ∃ ex. seq. 0 → X → A → B → 0 with A ∈ W1, B ∈ C2}
= {X ∈ A | ∃ ex. seq. 0 → A → B → X → 0 with A ∈ W1, B ∈ C2}.

Moreover, X ∈ W if and only if it belongs to the essential image of C2 → Ho(M1), and
there is a localization sequence of triangulated categories

Ho(M2) L id−−−→ Ho(M1) L id−−−→ Ho(M2\M1).

Example 1.4.7. We consider a simple example, anticipating the more general results
that will be discussed later in Section 2. Let R be a ring considered as a dg ring con-
centrated in cohomological degree zero. From Propositions 1.3.5 and 1.3.6 we get the
standard projective model structure (⊥Acyc(R),Acyc(R),Ch(R)) and the contraderived
model structure (Ch(Proj(R)),Wctr(R),Ch(R)) on Ch(R). Since Cproj(R) ⊆ Cctr(R)
by Corollary 1.3.7, we can apply Proposition 1.4.6 and get as the left localization
Mproj(R)\Mctr(R) the model structure (Ch(Proj(R)), ?,Acyc(R)) on Ch(R), with ho-
motopy category Kac(Proj(R)). Similarly, applying Proposition 1.4.2 we can form the
right localization Mco(R)/Minj(R), i.e. the abelian model structure corresponding to
the triple (Acyc(R), ?,Ch(Inj(R))), with homotopy category Kac(Inj(R)). In particular,
we deduce that there is a colocalization sequence Kac(Inj(R)) → K(Inj(R)) → D(R) and
a localization sequence Kac(Proj(R)) → K(Proj(R)) → D(R).

1.5. Right Bousfield localization

In this section, we again go back to the classical language of model categories and
rewrite Proposition 1.4.2 as a statement about existence of certain right Bousfield
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localizations. The results of this section are not needed anywhere else and are included
solely for the purpose of connecting and making explicit well-established notions and
results on model categories in the case of abelian model categories.

Definition 1.5.1. (See [11, Definition 3.3.1(2)].) Let M be a model category and S be
a class of maps in M. The right Bousfield localization of M with respect to S is, if it
exists, the model structure RS M on the category underlying M such that

(1) the class of weak equivalences of RS M is the class of S-colocal equivalences,
(2) the class of fibrations of RS M is the class of fibrations of M, and
(3) the class of cofibrations of RS M is determined by the left lifting property with

respect to trivial fibrations.

Definition 1.5.2. Let M be a model category, K a class of objects and S a class of
morphisms in M.

(1) A morphism f : A → B is called a K-colocal equivalence if for all X ∈ K and k � 0
the induced map Ho(M)(X,ΩkA) → Ho(M)(X,ΩkB) is a bijection.

(2) An object X ∈ M is called S-colocal if for all f : A → B in S and k � 0 the induced
map Ho(M)(X,ΩkA) → Ho(M)(X,ΩkB) is a bijection.

(3) A morphism is called an S-colocal equivalence if it is a colocal equivalence with
respect to the class of S-colocal objects.

Proposition 1.5.3. Let A be a bicomplete abelian category and M1 = (W1,F1) and
M2 = (W2,F2) be injective model structures on A satisfying F2 ⊂ F1. Then the model
structure M1/M2 described in Theorem 1.4.2 is the right Bousfield localization of M1
with respect to S := {0 → X | X ∈ F2} ⊂ Mor(A ).

Proof. Since domain and codomain of each morphism in S are fibrant in M1, Proposi-
tion 1.1.13 reveals that the class of S-colocal objects equals ⊥(F2/I) in A /I, which is
W2/I by Proposition 1.1.11 applied to the cotorsion pair (W2,F2).

It remains to show that the weak equivalences in M1/M2 are precisely the W2-colocal
equivalences. For this, note the following:

(1) In Ho(M1) any morphism is isomorphic to a morphism between objects in F1: This
follows from the fact that in Ho(M1) any object is isomorphic to an object in F1
(see Proposition 1.1.13).

(2) In Ho(M1), any morphism between objects in F1 is isomorphic to an epimorphism
between objects in F1 with kernel again in F1: If f : A → B is (a representative of)
the given morphism with A,B ∈ F1, and 0 → B′ → I

p−→ B → 0 is exact with I ∈ I
and B′ ∈ F1, then f is isomorphic in Ho(M1) to (f,−p) : A ⊕ I → B. Moreover,
K := ker(f,−p) ∈ F1 since it fits into the commutative diagram with exact rows
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0 B′ K A 0

0 B′ I B 0

and F1 is closed under extensions.
(3) If f : A → B is an epimorphism of objects in F1 and kernel K ∈ F1 as in (2), then

X ∈ A is f -colocal if and only if (A /I)(X,ΩkK) = 0 for all k � 0: To begin, the
short exact sequence 0 → K → A → B → 0 gives rise to a triangle in Ho(M).
Now the functor Ho(M)(X,−) is cohomological, i.e. turns exact triangles into long
exact sequences, and hence Ho(M)(X,Ωk(f)) is bijective for all k � 0 if and only if
Ho(M)(X,ΩkK) = 0 for all k � 0. By Proposition 1.1.13 the latter is equivalent to
(A /I)(X,ΩkK) = 0 for all k � 0.

As (W2/I)⊥ = F2/I in A /I, steps (1)–(3) show that the W2-colocal equivalences are
precisely those morphisms which are isomorphic in Ho(M1) to epimorphism of objects
in F1 with kernel in F2.

We will show that the same description applies to the weak equivalences in M1/M2.
By Fact 1.4.1, any weak equivalence in M1/M2 is the composition of a monomorphism
with cokernel in C ∩ W = ⊥F1 = W1 and an epimorphism with kernel in W ∩ F =
W⊥

2 = F2. The former is already a weak equivalence in M1, hence any weak equivalence
in M1/M2 is isomorphic to an epimorphism with kernel in F2 in Ho(M1). Let f : B → A

be such an epimorphism and pick a short exact sequence 0 → B α−→ F → W → 0 with
F ∈ F1. Taking the pushout of F α←− B

f−→ A, we get the following commutative
diagram (note that the right square is also pullback):

0 0

0 K B A 0

0 K F F ′ 0

W W

0 0

α β

f

g

As α, β are weak equivalences in M1, f is isomorphic to g in Ho(M1). Moreover, as F1

is closed under cokernels of monomorphisms, F ′ ∈ F1. This shows that f is isomorphic
in Ho(M1) to an epimorphism of objects in F1 with kernel in F2. Conversely, since any
weak equivalence in M1 is also a weak equivalence in M1/M2, it is clear that any such
morphism is a weak equivalence in M1/M2. �
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2. The singular model structures

In this section we attach to each morphism of dg rings ϕ : R → A two “relative sin-
gular” model structures on A -Mod, a contraderived and a coderived one. Roughly, the
contraderived (resp. coderived) singular model structure is obtained by pulling back the
contraderived (resp. coderived) model Mctr(R) (resp. Mco(R)) on R -Mod to A -Mod
along the right (resp. left) adjoint Uϕ : A -Mod → R -Mod, and afterwards taking
the left (resp. right) localization of Mctr(A) (resp. Mco(A)) with respect to this pull-
back model structure. If R is an ordinary ring of finite left-global dimension, we will
see that the relative singular contraderived and coderived model structures only de-
pend on A, and we will call them the “absolute singular” model structures attached
to A.

In general, pulling back model structures along adjoints is a nontrivial problem, so
we need to justify that the above pullbacks are again abelian model structures. In our
situation, the connection between abelian model structures and deconstructible classes
makes this problem tractable and we give ad-hoc arguments to establish the desired
pullbacks.

Recall that right (resp. left) localization of two projective (resp. injective) model
structures produces abelian model structures which are neither projective nor injective
in general. In particular, the (relative or absolute) singular model structures are neither
projective nor injective. We will be able, however, to establish a concrete projective
(resp. injective) abelian model structure on A -Mod Quillen equivalent to the singular
contraderived (resp. coderived) one. This alternative description is useful for example
in proving that the absolute contraderived (resp. coderived) singular model structure
on Ch(R), for R Gorenstein, is Quillen equivalent to Hovey’s Gorenstein projective
(resp. Gorenstein injective) model structure on R -Mod, as well as in the construction of
recollements later.

2.1. General definitions

Let U : D → C be a functor between two categories C,D, and suppose that C car-
ries a model structure M. The right pullback of M along U is, if it exists, the model
structure on D in which a morphism is a weak equivalence (resp. fibration) if and
only if its image under U is a weak equivalence (resp. fibration) in M, and where
the cofibrations are determined by the left lifting property with respect to all trivial
fibrations. Similarly, the left pullback of M along U is, if it exists, the model struc-
ture on D where the cofibrations (resp. weak equivalences) are the morphisms which
become cofibrations (resp. weak equivalences) in M after application of U , and where
the fibrations are determined by the right lifting property with respect to all trivial
cofibrations.
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Proposition 2.1.1. Let ϕ : R → A be a morphism of dg rings.

(1) The right-pullback ϕ∗Mctr(R) of Mctr(R) along Uϕ exists.
(2) The left-pullback ϕ∗Mco(R) of Mco(R) along Uϕ exists.

Moreover, both ϕ∗Mctr(R) and ϕ∗Mco(R) are cofibrantly generated.

Proof. (1) It suffices to show that firstly U∗
ϕ(Wctr(R)) is of the form S⊥ for a set

S ⊂ A -Mod, and secondly that U∗
ϕ(Wctr(R))∩⊥U∗

ϕ(Wctr(R)) = P(A -Mod). By Proposi-
tion 1.3.6 Cctr(R) is deconstructible, so we may choose a set T such that Cctr(R) = filt- T .
Denoting the left adjoint A⊗R− to Uϕ by F for a moment, we claim that U∗

ϕ(Wctr(R)) =
F (T )⊥. In fact, we will even show that Ext1A(F (T ),−) ∼= Ext1R(T,Uϕ(−)) for all
T ∈ T . Having done this, the claim follows via F (T )⊥ = U∗

ϕ(T ⊥) = U∗
ϕ(Wctr(R)).

Let Y ∈ A -Mod be arbitrary and 0 → Y → W
f−→ C → 0 be an exact sequence

with W ∈ Wctr(A) and C ∈ Cctr(A). Since F (T ) ⊆ Cctr(A) (Proposition 1.3.12),
we get Ext1A(F (T ), Y ) ∼= coker[HomA(F (T ), f)]. Moreover, since Uϕ is exact and
Uϕ(Wctr(A)) ⊆ Wctr(R) (Proposition 1.3.12), computing Ext1A(T,Uϕ(Y )) using the
exact sequence 0 → Uϕ(Y ) → Uϕ(W ) Uϕ(f)−−−−→ Uϕ(C) → 0 gives Ext1R(T,Uϕ(Y )) ∼=
coker[HomR(T,Uϕ(f))]. Now, the adjunction F � Uϕ gives coker[HomR(T,Uϕ(f))] ∼=
coker[HomA(F (T ), f)], and hence Ext1A(F (T ), Y ) ∼= Ext1R(T,Uϕ(Y )) for all T ∈ T and
Y ∈ A -Mod. The remaining part U∗

ϕ(Wctr(R)) ∩ ⊥U∗
ϕ(Wctr(R)) = P(A -Mod) follows

from Lemma 1.3.4 since Wctr(A) ⊆ U∗
ϕ(Wctr(R)) and hence ⊥U∗

ϕ(Wctr(R)) ⊆ Cctr(A) =
A -Modproj.

(2) We have to show that K := U∗
ϕ(Wco(R)) is deconstructible and K ∩ K⊥ =

I(A -Mod). The deconstructibility of K follows from Proposition A.10 together with the
deconstructibility of Wco(R) established in Proposition 1.3.6. Hence (K,K⊥) is a com-
plete cotorsion pair cogenerated by a set. For K∩K⊥ = I(A -Mod), first note that since
Uϕ : Mco(A) → Mco(R) is left Quillen (Proposition 1.3.12), we have K ⊇ Wco(A), and
hence K⊥ ⊆ Fco(A) = A -Modinj. Applying Lemma 1.3.4 now gives K∩K⊥ = I(A -Mod)
as required. �

Note that if R is an ordinary ring of finite left-global dimension, then Mctr(R) =
Mproj(R) and Mco(R) = Minj(R) (Proposition 1.3.11), and hence for any morphism
ϕ : R → A of dg rings ϕ∗Mctr(R) = Mproj(A) and ϕ∗Mco(R) = Minj(A).

Definition 2.1.2. Let ϕ : R → A be a morphism of dg rings.

(1) The relative singular coderived model structure on A -Mod is defined as the right
localization Mco(A)/ϕ∗Mco(R) in the sense of Proposition 1.4.2 and denoted
Mco

sing(A/R).
(2) The relative singular contraderived model structure on A -Mod is defined as the

left localization ϕ∗Mctr(R)\Mctr(A) in the sense of Proposition 1.4.6 and denoted
Mctr

sing(A/R).



H. Becker / Advances in Mathematics 254 (2014) 187–232 215
If R is a ring of finite left-global dimension (e.g. R = Z or R = k is a field), then
Mctr / co

sing (A) := Mctr / co
sing (A/R) does not depend on R and is called the absolute singular

contraderived resp. coderived model structure.

Proposition 2.1.3. Let ϕ : R → A be a morphism of dg rings. The relative singular
contraderived model structure Mctr

sing(A/R) can be described as follows:

– The class C of cofibrant objects equals A -Modproj.
– The class F of fibrant objects is the class of A-modules whose underlying R-modules

are contraacyclic.
– The class W of weakly trivial objects is determined by Fact 1.4.1.

In particular, the fibrant objects in Mctr
sing(A) are the acyclic A-modules.

A similar description holds for the relative singular coderived model:

Proposition 2.1.4. Let ϕ : R → A be a morphism of dg rings. The relative singular
coderived model structure Mco

sing(A/R) can be described as follows:

– The class C of cofibrant objects is the class of A-modules whose underlying R-modules
are coacyclic.

– The class F of fibrant objects equals A -Modinj.
– The class W of weakly trivial objects is determined by Fact 1.4.1.

In particular, the cofibrant objects in Mctr
sing(A) are the acyclic A-modules.

Remark 2.1.5. The construction of the relative and absolute singular coderived model
structures carries over to the setting discussed in Remark 1.3.13.

2.2. Constructing recollements

From Proposition 2.1.3 (resp. 2.1.4) it is clear that Mctr
sing(A) (resp. Mco

sing(A)) is
almost never projective (resp. injective). However, there is a canonical projective (resp.
injective) abelian model structure which is Quillen equivalent to the absolute singular
contraderived (resp. coderived) model, which we describe in this section.

Proposition 2.2.1. For a dg ring A, the following hold:

(1) There exists a projective abelian model structure pMctr
sing(A) on A -Mod satisfying

C = A -Modproj ∩Acyc(A).
(2) There exists an injective abelian model structure iMco

sing(A) on A -Mod satisfying
F = A -Modinj ∩Acyc(A).

pMctr
sing(A) and iMco

sing(A) are cofibrantly generated and the identity is a left resp. right
Quillen equivalence pMctr

sing(A) → Mctr
sing(A) resp. iMco

sing(A) → Mco
sing(A).
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Proof. (1) As usual it suffices to show that pCctr
sing(A) = A -Modproj ∩Acyc(A) is

deconstructible, pCctr
sing(A) ∩ pCctr

sing(A)⊥ = P(A -Mod) and that pCctr
sing(A)⊥ has the

2-out-of-3 property. Since both A -Modproj and Acyc(A) are deconstructible by Propo-
sitions 1.3.6 and 1.3.5, the deconstructibility of A -Modproj ∩Acyc(A) follows from the
stability of deconstructible classes under intersections [23, Proposition 2.9]. The equal-
ity pCctr

sing(A) ∩ pCctr
sing(A)⊥ = P(A -Mod) follows from Lemma 1.3.4, and Lemma 1.1.10

ensures the 2-out-of-3 property since pCctr
sing(A) is closed under kernels of epimorphisms.

Finally, it is clear that the identity is a left Quillen functor pMctr
sing(A) → Mctr

sing(A);
moreover, Proposition 1.1.13 implies that it induces an equivalence on homotopy cate-
gories, hence is a Quillen equivalence.

(2) Note that iMco
sing(A) = A -Modinj ∩Acyc(A) is of the form S⊥ for some set S

as this is true both for A -Modinj (Proposition 1.3.6) and Acyc(A) (Proposition 1.3.5).
Hence (⊥(iMco

sing(A)), iMco
sing(A)) is a complete cotorsion pair. By Lemma 1.3.4, we

have iMco
sing(A) ∩ ⊥(iMco

sing(A)) = A -Modinj, and Lemma 1.1.10 again provides the
2-out-of-3 property since iMco

sing(A) is closed under cokernels of monomorphisms. That
the identity is a right Quillen equivalence iMco

sing(A) → Mco
sing(A) again follows from

Proposition 1.1.13. �

We do not expect a variant of Proposition 2.2.1 to hold for the relative singular models
attached to a morphism ϕ : R → A since we see no reason for Wctr(R) and U∗

ϕWctr(R)
to be deconstructible (resp. for Wco(R) and U∗

ϕWco(R) to be of the form S⊥ for a set of
objects S). For the absolute singular models, this is different, because luckily Acyc(A)
arises both as the cotorsionfree class in (Cproj(A),Acyc(A)) and as the cotorsion class in
(Acyc(A),F inj(A)).

Let us pause for a moment to see what model structures are currently around,
restricting to the injective case. We started with the identity right Quillen func-
tor Minj(A) → Mco(A) and applied Proposition 1.4.2 to get the right localization
Mco

sing(A) := Minj(A)/Mco(A), fitting into a colocalization sequence Ho(Minj(A)) →
Ho(Mco(A)) → Ho(Mco

sing(A)). Now, however, we have also constructed a model
iMco

sing(A) for which the identity is right Quillen iMco
sing(A) → Mco(A), and on the

level of homotopy categories we have the following commutative diagram:

Ho(Mco
sing(A)) Ho(Mco(A))

Kac(A -Modinj) K(A -Modinj)

Ho(iMco
sing(A)) Ho(Mco(A))

L id

R id

L idR id
inc

∼=

∼=

∼=

∼=
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Note that the diagonal functors are equivalences since they are the canonical functors
from the homotopy category of cofibrant and fibrant objects into the homotopy category.
From this diagram we see that L id : Mco

sing(A) → Mco(A) and R id : iMco
sing(A) →

Mco(A) are equivalent, and hence L id : Mco
sing(A) → Mco(A) has a left adjoint while

R id : iMco
sing(A) → Mco(A) has a right adjoint. Thus:

Corollary 2.2.2. For any dg ring A, there is a recollement

Kac(A -Mod
inj

) K(A -Mod
inj

) D(A).

Proof. Kac(A -Mod inj) → K(A -Mod inj) → D(A) is a colocalization sequence by Corol-
lary 1.4.5, and by the above Kac(A -Mod inj) → K(A -Mod inj) also has a left adjoint.
This is all we need for a recollement. �

In case A is a Noetherian ring (considered as a dg ring concentrated in degree 0) the
recollement from Corollary 2.2.2 was constructed by Krause [16, Corollary 4.3] in the
more general framework of complexes over a locally Noetherian Grothendieck category
with compactly generated derived category.

Dually, in the projective/contraderived situation we have the following recollement,
which again is already known for ordinary rings by [18, Theorem 5.15]:

Corollary 2.2.3. For any dg ring A, there is a recollement

Kac(A -Mod proj) K(A -Mod proj) D(A).

Back in the injective situation we also want to give a model categorical construc-
tion of the left adjoint of K(A -Mod inj) → D(A). For this, note that the injective
version iMco

sing(A) of the singular coderived model structure has iFco
sing(A) ⊆ Fco(A);

we can therefore apply Proposition 1.4.2 to form the right localization mMinj(A) :=
Mco(A)/iMco

sing(A). This is the abelian model structure determined by mCinj(A) =
⊥( Acyc(A) ∩ A -Mod inj) and mF inj(A) = A -Mod inj, and the identity is a left Quillen
functor mMinj(A) → Minj(A). All in all, we get the following butterfly of abelian model
structures and Quillen functors on A -Mod, where L denotes left Quillen functors and R
denotes right Quillen functors:

Mco
sing(A) Minj(A)

Mco(A)

iMco
sing(A) mMinj(A)

LR RL
L

R

R
L

L
R

R
L

(∞)

The properties of this diagram are summarized in the following proposition:
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Proposition 2.2.4. Let A be a dg ring and consider the butterfly (∞).

(1) Minj(A) → Mco(A) → Mco
sing(A) and iMco

sing(A) → Mco(A) → mMinj(A) are right
localizations in the sense of Proposition 1.4.2.

(2) Mco
sing(A) � iMco

sing(A) and mMinj(A) � Minj(A) are Quillen equivalences. More
precisely, the classes of simultaneously cofibrant and fibrant objects in Mco

sing(A) and
iMco

sing(A) coincide, and the classes of weak equivalences in Minj(A) and mMinj(A)
coincide.

(3) The two wings in the following diagram commute:

Ho(Mco
sing(A)) Ho(Minj(A))

Mco(A)

Ho(iMco
sing(A)) Ho(mMinj(A))

L id R id

L id

R idR id

L id

Proof. (1) and the part of (2) concerning Mco
sing(A) � iMco

sing(A) hold by definition.
Consider now mMinj(A) � Minj(A): By Fact 1.4.1 the weak equivalences in mMinj(A)
are compositions of monomorphisms with cokernel in ⊥(mF inj(A)) = Wco(A) and epi-
morphisms with kernel in Acyc(A) ∩ A -Mod inj. In particular, any weak equivalence in
mMinj(A) is a quasi-isomorphism. Conversely, suppose f : A → B is a quasi-isomorphism
and f = g ◦ h is a factorization of f into a trivial cofibration h : A → C followed by a
fibration g : C → B, both with respect to mMinj(A). Then h is a monomorphism with
cokernel in Wco(A), so in particular it is a quasi-isomorphism. Consequently, g : C → B

is both an epimorphism with kernel in A -Mod inj and a quasi-isomorphism, hence a triv-
ial fibration in mMinj(A). As the composition of g and h, we conclude that f is a weak
equivalence in mMinj(A), too, as claimed. Finally, (3) follows from (2). �

Proposition 2.2.4 shows that when trying to lift a recollement T ′ T T ′′ of trian-
gulated categories to the world of model categories, it is likely to happen that it unfolds
to a butterfly of model categories and Quillen functors between them. The two adjoints
both for T ′ → T and T → T ′′ are then explained by the presence of two different model
structures for T ′ and T ′′, compensating the fact that a functor between model categories
is usually either left or right Quillen, but rarely both.

Remark 2.2.5. When trying to generalize the previous results to the setting of Re-
mark 1.3.13, we run into a problem: we need to know that A -Mod inj ∩ Acyc(A)
is of the form S⊥ for some set of objects S. If A has enough projectives, then
Acyc(A) = {ΣkA ⊗ P | k ∈ Γ}⊥ for a projective generator P of A and hence
A -Mod inj ∩ Acyc(A) = S⊥ for S being the union of a representative set of isomor-
phism classes in {ΣkA ⊗ P | k ∈ Γ}, and G+(T ), for a set T ⊂ A� -Mod such that
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A� -Mod = filt- T . However, without existence of enough projectives, we don’t know
whether A -Mod inj ∩ Acyc(A) is of the form S⊥ for some set S ⊂ A -Mod. Note that
since Ext1A(X,Y ) ∼= [X,ΣY ] for Y ∈ A -Mod inj, the problem can also be formulated in
the triangulated setting as the question whether there exists a set S ⊂ K(A -Mod) such
that Kac(A -Mod inj) = {X ∈ A -Mod | [S,X] = 0 for all S ∈ S}. Hence the following
statements are equivalent:

(i) There exists a set S ⊂ A -Mod such that Acyc(A) ∩A -Mod inj = S⊥.
(ii) There exists a set S ⊂ K(A -Mod) such that Kac(A -Mod inj) = S⊥.
(iii) The sequence Kac(A -Mod inj) → K(A -Mod inj) → D(A) is a recollement.
(iv) The butterfly from Proposition 2.2.4 exists.

It would be nice to have methods at hand for checking these conditions, as well as to see
examples where they fail. Note that by [16] the conditions are indeed satisfied for the
sequence Kac(I(A )) → K(I(A )) → D(A ) if A is a locally Noetherian Grothendieck
category such that D(A ) is compactly generated.

3. Examples

3.1. Gorenstein rings

Let R be a Gorenstein ring, i.e. R is Noetherian and of finite injective dimension both
as a left and as a right module over itself. Considering R as a dg ring concentrated in
degree 0, we can form the absolute singular contraderived and coderived models Mctr

sing(R)
and Mco

sing(R) on Ch(R), see Definition 2.1.2. The goal of this section is to see that
they can be connected through a zig-zag of Quillen equivalences to Hovey’s Gorenstein
projective and injective models on R -Mod (see Proposition 1.1.6). The “intermediate”
model structures we meet along that zig-zag are the projective and injective versions
pMctr

sing(R) and iMco
sing(R) of the relative singular models introduced in Proposition 2.2.1.

We begin with two examples of weakly trivial objects in pMctr
sing(R).

Proposition 3.1.1. Let R be a Gorenstein ring and X ∈ Ch(R). Then we have X ∈
pWctr

sing(R) = (Acyc(R) ∩ Ch(Proj(R)))⊥ if either of the following holds:

(1) X ∈ Ch+(Proj(R)).
(2) X ∈ Ch−(R) ∩ Acyc(R).

Proof. For any P ∈ pCctr
sing(R) = Acyc(R) ∩ Ch(Proj(R)) we have Ext1Ch(R)(P,X) ∼=

[P,ΣX]. If X ∈ Ch+(Proj(R)), [P,ΣX] = 0 because P is acyclic, has Gorenstein pro-
jective syzygies and X consists of projective modules, which are injective relative to
injections with Gorenstein projective cokernels. If X ∈ Ch−(R) ∩ Acyc(R), [P,ΣX] = 0
by the fundamental lemma of homological algebra. �
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We can now describe the promised Quillen adjunction pMctr
sing(R) � MG-proj(R).

In the following, we denote σ∗ resp. τ∗ the brutal and soft truncation functors on
categories of complexes of R-modules. Given such a complex (X, ∂), its k-th syzygy
ker(δk) is denoted Zk(X), and its k-th cosyzygy coker(δk−1) is denoted Qk(X). Given
an R-module M , we denote ιk(M) the stalk complex which has M sitting in degree k

and vanishes otherwise.

Lemma 3.1.2. For any ring R, there is an adjunction Q0 : Ch(R) � R -Mod : ι0.

Proposition 3.1.3. Let R be Gorenstein. Then the adjunction Q0 � ι0 from Lemma 3.1.2
is a Quillen equivalence pMctr

sing(R) � MG-proj(R).

Proof. We show first that Q0 � ι0 is a Quillen adjunction pMctr
sing(R) � MG-proj(R), i.e.

that Q0 preserves cofibrations and trivial cofibrations. By Proposition 2.2.1, a cofibration
in pMctr

sing(R) is a monomorphism of complexes f : X → Y such that P := coker(f) is
an acyclic complex of projective R-modules. Given such an f , the long exact sequence
in cohomology associated to the exact sequence of brutal truncations 0 → σ�0X →
σ�0Y → σ�0P → 0 together with the acyclicity of P show that the sequence 0 →
Q0(X) → Q0(Y ) → Q0(P ) → 0 is exact. Moreover, Q0(P ) ∈ G-proj(R) by definition of
Gorenstein projective modules, so Q0(f) is a monomorphism with Gorenstein projective
cokernel, i.e. a cofibration in MG-proj(R). Next, Q0 preserves trivial cofibrations since
these are monomorphisms with projective cokernel, and Q0 preserves projective objects
as the left adjoint to the exact functor ι0.

To prove that Q0 � ι0 is a Quillen equivalence, we have to show the following:

(1) For each X ∈ Acyc(R) ∩ Ch(Proj(R)) the composition X → ι0(Q0(X)) is a weak
equivalence in pMctr

sing(R).
(2) For each M ∈ R -Mod and some (hence any) cofibrant replacement P → ι0(M) in

pMctr
sing(R), the resulting composition Q0(P ) → Q0(ι0(M)) = M is a weak equiva-

lence in MG-proj(R).

(1) We have ker(X → (ι0 ◦ Q0)(X)) = τ�0(X) ⊕ σ>0(X), and both summands are
weakly trivial by Proposition 3.1.1. (2) Pick a cofibrant replacement p : K → M in
MG-proj(R), i.e. p is a trivial fibration with K Gorenstein projective. As ι0 is right
Quillen, ι0(p) : ι0(K) → ι0(M) is a trivial fibration, too, and hence for a cofibrant
replacement of ι0(M) we may take any cofibrant replacement of ι0(K). As Z0 ◦ ι0 ∼= id,
we may therefore assume M being Gorenstein projective right from the beginning. If in
that case P is a complete projective resolution of M , we know from (1) that P → ι0(M)
is a cofibrant replacement, and applying Q0 gives the identity on M , which is a weak
equivalence. �
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Proposition 3.1.4. Let R be a Gorenstein ring. Then there is a zig-zag of left Quillen
equivalences Mctr

sing(R) id←−− pMctr
sing(R) Q0

−−→ MG-proj(R).

The corresponding statement about injective model structures also holds. The argu-
ments are completely analogous, so we omit the proof.

Proposition 3.1.5. Let R be a Gorenstein ring. Then there is a zig-zag of right Quillen
equivalences Mco

sing(R) id←−− iMco
sing(R) Z0−−→ MG-inj(R).

3.2. Curved mixed complexes

In this section we study the relative singular contraderived model structure on the
category of curved mixed complexes over a ring and show that it is Quillen equivalent
to the contraderived model structure on the corresponding category of duplexes.

Definition 3.2.1. Let S be a ring and w ∈ Z(S).

(1) We denote KS,w the Koszul-algebra of (S,w), i.e. the Z-graded dg ring S[s]/(s2) with
deg(s) = −1 and differential d given by d(s) = w.

(2) We denote Sw the curved Z/2Z-graded dg ring with (Sw)0 = S, (Sw)1 = 0, trivial
differential and curvature w ∈ S = (Sw)2.

Fact 3.2.2. Let S be a ring and w ∈ Z(S).

(1) A dg module over KS,w is a complex of S-modules together with a square-zero null-
homotopy for the multiplication by w, i.e. a curved mixed complex with curvature w.

(2) A curved dg module over Sw is an (S,w)-duplex, i.e. a sequence f : M0 → M1,
g : M1 → M0 of S-modules such that fg = w · idM1 and gf = w · idM0 . Sometimes
we abbreviate such a sequence by f : M0 � M1 : g.

Viewing KS,w-modules as curved mixed complexes, the cofibrant and fibrant objects
in Mctr

sing(KS,w/S) are easy to describe in terms of the two differentials of the mixed
complex:

Proposition 3.2.3. Let X = (X, d, s) be a KS,w-module. Then the following hold:

(1) X is cofibrant in Mctr
sing(KS,w/S) (or, equivalently, Mctr(KS,w)) if and only if (X, s)

is contractible and S-projective.
(2) X is fibrant in Mctr

sing(KS,w/S) if and only if (X, d) is S-contraacyclic.
(3) X is fibrant in Mctr

sing(KS,w) if and only if (X, d) is acyclic.

In particular, if S is semisimple, then X is cofibrant (resp. fibrant) in Mctr
sing(KS,w/S)

if and only if (X, d) (resp. (X, s)) is acyclic.
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Proof. (2) and (3) hold by definition. (1) is true by Lemma 1.3.3, since, by definition,
X is cofibrant in Mctr

sing(KS,w/S) or Mctr
sing(KS,w) if and only if (X, s) is projective in

K�
S,w -Mod ∼= Ch(S). �
Curved mixed complexes with curvature w are connected to (S,w)-duplexes via the

operations of folding and stabilization:

Definition 3.2.4. Let S be a ring and w ∈ Z(S). Further, let (X, d, s) be a KS,w-module
and f : M0 � M1 : g be an (S,w)-duplex.

(1) The folding via products foldΠ(X) of X is the (S,w)-duplex given by

foldΠ(X) :=
∏
n∈Z

X2n d+s−−−→
∏
n∈Z

X2n+1 d+s−−−→
∏
n∈Z

X2n.

(2) The folding via sums fold⊕(X) of X is the (S,w)-duplex given by

fold⊕(X) :=
⊕
n∈Z

X2n d+s−−−→
⊕
n∈Z

X2n+1 d+s−−−→
⊕
n∈Z

X2n.

(3) The stable bar resolution bar(M) is the KS,w-module given by

. . . M1 ⊕M0 M0 ⊕M1 M1 ⊕M0 . . . ,

(
f w

− id −g

)

(
0 0
id 0

)

(
g w

− id −f

)

(
0 0
id 0

)

(
f w

− id −g

)

(
0 0
id 0

)

(
g w

− id −f

)

(
0 0
id 0

)

where the terms M0 ⊕M1 live in cohomologically even degrees.

Proposition 3.2.5. There are canonical adjunctions bar � foldΠ , fold⊕ � bar ◦Σ.

Proof. Let g : M1 � M0 : f be an (S,w)-duplex and (X, d, s) ∈ KS,w -Mod. A morphism
bar(M) → X is given by a diagram

· · · M1 ⊕M0 M0 ⊕M1 M1 ⊕M0 · · ·

· · · X−1 X0 X1 · · ·

(
g w

− id −f

)

(
0 0
id 0

)

(
f w

− id −g

)

(
0 0
id 0

)

d
s

d
s

d
s

d
s

(α−1 α′
−1 ) (α0 α′

0 ) (α1 α′
1 )

such that each square commutes both with respect to the maps pointing to the right and
the ones pointing to the left. The latter is equivalent to α′

n = sαn+1 for all n ∈ Z, so
assume this from now on. Writing ∂ in place of f and g (to avoid distinction of cases),
the other commutativity constraint then writes as follows:
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(1) αn∂ − sαn+1 = dαn−1.
(2) dsαn = wαn − sαn+1∂.

The second condition follows from the first by applying s◦−. Thus, the constraint on the
family {αn}n∈Z to yield a morphism of KS,w-modules bar(M) → X is α∂ = (d + s)α, in
this in turn is equivalent to saying that

∏
α2n and

∏
α2n+1 yield a morphism of duplexes

M → foldΠ(X).
Similarly, a morphism X → bar(M) ◦Σ is given by a diagram

· · · X−1 X0 X1 · · ·

· · · M0 ⊕M1 M1 ⊕M0 M0 ⊕M1 · · ·

(
−f w

− id g

)

(
0 0
id 0

)

(
−g w

− id f

)

(
0 0
id 0

)

d
s

d
s

d
s

d
s

(
α′
−1

α−1

) (
α′

0
α0

) (
α′

1
α1

)

such that each square commutes both with respect to the maps pointing to the right and
the ones pointing to the left. The latter is equivalent to α′

n = αn−1s, and we assume this
from now. Then, again writing ∂ for f and g, the other commutativity constraint writes
as

(1) wαn − ∂αn−1s = αnsd,
(2) ∂αn − αn−1s = αn+1d.

The first condition follows from the second by applying −◦s, and the second is equivalent
to saying that

⊕
α2n and

⊕
α2n+1 yield a morphism of Sw-modules fold⊕(X) → M . �

Proposition 3.2.6. Let S be a ring and w ∈ Z(S). Then the following are Quillen adjunc-
tions:

(1) bar : Mctr(Sw) � Mctr
sing(KS,w) : foldΠ .

(2) bar : Mctr(Sw) � Mctr
sing(KS,w/S) : foldΠ .

(3) fold⊕ : Mctr
sing(KS,w) � Mctr(Sw) : bar ◦Σ.

(4) fold⊕ : Mctr
sing(KS,w/S) � Mctr(Sw) : bar ◦Σ.

Proof. Because of the trivial Quillen adjunction id : Mctr
sing(A) � Mctr

sing(A/R) : id
between absolute and relative contraderived singularity models, (2) follows from (1) and
(3) follows from (4).

For (1), we have to show that bar preserves cofibrations and trivial cofibrations.
By the exactness of bar and the definition of an abelian model structure, it suffices
to show bar(C) ⊂ C and bar(C ∩ W) ⊂ C ∩ W. The cofibrants in Mctr(Sw) are
those f : M0 � M1 : g with M0, M1 projective S-modules, and the cofibrants
in Mctr

sing(KS,w) are the KS,w-modules with underlying projective K�
S,w-modules. By



224 H. Becker / Advances in Mathematics 254 (2014) 187–232
definition of bar, the K�
S,w-module underlying bar(M) is isomorphic to

⊕
n∈Z

K�
S,w ⊗S

Σ2nM0 ⊕K�
S,w ⊗S Σ2n+1M1, and hence is K�

S,w-projective if M0,M1 are S-projective.
This proves bar(C) ⊂ C. The assertion bar(C ∩ W) ⊂ C ∩ W = ⊥F is clear because
C ∩ W = P in Mctr(Sw) and bar preserves projectives as the left adjoint to the exact
functor foldΠ .

For (4), we have to show that (bar ◦ Σ)(F) ⊂ F and (bar ◦ Σ)(W ∩ F) ⊂
W ∩ F . In Mctr(Sw) everything is fibrant, while in Mctr

sing(KS,w/S) the fibrants are
the S-contraacyclic KS,w-modules, so for (bar ◦ Σ)(F) ⊂ F we have to show that
the image of bar consists of S-contraacyclic complexes. The stable bar resolutions are
even contractible as complexes of S-modules, so this follows from Proposition 1.3.8. The
other condition (bar ◦ Σ)(W ∩ F) ⊂ W ∩ F means that bar maps Sw-contraacyclics
to KS,w-contraacyclics, i.e. that it maps Sw -Mod⊥

proj to KS,w -Mod⊥
proj. For this, sup-

pose X ∈ KS,w -Mod and M is Sw-contraacyclic. Then Ext1KS,w
(X, (bar ◦ Σ)(M)) ∼=

Ext1Sw
(fold⊕(X),M), which is trivial since fold⊕(X) ∈ Sw -Modproj. �

Our goal is to show that the adjunctions 3.2.6(2) and 3.2.6(4) are Quillen equivalences,
but before we come to the proof, we define the completed Bar resolution.

Fact 3.2.7. (See [24, Proposition 8.6.10].) Let F : A � B : U be an adjunction between
abelian categories and ⊥ := FU : B → B the associated comonad. For X ∈ B there is
a canonical structure of a simplicial object on ⊥∗ X := {⊥n+1 X}n�0, and U(⊥∗ X)
admits a canonical left contraction. In particular, if U is exact and faithful, then the
normalized augmented chain complex N(⊥∗ X) → X is acyclic.

Corollary 3.2.8. Let S be a ring, A be a dg S-algebra and M an A-module. Let η : S →
A be the structure map and A := coker(η). Then the following augmented complex of
A-modules is acyclic:

(· · · → A⊗S A⊗S A⊗S M → A⊗S A⊗S M → A⊗S M) → M. (3.2.1)

Definition 3.2.9. Let S be a ring, A be a dg S-algebra and M an A-module. The completed
Bar resolution of M is the totalization of the augmented complex (3.2.1) formed by taking
products, and is denoted BΠM → M .

Lemma 3.2.10. Let S, A and M be as in Definition 3.2.9 and let q : BΠM → M be the
completed Bar resolution. Then ker(q) is contraacyclic. In other words, the completed
Bar resolution BΠM → M is a trivial fibration in Mctr

sing(A).

Proof. The second statement follows from the first since the contraacyclic A-modules are
precisely the trivially fibrant objects in Mctr

sing(A). That ker(q) is contraacyclic follows
from Lemma 1.3.9 as it is the totalization by taking products of a bounded above exact
sequence of A-modules. �



H. Becker / Advances in Mathematics 254 (2014) 187–232 225
The following gives explicit descriptions of the functors bar ◦ foldΠ and BΠ .

Lemma 3.2.11. Let (X, d, s) be a KS,w-module. There are natural isomorphisms

(
bar ◦ foldΠ

)
(X)n ∼=

∏
k∈Z

Xk and
(
BΠX

)n ∼=
∏
k�n

Xk.

Under these isomorphisms, the KS,w-module structure can be described as follows:

(1) d acts on Xk as d + s− id for k ≡ n (mod 2) and as w − d − s otherwise.
(2) s acts on Xk as id if k ≡ n (mod 2) and as 0 otherwise.

In particular, we have the following:

(1) There is a canonical epimorphism of KS,w-modules

α :
(
bar ◦ foldΠ

)
(X) → BΠX

with ker(α)n ∼=
∏

k<n X
k and KS,w-module structure as in (1) and (2).

(2) ker(α) admits a complete decreasing filtration · · · ⊂ F2 ⊂ F1 ⊂ F0 = ker(α) with
Fn/Fn+1 ∼= KS,w ⊗S Σ−2n−2X.

Proof. To compute BΠX, note that for the unit η : S → KS,w we have KS,w =
coker(η) = ΣS. Hence the n-th term in the augmented Bar resolution (3.2.1) is given
by KS,w ⊗S ΣnX, and the differential KS,w ⊗S ΣnX → KS,w ⊗S Σn−1X maps a⊗ x to
as⊗ x + (−1)na⊗ sx. All in all, the Bar (bi)complex is given as follows:

...
...

...
...

· · · X0 ⊕X1 X1 ⊕X2 X2 ⊕X3 · · · KS,w ⊗S ΣX

· · · X−1 ⊕X0 X0 ⊕X1 X1 ⊕X2 · · · KS,w ⊗S X

· · · X−1 X0 X1 · · · X
d
s

d
s

d
s

d
s

(
d w

0 −d

)

(
0 0
1 0

)

(
d w

0 −d

)

(
0 0
1 0

)

(
−d w

0 d

)

(
0 0
1 0

)

(
−d w

0 d

)

(
0 0
1 0

)
(
−s 0
id −s

)

( 1 s )

(
−s 0
id −s

)

( 1 s )

(
−s 0
id −s

)

( 1 s )

(
s 0
id s

) (
s 0
id s

) (
s 0
id s

)

By definition of the totalization, BΠX is equal to
∏

k�0 Σ
k(KS,w ⊗S ΣkX) as a

K�
S,w-module, with differential being the sum of the differentials on the Σk(KS,w ⊗S

ΣkX) and the maps KS,w ⊗S ΣkX → KS,w ⊗ Σk−1X. As K�
S,w-modules we have

Σk(KS,w ⊗S ΣkX) ∼= KS,w ⊗S Σ2kX via a ⊗ x �→ (−1)k|a|+
k(k+1)

2 a ⊗ x, and the n-th
term of

∏
k�0(KS,w ⊗S Σ2kX) is given by

∏
k�n Xn. Pulling back the differential on
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∏
k�0 Σ

k(KS,w⊗SΣ
kX) to

∏
k�0(KS,w⊗SΣ

2kX) via the above sign change, the result-
ing differential is given as d + s− id on factors Xk with n ≡ k (mod 2) and as w− d− s

on those Xk with k �≡ n (mod 2), as claimed.
The statement about the description of (bar ◦ foldΠ)(X) and the canonical epi-

morphism α : (bar ◦ foldΠ)(X) → BΠX is clear. For the last statement about
the filtration on ker(α), define Fi ⊂ ker(α) by (Fi)n :=

∏
k<n−2i X

k. Clearly this
is a complete decreasing filtration, and the filtration quotient Fi/Fi+1 is given by
(Fi/Fi+1)n = Xn−2i−1 ⊕ Xn−2i−2. Together with the explicit description of the dif-
ferential on ker(α) we conclude that Fi/Fi+1 ∼= KS,w ⊗S Σ−2i−2X. �
Theorem 3.2.12. Let S be a ring and w ∈ Z(S). Then the adjunctions

bar : Mctr(Sw) Mctr
sing(KS,w/S) : foldΠ ,

fold⊕ : Mctr
sing(KS,w/S) Mctr(Sw) : bar ◦Σ

are Quillen equivalences.

Proof. We already know from Proposition 3.2.6 that the adjunctions in question are
Quillen adjunctions, so it remains to check that unit and counit of the derived adjunctions
are isomorphisms.

To show that the derived counit L bar ◦ R foldΠ ⇒ id is an isomorphism, we have
to show that for fibrant X ∈ Mctr

sing(KS,w) and a cofibrant resolution Y → foldΠ X in
Mctr(Sw) the morphism

bar(Y ) →
(
bar ◦ foldΠ

)
(X) → X

is a weak equivalence in Mctr
sing(KS,w). By definition of a cofibrant resolution, the mor-

phism Y → foldΠ X is a trivial fibration, and hence so is bar(Y → foldΠ X) by Propo-
sition 3.2.6(4). Moreover, since the fibrants in Mctr

sing(KS,w/S) are the S-contraacyclic
KS,w-modules, we therefore have to show that for some S-contraacyclic X ∈ KS,w -Mod
the (ordinary) counit εX : (bar◦foldΠ)(X) → X is a weak equivalence in Mctr

sing(KS,w/S).
For this, recall from Lemma 3.2.11 that εX factors through the completed Bar resolution
q : BΠX → X via a canonical epimorphism α : (bar◦foldΠ)(X) → BΠX described there.
Since the completed Bar resolution BΠX → X is a weak equivalence in Mctr

sing(KS,w/S)
(even in Mctr(KS,w)) by Lemma 3.2.10, it is therefore sufficient to check that α is a weak
equivalence in Mctr

sing(KS,w/S). In fact, we will show that α is even a trivial fibration, i.e.
that ker(α) is KS,w-contraacyclic: First, by Lemma 3.2.11 we know that ker(α) admits a
complete descending filtration with filtration quotients isomorphic to shifts of KS,w⊗SX.
We have HomS(KS,w, X) ∼= HomS(KS,w, S) ⊗S X, and since HomS(KS,w, S) ∼= ΩKS,w

as KS,w-S-bimodules, we get KS,w⊗SX ∼= Σ HomS(KS,w, X). Since K�
S,w is free over S�,

Proposition 1.3.12(5) and the assumption that X is S-contraacyclic yield that KS,w⊗SX
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is KS,w-contraacyclic, too. We conclude that ker(α) admits a complete descending filtra-
tion with KS,w-contraacyclic filtration quotients; Lemma 1.3.9 then shows that ker(α)
is KS,w-contraacyclic, as claimed.

Similarly, the derived unit id ⇒ R foldΠ ◦L bar being an isomorphism means that
for any cofibrant duplex f : M0 � M1 : g and a fibrant resolution bar(M) → X in
Mctr

sing(KS,w/S) the morphism

M →
(
foldΠ ◦bar

)
(M) → foldΠ(X)

is a weak equivalence in Mctr(Sw). By Proposition 3.2.6(4) any object in the image of
bar is fibrant in Mctr

sing(KS,w/S), and hence we have to show that for M ∈ Sw -Mod
with M0,M1 projective over S the unit M → (foldΠ ◦bar)(M) is a weak equivalence in
Mctr(Sw). In fact, we will show that this is true for any Sw-module M .

Note that there is a canonical isomorphism M ∼= foldΠ(i(M)) where i(M) is given by
g : M1 � M0 : f in cohomological degrees −1 and 0, and 0 otherwise; it follows that
the unit M → (foldΠ ◦bar)(M) is split by the composition

(
foldΠ ◦bar

)
(M) ∼= foldΠ

((
bar ◦ foldΠ

)(
i(M)

)) foldΠ(εi(M))−−−−−−−−−→ foldΠ
(
i(M)

)
= M.

Hence, in order to show that M → (foldΠ ◦bar)(M) is a weak equivalence in Mctr(Sw) it
is therefore sufficient to show that foldΠ(εi(M)) is a weak equivalence in Mctr(Sw), and
we will show that it is even a trivial fibration. First, recall that εi(M) factors through the
completed Bar resolution q : BΠ(i(M)) → i(M) via the map α : bar(M) → BΠ(i(M)).
Since q is a trivial fibration and the right Quillen functor foldΠ preserves trivial fibra-
tions, this means that we only have to check that foldΠ(α) is a trivial fibration, i.e.
that foldΠ(ker(α)) is trivially fibrant in Mctr(Sw). For this, recall from Lemma 3.2.11
that foldΠ(ker(α)) admits a complete decreasing filtration with filtration quotients be-
ing shifts of foldΠ(KS,w ⊗S i(M)). KS,w ⊗S i(M) is an extension of KS,w ⊗S M0 and
KS,w ⊗S ΣM1, and hence foldΠ(KS,w ⊗S i(M)) is an extension of foldΠ(KS,w ⊗S M0)
and foldΠ(KS,w⊗SΣM1), both of which are contractible, hence contraacyclic, by Propo-
sition 1.3.8. Applying Lemma 1.3.9 shows that foldΠ(ker(α)) is Sw-contraacyclic, as
claimed.

The statement that fold⊕ � bar ◦ Σ is a Quillen equivalence follows from the first
part since R(bar ◦Σ) = R bar ◦Σ = L bar ◦Σ is invertible and a Quillen adjunction is
a Quillen equivalence if and only if its derived adjunction is an adjoint equivalence [12,
Proposition 1.3.13]. �

From Theorem 3.2.12 we get the following consequence:

Corollary 3.2.13. There is an isomorphism

Σ ◦ L fold⊕ ∼= R foldΠ

of functors Ho(Mctr
sing(KS,w/S)) → Ho(Mctr(Sw)).
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Proof. By Theorem 3.2.12 we know that L bar = R bar is invertible, and that we have
canonical adjunctions L bar � R foldΠ and Σ ◦ L fold⊕ � R bar. �
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Appendix A. Pulling back deconstructible classes

Throughout the section we use the notions of < κ-presentable objects and locally
< κ-presentable categories as defined in [1, Definition 1.13]. Note [23, Section 1] that
by [1, Remark 1.21] < κ-presentability is the same as κ-accessibility in the sense of [15,
Definition 9.2.7], so it is legitimate to use results from [15] when studying < κ-presentable
objects. If F ⊂ A is a class of objects in a category A , F<κ denotes the class of
< κ-presentable objects in F .

We begin by recalling the definition of a monad and its category of algebras.

Definition A.1. Let C be a category.

(1) A monad on C is a triple (⊥, η, μ) consisting of an endofunctor ⊥: C → C and natural
transformations η : idC →⊥, μ :⊥2→⊥, such that μ and η obey the associativity and
unit axioms μ◦ ⊥ μ = μ ◦ μ ⊥ and μ◦ ⊥ η = id⊥ = μ ◦ η ⊥.

(2) An algebra over ⊥ is a pair (X, ρ) consisting of an object X of C and a morphism
ρ :⊥ X → X such that ρ ◦ ηX = idX and ρ ◦ μX = ρ◦ ⊥ ρ.

The category of ⊥-algebras is denoted ⊥-Alg. If F is a class of objects in C, then ⊥-AlgF
denotes the class of ⊥-algebras whose underlying objects belong to F . The forgetful
functor ⊥-Alg → C is denoted U .

Example A.2. The standard example of a monad is the following. If F : D � C : U

is an adjunction, then ⊥:= UF together with the unit η : id → UF and the counit
UεF :⊥2= U(FU)F → UF is a monad on C.

For example, given a dg ring A, there is the monad associated to the adjunction
G+ : A -Mod � A� -Mod : (−)� defined in Proposition 1.3.2. Its category of algebras is
canonically equivalent to A -Mod (i.e. (−)� is a monadic functor).
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Without proof we note the following standard results:

Lemma A.3. Let ⊥: A → A be a right exact monad on an abelian category A .

(1) ⊥-Alg is abelian.
(2) The forgetful functor ⊥-Alg → A is faithful and exact.

Suppose that, in addition, A is Grothendieck and ⊥ is cocontinuous.

(3) ⊥-Alg is a Grothendieck category.
(4) The forgetful functor U :⊥ -Alg → A is bicontinuous.

Fact A.4. Let ⊥: A → A be a cocontinuous monad on an abelian category A , (X, ρ)
be a ⊥-algebra and Z ⊆ X a subobject of X. Then the poset of ⊥-subalgebras of (X, ρ)
containing Z has a minimal element span⊥ Z := im(⊥ Z →⊥ X → X).

We need the following version of the generalized Hill Lemma [23, Theorem 2.1] as a
tool for constructing filtrations.

Proposition A.5 (Hill Lemma). Let κ be an infinite regular cardinal and let A be a locally
< κ-presentable Grothendieck category. Further, let S be a set of < κ-presentable objects
and X ∈ filt-S. Then there exists a set σ together with a subset L ⊆ P(σ) and a map
l : L → Subobj(X) such that the following hold:

(H1) For any family {Si} ⊂ L, both
⋃

i Si and
⋂

i Si belong to L again, and we have
l(
⋃

i Si) =
∑

i l(Si) and l(
⋂

i Si) =
⋂

i l(Si).
(H2) Given S, T ∈ L with S ⊆ T , l(T )/l(S) admits an S-filtration of size |T \ S|.
(H3) For any < κ-presentable Z ⊆ X there exists some S ∈ L satisfying |S| < κ and

Z ⊆ l(S).

The Hill Lemma allows for recursive constructions of filtrations on X by first con-
structing continuous chains of elements in L ⊂ P(σ) and then applying l : L →
Subobj(X) to these chains. The continuity of the resulting filtration is guaranteed by
(H1), control over filtration quotients is given by (H2), and finally property (H3) is
needed for the recursion step. This principle is illustrated in the proof of the following
proposition, which is the main result of this section:

Proposition A.6. Let κ be an uncountable regular cardinal and A be a locally < κ-pre-
sentable Grothendieck category. Assume further that F ⊂ A is a class of objects and
⊥: A → A a cocontinuous monad such that

(1) F = filt-S, where S is a representative set of < κ-presentable objects in F ,
(2) ⊥ preserves the class of < κ-presentable objects in A .

Then ⊥-AlgF = filt-(⊥ -AlgS). In particular, ⊥-AlgF is deconstructible.
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Lemma A.7. (See [15, Proposition 9.2.10].) For any Grothendieck category A and any
infinite cardinal κ, the class A <κ of < κ-presentable objects is closed under the formation
of A -colimits of diagrams I → A <κ with |Mor(I)| < κ.

Proof of Proposition A.6. Let (X, ρ) ∈⊥ -AlgF . By definition we have X ∈ F = filt-S,
so we may apply Proposition A.5 to get l : P(σ) ⊃ L → Subobj(X) satisfying the
properties (H1), (H2), (H3). By transfinite recursion, we will now define for each ordinal
λ a subset T (λ) ∈ L such that the following hold:

(1) l(T (λ)) is a ⊥-subalgebra of X.
(2) T (λ) ⊆ T (μ) if λ � μ, and T (λ) � T (μ) if λ < μ and l(T (λ)) �= X.
(3) |T (λ + 1) \ T (λ)| < κ.
(4) T (λ) =

⋃
μ<λ T (μ) if λ is a limit ordinal.

Start with T (0) := ∅ and assume that we are given an ordinal λ such that we already
constructed T (μ) for all μ < λ. If λ is a limit ordinal, we put T (λ) :=

⋃
μ<λ T (μ),

and if λ = μ + 1 with l(T (μ)) = X, we put T (λ) := T (μ). In case λ = μ + 1 with
l(T ) � X for T := T (μ), we proceed as follows: Since A is locally < κ-presentable, there
exists some < κ-presentable Z ⊂ X with Z � l(T ), and by (H3) we find Z ⊂ l(S0)
for some S0 ∈ L with |S0| < κ. By Lemma A.7, l(S0) is < κ-presentable and hence so
is span⊥ l(S0) = im(⊥ l(S0) →⊥ X → X). Applying (H3) again, we can find S1 ∈ L
with |S1| < κ, S0 ⊆ S1 and span⊥ Z ⊆ l(S1), and again l(S1) ∈ A <κ. Continuing
this way, we find a sequence S0 ⊆ S1 ⊆ S2 ⊆ · · · in P(σ) with Si ∈ L, |Si| < κ and
span⊥ l(Si) ⊆ l(Si+1) for all i � 0. Put S :=

⋃
i�0 Si. We then have S ∈ L, |S| < κ and

l(S) =
∑

i�0 l(Si) by (H1). In particular, as ⊥ is cocontinuous, l(S) is a ⊥-subalgebra
of (X, ρ). We put T (λ) := T ∪ S. This finishes the recursion step and the construction
of T .

Pick λ sufficiently large such that l(T (λ)) = X and consider the filtration l ◦ T : {τ |
τ � λ} → Subobj(X) on X. By (1) all its components are ⊥-subalgebras of X, and
its successive quotients are given by l(T (μ + 1))/l(T (μ)), all of which lie in S by (3)
and Lemma A.7. Finally, since Subobj⊥-Alg(X) ↪→ SubobjA (X) is a complete lattice
homomorphism, l ◦ T is also continuous considered as a filtration of (X, ρ) in ⊥-Alg.
Summing up, l ◦ T is the desired ⊥-AlgS-filtration of X. �

To give a less technical version of Proposition A.6 we need some generalities about
< κ-presentable objects in Grothendieck categories.

Lemma A.8. Let A be a Grothendieck category.

(1) For any set S ⊂ A there exists some cardinal κ such that S ⊆ A <κ.
(2) For any cardinal κ the category A <κ is essentially small.
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Proof. Part (1) is contained in [15, Theorem 9.6.1]. Part (2) follows from [15, Corol-
lary 9.3.5(i)] and the fact that A <κ ⊆ A <μ for κ � μ. �
Lemma A.9. Let A , B be Grothendieck categories and F : A → B be a cocontinu-
ous functor. Then there exist arbitrarily large regular cardinals κ such that F preserves
< κ-presentable objects, i.e. F (A <κ) ⊆ B<κ.

Proof. Let G be a generator of A and pick any cardinal κ such that G ∈ A <κ and
F (G) ∈ B<κ hold. This is possible by Lemma A.8. Moreover, possibly after enlarging κ

we get that A <κ = {X ∈ A | |HomA (G,X)| < κ} [15, Theorem 9.3.4] (note, however,
that this characterization doesn’t seem to be true for all sufficiently large, but only for a
cofinal class of cardinals κ). We claim that F preserves < κ-presentable objects. Indeed,
let X ∈ A <κ is < κ-presentable. Then the canonical morphism G

∐
HomA (G,X) → X is

an epimorphism [15, Proposition 5.2.3(iv)], and hence so is F (G)
∐

HomA (G,X) → F (X)
since F commutes with colimits by assumption. As F (G) ∈ B<κ and |HomA (G,X)| < κ

by assumption, Lemma A.7 implies F (X) ∈ B<κ as claimed. �
Proposition A.10. Let U : B → A be a cocontinuous, monadic functor between
Grothendieck categories, and let F ⊂ A be a deconstructible class. Then U∗(F) :=
{X ∈ B | U(X) ∈ F} is again deconstructible.

Proof. By definition of monadic functors, we may assume that U is the forgetful functor
⊥-Alg → A for a cocontinuous monad ⊥ on A , and then U∗(F) =⊥ -AlgF . Since F =
filt-F by [23, Lemma 1.6], Lemma A.7 implies that F = filt-(F∩A <κ) for all sufficiently
large cardinals κ. Here, by slight abuse of notation F ∩A <κ means a representative set
of isomorphism classes of objects in F ∩ A <κ (it is a set by Lemma A.8(2)). Moreover,
by Lemma A.9 we may also assume that ⊥ preserves κ-presentable objects, and hence
the claim follows from Proposition A.6. �
Remark A.11. Proposition A.10 has by now been generalized to monads over combina-
torical categories [17, Proposition 3.6, Remark 3.7].
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