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Introduction

The idea of categorification goes back to Crane and Frenkel [CF94] and the method
has become more and more popular in recent years. The philosophy of categorification
is to replace set-theoretic notions by corresponding category-theoretic notions and so
obtain additional structure. Categorification should be viewed as the inverse process of
decategorification, where the decategorification procedure that one wants to use has to
be specified beforehand. Often, and also in this thesis, the involved decategorification
is taking the Grothendieck group of a category or the graded Euler characteristic of
a chain complex. Then categorification means that given a module we have to find a
category whose Grothendieck group is this module, or given a polynomial we have to
find a complex whose graded Euler characteristic is this polynomial.

In the late 1990’s, Khovanov [Kho00] categorified the Jones polynomial using Khovanov
homology. The Jones polynomial is a classical combinatorial invariant of knots and links.
Khovanov homology gives a link invariant strictly stronger than the Jones polynomial in
the sense that it can distinguish more links [BN02]. Motivated by this, various authors
set out to categorify known structures in the hope of obtaining better invariants or
invariants for higher dimensional manifolds.

The Temperley-Lieb algebra TLn is an algebra over Z[q, q−1], generated as a module
by planar diagrams connecting n upper points to n lower points and a multiplication
defined by stacking two elements on top of each other. As an algebra it is generated by
elements

Ui = .

The Temperley-Lieb algebra is a quotient of the Hecke algebra and plays an import-
ant role in the theory of knot invariants. While giving an alternative description of
Khovanov homology, Bar-Natan categorified the Temperley-Lieb algebra in a cobord-
ism language [BN05]. His construction is neither the first nor the only categorification
of the Temperley-Lieb algebra [BFK99, Str05, Eli10], but the setting and its variations
have been used extensively [MN08, Rus09, CK12, MT07].

The Temperley-Lieb algebra and also the Jones polynomial are closely connected to the
representation theory of Uq(sl2). The Hopf algebra Uq(sl2) is the quantum enveloping
algebra of the Lie algebra sl2 of complex trace zero square matrices of size two. The
connection is given by the fact that

TLCn
∼= EndUq(sl2)(V

⊗n), (1)

1



2 INTRODUCTION

where TLCn is the Temperley-Lieb algebra with coefficients extended to C and V the
quantum version of the natural representation. Using this, one can calculate the Jones
polynomial by cutting a knot into certain generating pieces to which one assigns Uq(sl2)-
linear maps from V ⊗n to V ⊗m. Then the Jones polynomial is obtained as f(1) where
f : V ⊗0 → V ⊗0 = C(q) is a Uq(sl2)-linear map determined by the knot. The isomorph-
ism (1) turns V ⊗n into a TLCn -module.

Our first goal in this thesis is to categorify the n-fold tensor product V ⊗n, not only
its endomorphism algebra EndUq(sl2)(V

⊗n). We want to do this in a way such that
we can see the standard basis as well as the action of the Temperley-Lieb algebra.
The categorified Temperley-Lieb action should be given by the action of Bar-Natan’s
categorification. In other categorifications of V ⊗n, [FKS06, FSS12], this action is not
as direct.

The Uq(sl2)-module V ⊗n splits into weight spaces (V ⊗n)2k−n and thus we obtain a
categorification of V ⊗n by categorifying each weight space for k = 0, . . . , n and then
taking the direct sum. The weight spaces have a special basis, the canonical basis
[FK97], which can be described by cup diagrams. Cup diagrams are combinatorial
objects given by planar diagrams consisting of half circles.

As a first step of our categorification, we adapt Bar-Natan’s construction. The category
Cob(n), which is the foundation of Bar-Natan’s categorification of the Temperley-Lieb
algebra, consists of objects given by Temperley-Lieb diagrams and morphisms given by
cobordisms between them modulo some relations. In our setting, the canonical basis is
the easiest to categorify. We categorify the canonical basis analogously to Bar-Natan’s
categorification of the Temperley-Lieb algebra by defining a category Cup(n, k) where
the objects are given by cup diagrams with two different kinds of boundary points. The
morphisms are cobordisms as in Bar-Natan’s categorification but we impose additional
relations involving the new boundary points. The new relations are motivated by a
coloured TQFT that has been used to describe the cohomology of 2-block Spaltenstein
varieties in [Scha12].

In this naive categorification, the canonical basis elements are categorified by certain
cup diagrams T(λ), where λ is in a finite poset Λ(n, k). Summing up the homomorph-
ism spaces HomCup(n,k)

(
T(λ),T(µ)

)
yields an algebra, called the generalised Khovanov

algebra. Generalised Khovanov algebras are a generalisation described by Stroppel
in [Str09] of the algebras used in Khovanov’s original categorification of the Jones
polynomial [Kho00]. They have been extensively studied by Brundan and Stroppel
in [BS11a, BS10, BS11b, BS12] and are connected to category O for gln [BS11b].

A greater difficulty is the categorification of the standard basis of V ⊗n. For that we
have to go to the homotopy category Kb

(
Ĉup(k, n)

)
of bounded complexes with entries

in Ĉup(n, k), where Ĉup(n, k) is some kind of additive closure of Cup(n, k) with grading
constraints. In Kb

(
Ĉup(k, n)

)
we inductively define an exceptional sequence V∗(λ):

Theorem (Definition 6.1.1, Theorem 6.3.2). There are objects V∗(λ), λ ∈ Λ(n, k), in
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Kb
(
Ĉup(k, n)

)
that form a graded exceptional sequence, i.e.

Hom
Kb(Ĉup(n,k))

(
V∗(λ),V∗(µ) 〈l〉 [j]

)
=

{
C, if l = 0 = j and λ = µ,

0, if λ � µ or (l 6= 0 and λ = µ) or (j 6= 0 and λ = µ).

Via a certain duality we obtain the complexes V(λ) which finally lead to a categorific-
ation of the standard basis:

Theorem (Theorem 7.2.9, Corollary 7.2.10). The category Kb
(
Ĉup(k, n)

)
categorifies

the (2k − n)-weight space of V ⊗n. More precisely, there is an isomorphism of C(q)-
modules

C(q)⊗Z[q,q−1] K0

(
Kb(Ĉup(k, n))

) ∼−→ (
V ⊗n

)
2k−n .

Under this isomorphism the V(λ), λ ∈ Λ(n, k), are sent to the standard basis vλ, the
T(λ) to the canonical basis and the V∗(λ) to the dual standard basis. Furthermore,
n⊕
k=1

Kb
(
Ĉup(k, n)

)
categorifies V ⊗n.

The objects T(λ) lie in what is generated by the exceptional objects. We describe
the T(λ) by taking iterated cones of the exceptional objects V∗(µ) and giving explicit
combinatorial formulas for the exceptional objects appearing in this construction.

Theorem (Theorem 7.1.3). The object T(λ) is an iterated cone of all the shifted excep-
tional objects of type qdeg(C(λ)µ) V∗(µ) with C(λ)µ oriented.

Here, C(λ) is a certain cup diagram and the degree of an orientation C(λ)µ is also
defined in a combinatorial way.

The Temperley-Lieb algebra contains a special idempotent pn called the Jones-Wenzl
projector, which is uniquely determined by

p2
n = pn and pnUi = 0 = Uipn for i = 1, . . . , n− 1.

The Jones-Wenzl projectors can be used to define the coloured Jones polynomial [MV94].
They are also an important ingredient in the Turaev-Viro invariants of 3-manifolds
[TV92].

Via the isomorphism (1) the Jones-Wenzl projector pn can also be considered as a
Uq(sl2)-linear map from V ⊗n to itself. On this side, the Jones-Wenzl projector factorises
into a projection operator πn : V ⊗n → Vn composed with an inclusion operator ιn : Vn →
V ⊗n, where Vn is the biggest indecomposable summand of V ⊗n. The projection and
inclusion satisfy the following properties

ιn(−).Ui = 0, πn(−.Ui) = 0, πn ◦ ιn = id, (2)

which immediately yield the characterising properties for pn = ιn ◦ πn.
Using Bar-Natan categorification of the Temperley-Lieb algebra, Cooper and Krushkal
[CK12] and Rozansky [Roz10] categorified the Jones-Wenzl projector. Cooper-Krushkal
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defined a categorification of the Jones-Wenzl projector, called the universal projector,
which is a certain chain complex unbounded in one direction and unique up to homotopy.
In contrast to the bounded complexes appearing in Khovanov homology, the complex
for the universal projector cannot be bounded, since the coefficients in the Jones-Wenzl
projector are not polynomials but rational functions. They can be interpreted as infinite
power series and so should lead to infinite complexes. The categorified Jones-Wenzl
projectors of Cooper-Krushkal and Rozansky have been used to categorify the chromatic
polynomial [CHK11] and spin networks [CK12, Hog12].

There is also a categorification of V ⊗n and the Jones-Wenzl projector in a representation
theoretic setting by Frenkel, Stroppel and Sussan in [FSS12]. In contrast to [CK12] and
[Roz10], there the Jones-Wenzl projector is categorified via a composition, which is
missing in the description via universal projectors. A first step of matching the two
constructions is to find the factorisation in a setup using the Bar-Natan approach. We
also hope that this simplifies the calculations with categorified Jones-Wenzl projectors
and so make it easier to calculate categorified spin networks in order to categorify the
Turaev-Viro invariants.

Our second goal is to construct a categorification of the Jones-Wenzl projector where
one can actually see the factorisation and to compare this with the action of the uni-
versal projector. For that we construct a special chain complex L(λ0) in Kb

(
Ĉup(k, n)

)
containing all the exceptional objects V∗(λ) in a non-trivial way, which has no analogue
in the categorification of Cooper-Krushkal. For this construction we need to construct
(up to scalar) unique degree 1 morphisms between the V∗(λ)’s and consider how they
give rise to degree 2 morphisms. The construction of L(λ0) is motivated by [BS10] see-
ing the V∗(λ) as a resolution of L(λ0). The actual definition is quite involved and done
by showing that there are some (implicit) maps forming a complex which contains the
V∗(λ)’s. The differential restricted to neighbouring λ’s is up to a sign just the explicitly
constructed degree 1 map. The complex L(λ0) has the important property that the
category Cob(n) categorifying the Temperley-Lieb algebra acts trivially on it.

Theorem (Definition 10.1.12, Remark 10.1.13, Theorem 10.3.1). There exists a chain
complex L(λ0) in Kb

(
Ĉup(n, k)

)
such that L(λ0).U i ' 0 for all i and [L(λ0)] =q

n
k

y
pn(vλ0) in the Grothendieck group.

Here, [L(λ0)] is the class of L(λ0) in the Grothendieck group K0

(
Kb(Ĉup(k, n))

)
and

vλ0 is the standard basis element of (V ⊗n)2k−n that is also a canonical basis element.
The quantum binomial coefficient

q
n
k

y
is an element of Z[q, q−1].

Using this complex L(λ0) and its endomorphism ring End
(
L(λ0)

)
we can construct two

functors satisfying the analogue of (2):

Theorem (Definition 11.1.2, Lemma 11.1.10, Remark 11.1.11, Definition 11.1.13,
Lemma 11.1.16, Theorem 11.1.20).
There are functors

F : K−C
(
Ĉup(n, k)

)
→ Dco,+

C′
(

End(L(λ0))- gfmod
)

and
G : Dco,+

C′
(

End(L(λ0))- gfmod
)
→ K−C

(
Ĉup(n, k)

)
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such that

G(−).U i ' 0, F (−.U i) = 0, F ◦G|(−) ∼= Id(−).

Here, K−C and Dco,+
C′ denote the homotopy category of chain complexes bounded from

the right and the derived category of cochain complexes bounded from the left satisfying
certain finiteness conditions C and C ′, respectively, that are needed to obtain finite sums
in the construction of F and G. G| means that we obtain the last equation only when
restricting to objects of a subcategory containing the image of F . But this is enough to
derive P ◦ P ' P on objects for P := G ◦ F analogously to the uncategorified picture.

The theorem means that F and G “categorify” the projection πn and the inclusion ιn,
respectively, and hence their composition G◦F the Jones-Wenzl projector. For a precise
statement of this categorification in terms of Grothendieck groups one would need to
apply the method of completions of Grothendieck groups from [AS13] to this context.

The main difficulty in the construction of these functors is as follows: In a chain complex
of modules over a ring every entry would have elements, but L(λ0) is just a chain complex
in an additive category. Therefore, we cannot view L(λ0) as an End

(
L(λ0)

)
-module.

The functors F and G should be morally seen as a pair of contravariant functors adjoint
to the right.

The universal projectors P(n) constructed by Cooper-Krushkal and Rozansky are in-
ductively defined and are huge complexes that are impossible to write down explicitly
for general n. The construction of Rozansky is in contrast to the one of Cooper-Krushkal
inductive in the construction of the complex for a fixed n and does not rely on smaller
values for n. Using this, we can explicitly calculate the result of applying the universal
projector to T(λ0) for k = 0 and k = 1. Since the properties of P(n) and G ◦ F yield
automatically that they agree on other T(λ), they agree on all of Ĉup(n, k).

Theorem (Proposition 11.3.1, Theorem 11.3.14). For general n and k = 0 or k =

1 the functors G ◦ F and (−).P(n) are isomorphic as functors from Ĉup(n, k) to
K−
(
Ĉup(n, k)

)
.

Here, (−).P(n) is the action of the universal projector which is induced by the action
of Cob(n) on Cup(n, k). Furthermore, G ◦ F and (−).P(n) have the complex L(λ0) as
a common fixed point for all n and k.

There are two main difficulties in the programme of this thesis. Firstly, the morphisms
in the category Cup(n, k) are very difficult to understand explicitly. We introduce
a combinatorial method to determine the graded dimension of HomCup(n,k)(C,D) by
constructing a circle diagram DC and applying a certain function Fcol. The function
Fcol should be considered as the object part of a certain functor defining a coloured
TQFT as described in the appendix. But even with the knowledge of the dimension of
the Hom-spaces it is difficult to obtain factorisations. We use the action of Cob(n) on
Cup(n, k) to better describe the morphisms of Cup(n, k) and to obtain a factorisation
result.

The other main difficulty throughout the thesis is that the categories Ĉup(n, k) and
Ĉob(n) are not abelian, only additive. To get abelian categories we consider the heart
of certain t-structures in Kb

(
Cup(n, k)

)
which contain the V∗(λ)’s and T(λ)’s. One of
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the t-structures is motivated by the standard t-structure and the other one is defined
by measuring how far a complex is away from being linear, called the linear t-structure.
Another fact that shows the importance of the complex L(λ0), is that it is the injective
hull of T(λ0) in the heart of the linear t-structure.

Outline

We define the objects of study first combinatorially, then on the representation theory
side and finally categorially. In Chapter 1, we introduce the combinatorial gadgets for
our categorification. We define up-down-sequences, cup diagrams and the Temperley-
Lieb algebra and investigate their interplay. Chapter 2 defines what we want to categor-
ify. We connect the different bases in V ⊗n to the combinatorial objects from Chapter 1.
Furthermore, we consider the special behaviour of the canonical basis under the action
of the Jones-Wenzl projector.

In Chapter 3 we start categorifying. We recall Bar-Natan’s construction of the category
Cob(n) and the categorification of the Temperley-Lieb algebra. In analogy we define the
category Cup(n, k), give an alternative description for the morphisms and obtain a first
categorification result. Analogously to the action of TLn on cup diagrams described in
Chapter 1, in Chapter 4 we define an action of Cob(n) on Cup(n, k) and use this action
to describe morphisms in Cup(n, k) of low degree.

In Chapter 5, we fix notations in homological algebra and gather statements about ho-
motopic complexes that will be used later. The most important concept is the Gaussian
elimination, a method to obtain a homotopy equivalent chain complex after deleting cer-
tain entries. We recall some spectral sequence arguments to obtain a theorem that is
repeatedly used to calculate homomorphism spaces of complexes in Kb

(
Ĉup(n, k)

)
.

The goal of Chapter 6 is to construct the complexes V∗(λ) and show that they form a
graded exceptional sequence. On the way we obtain many results on homomorphisms
between T(µ) and V∗(λ) inKb

(
Ĉup(n, k)

)
that will be important later on. In Chapter 7,

we write the T(λ)’s as iterated cones of V∗(µ)’s, construct V(µ) via duality and obtain
an iterated cone description of the T(λ)’s via the V(µ)’s from the duality for free. Using
this and the naive categorification from Chapter 3, we obtain a categorification of V ⊗n

with visible standard basis.

In Chapter 8, we define two t-structures on Kb
(
Ĉup(n, k)

)
that both contain the V∗(λ)

in the heart. We show that the T(λ) are tilting objects in one of the hearts and simple
in the other. Chapter 9 classifies degree 1 morphisms between different V∗(λ)’s in
Kb
(
Ĉup(n, k)

)
and gives an explicit construction. Furthermore, we examine how they

give rise to degree 2 morphisms.

We start Chapter 10 by constructing the complex L(λ0). We show that Ui acts trivi-
ally on L(λ0), study End

(
L(λ0)

)
and consider L(λ0) as a linear complex. Using this

complex L(λ0) in Chapter 11, we construct the functor F . We define the functor G and
consider the composition F ◦G. After recalling Cooper-Krushkal’s universal projector
and Rozansky’s construction of it, we describe the action of the universal projector on
T(λ0) for small k to show that it agrees with applying G ◦ F .
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In the Appendix A we recall coloured cobordisms and coloured TQFT. We show that
Ĉup(n, k) is equivalent to a category defined in analogy to generalised Khovanov algeb-
ras.
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Chapter 1

Combinatorics of Sn

This chapter introduces the combinatorics and basic definitions used later on. Although
some of the results are interesting on their own, the purpose of some might be unclear
until they are used as a crucial ingredient in the proofs of later chapters.

We introduce minimal length coset representatives of (Sk × Sn−k)\Sn and their connec-
tion to super standard tableaux and up-down-sequences. In particular, we study the
natural partial ordering induced by the Bruhat order on the symmetric group. Moreover,
we consider the action of the Temperley-Lieb algebra on cup diagrams. In particular,
we define the degree of an oriented cup diagram and investigate how it is affected by
the action. Lastly, we introduce circle diagrams and a function from them to vector
spaces that is used in Chapter 3.

1.1 Minimal length coset representatives

Definition 1.1.1. By si we denote the simple transposition (i, i+ 1) of the symmetric
group Sn and by l : Sn → Z+ the usual length function with respect to simple trans-
positions. Fix 1 ≤ k ≤ n and denote by Wn,k the parabolic subgroup Sk × Sn−k of Sn.
Let

Wmin = Wmin
n,k = {z ∈ Sn | l(sjz) > l(z) ∀sj ∈Wn,k} .

The following lemma explains the name minimal coset representatives for Wmin, see e.g.
[BB05, Corollary 2.4.5(i)] .

Lemma 1.1.2. In each coset of Wn,k\Sn there exists exactly one element of minimal
length given by some w ∈Wmin.

Recall the following property of Wmin, see e.g. [BB05, Lemma 2.3.4]:

Lemma 1.1.3. An element w ∈ Sn belongs to Wmin if and only if no reduced expression
for w starts with sj ∈Wn,k.

This means that every reduced expression of w ∈ Wmin starts with sk. For example,
s3s2s4s1s5 ∈Wmin

6,3 .

We now consider further properties of elements of Wmin that will be used later.

9
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Lemma 1.1.4. Let w ∈ Wmin and assume wsi /∈ Wmin for some simple transposition
si. Then l(wsi) > l(w).

Proof. Since w ∈Wmin, we have l(sjw) > l(w) for all sj ∈Wn,k, thus

l(sjw) = l(w) + 1 (1.1)

for all sj ∈ Wn,k. From wsi /∈ Wmin we obtain that there exists some sj0 ∈ Wn,k with
l(sj0wsi) < l(wsi), i.e.

l(sj0wsi) = l(wsi)− 1.

With l(wsi) ≤ l(w) + 1, this yields l(sj0wsi) ≤ l(w). On the other hand,

l(sj0wsi) ≥ l(sj0w)− 1 = l(w),

where the equality follows from (1.1). Altogether, we have l(sj0wsi) = l(w) and thus
l(wsi) > l(sj0wsi) = l(w).

Remark 1.1.5. Let si1 . . . sir and sj1 . . . sjr be two reduced expressions of some w ∈ Sn.
By [Mat99, Theorem 1.8] we can pass from one reduced expression to another using only
the braid relations

smsl = slsm for |m− l| > 1 (1.2)

slsmsl = smslsm for |m− l| = 1. (1.3)

Corollary 1.1.6. Assume w ∈ Wmin = Wmin
n,k such that wsi /∈ Wmin. Then there is a

reduced expression of w of one of the following forms

• w = si1 . . . sir (and in particular i 6= k) or

• w = sl1 . . . sltsisi±1si1 . . . sir with l1, . . . , lt ∈ {1, . . . , n− 1}

for some i1, . . . , ir ∈ {1, . . . , n− 1} with |ij − i| > 1 for all j = 1, . . . , r.

Example 1.1.7. Consider w = s3s2s4s1s5 ∈Wmin
6,3 . Then ws2 /∈Wmin

6,3 , since

s3s2s4s1s5s2 = s3s2s4s1s2s5 = s3s2s1s4s2s5

= s3s2s1s2s4s5 = s3s1s2s1s4s5 = s1s3s2s1s4s5

and we have the reduced expression s3s2s1s4s5 of w which satisfies the second case of
the corollary.

Proof(Corollary). Let sj1 . . . sjp be a reduced expression of w. By the previous lemma
we know that sj1 . . . sjpsi is a reduced expression of wsi which can be transformed to
a reduced expression starting with sq, q 6= k, using the braid relations by assumption.
If this transformation can be achieved using only the relation (1.2), we are in case 1
(and i = q). In the other case, where we have to use at least one relation of type
(1.3), assume m1, . . . ,ma is a minimal set of braid relations for the transformation. If
m1, . . . ,mx, x ≤ a, only move the si by relations of type (1.2), then there are only sjy
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with |jy − i| > 1 to the right of the si, since the braid relations do not change the set of
appearing indices. Applying this to x = a, we see that there has to be some first mz of
type (1.3) involving the si, since otherwise we could permute the si to the right again
and would gain a reduced expression of w starting with sq, q 6= k, in contradiction to
w ∈Wmin. After having applied m1, . . . ,mz−1, the reduced expression has to be of the
form

sl1 . . . sltsisi±1sisi1 . . . sir

and by the considerations above we know |ij − i| > 1 for j = 1, . . . , r. Thus

wsi = sl1 . . . sltsisi±1si1 . . . sirsi

and w has a reduced expression of the desired second form.

Definition 1.1.8. We define the super (n, k)-box tableau as a k × (n − k)-box, where
the top-left entry is k and the entries increase by 1 in the rows from left to right and
decrease by 1 in the columns from top to bottom.

Example 1.1.9. The super (9, 5)-box tableau is

5 6 7 8
4 5 6 7
3 4 5 6
2 3 4 5
1 2 3 4

.

Definition 1.1.10. Let Y (n, k) be the set of tableaux contained in a super (n, k)-box
tableau top and left aligned.

Example 1.1.11. 5 6 7
4 5

∈ Y (9, 5), since

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

.

Remark 1.1.12. Note that Y (n, k)∩Y (n, k′) = ∅ for k 6= k′, but Y (n, k) and Y (n′, k)

have nontrivial intersection. For instance

5 6 7 8 9
4 5 6
3 4 5
2 3

∈ Y (10, 5) ∩ Y (11, 5)

(but not in Y (9, 5)).

In other words, given T ∈ Y (n, k) one can determine the value of k, but n has to be
given separately, since T only gives a lower bound for n.

Definition 1.1.13. Given a tableau T ∈ Y (n, k), the row reading word defines an
element in the symmetric group, denoted by s(T ), by sending an entry i to the simple
transposition si.



12 CHAPTER 1. COMBINATORICS OF Sn

Example 1.1.14. s

 5 6 7 8
4 5 6
3 4 5
2 3

 = s5s6s7s8s4s5s6s3s4s5s2s3 ∈ Sn for n ≥ 9.

Note that s(T ) is always a reduced expression.

Lemma 1.1.15. The w ∈Wmin are in bijection to Y (n, k) via Y (n, k) 3 T 7→ s(T ).

Proof. This follows directly from [Str05, Prop A2], since tableaux in Y (n, k) are de-
termined by the rightmost entries of the rows, thus Y (n, k) is in bijection to the S(n, k)

defined there.

Definition 1.1.16. Let

Λ(n, k) =

{
a = a1a2 . . . an | ai ∈ {∧,∨}, {a1, . . . , an} = {∧, . . . ,∧,︸ ︷︷ ︸

k

∨, . . . ,∨︸ ︷︷ ︸
n−k

}
}
.

We call a λ ∈ Λ(n, k) a ∧∨-sequence or more precisely an (n, k)-∧∨-sequence. We write
λ(i) for the ith entry of λ.

We denote by λ0 the element ∧, . . . ,∧,︸ ︷︷ ︸
k

∨, . . . ,∨︸ ︷︷ ︸
n−k

.

Example 1.1.17. Λ(4, 2) = {∧∧∨∨,∧∨∧∨,∨∧∧∨,∧∨∨∧,∨∧∨∧,∨∨∧∧}.

Note that the cardinality of Λ(n, k) is
(
n
k

)
.

Lemma 1.1.18. There is a canonical bijection ϕ : Λ(n, k)→Wmin sending λ0 to e.

Proof. Sn obviously acts on a Λ(n, k) from the right by permutation of the ai’s and
every ∧∨-sequence is in the orbit of λ0. The stabiliser of λ0 is Sk × Sn−k = Wn,k. So
Λ(n, k) is in bijection toWn,k\Sn, which in turn is in bijection to Wmin by Lemma 1.1.2.

Lemma 1.1.19. Two reduced expressions of the same element in Wmin are related by
a finite sequence of moves sisj = sjsi for |i− j| > 1.

Proof. By Remark 1.1.5 it is enough to show that no reduced expression of an element
in Wmin contains the subword sisi±1si. Assume there is an element w ∈ Wmin with
reduced expression si1 . . . sirsisi±1sisj1 . . . sjt . By Lemma 1.1.3, also si1 . . . sirsisi±1si,
si1 . . . sirsisi±1 and si1 . . . sirsi are reduced expressions of different elements in Wmin.
Under the bijection of Lemma 1.1.18, s ∈ Wmin is send to λ0s. Let λ = λ0si1 . . . sir .
By considering all the possible ∧∨-sequence at places i, i + 1, i + 2 resp. i − 1, i, i + 1

in λ we see that two out of λsi, λsisi±1 and λsisi±1si have to be equal. But this is a
contradiction to the isomorphism.

Corollary 1.1.20. There is a bijection ϕ′ : Y (n, k)→ Λ(n, k) given by T 7→ λ0s(T ).

Proof. This is the composition of Lemma 1.1.15 and Lemma 1.1.18.
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Lemma 1.1.21. Let T ∈ Y (n, k). We can read off the ∧∨-sequence ϕ′(T ) ∈ Λ(n, k)

from the tableaux T embedded in the box super tableau: We start at the lower left corner
of the box Young tableau, then go up until we reach the embedded tableau, follow its
contours and then go right until we reach the right upper corner of the box Young tableau.
This path gives a ∧∨-sequence by associating a ∧ to going one step up and a ∨ to going
one step right.

Example 1.1.22.

1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

; ∧∧∨∧∨∨∧∨∨∧∧∨∧

Proof. We prove this by induction on the number of boxes in T . If there is no box,
the contour path obviously gives λ0 = λ0e. Assume that the assertion is true when we
remove one box. Consider the rightmost box in the lowest row of T and assume it is
labelled by i. Since all the boxes with the same label are on a diagonal, the right step
given by this box is the ith step in the contour path. Let T ′ be the tableau without the
box. Now, the contour path of T differs by from the one of T ′ by changing ∨∧ at places
i, i+ 1 to ∧∨. Since s(T ) = s(T ′)si and λ0s(T

′) is the contour path of T ′ by induction,
the assertion follows.

Altogether we have the bijections

Y (n, k) Wmin
n,k Λ(n, k)

T s(T ), w λ0w

contour of T
ϕ′

ϕ−1 (1.4)

Example 1.1.23. For n = 8 and k = 4 we have

4 5 6 7
3 4 5
2 3 4
1

7→ s4s5s6s7s3s4s5s2s3s4s1 7→ ∨∧∨∨∧∧∨∧.

Definition 1.1.24. The Bruhat order on Wmin is the partial order defined as follows:
For w, y ∈Wmin we say w < y if there is a reduced expression sj1 . . . sjt of w and some
si1 , . . . , sir such that sj1 . . . sjtsi1 . . . sir is a reduced expression of y.

This induces a partial order on Λ(n, k): For λ, µ ∈ Λ(n, k) we say that λ < µ if
ϕ(λ) < ϕ(µ). With this definition λ0 is minimal, since ϕ(λ0) = e.
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Remark 1.1.25. Recall that l(w) for w ∈ Sn is equal to the number of inversions of
w. Under the bijection

Wmin ↔ Λ(n, k)

w 7→ λ0w

the number of inversions correlates to the number of transpositions of ∧∨ to ∨∧ that are
used to go from λ0 to λ0w. In particular, this means for wsi > w with w,wsi ∈Wmin

that λ0w has the labels ∧∨ at places i and i+ 1 and λ0wsi has the labels ∨∧ at places
i and i+ 1. Thus, λ < µ if µ arises from λ by a sequence of swapping neighbouring ∧∨
to ∨∧.

Note that our definition of λ < µ is reversed to the Bruhat order in [BS10].

Example 1.1.26. In Λ(4, 2) we have

∨∧∧∨

∧∧∨∨ ∧∨∧∨ ∨∧∨∧ ∨∨∧∧

∧∨∨∧

<

<
<

<
<

<

and ∨∧∧∨ and ∧∨∨∧ are not related.

Definition 1.1.27. We write µ si−→ λ (or just µ→ λ) if λ > µ and λ = µsi.

We say that µsi is undefined, if ϕ(µ)si /∈ Wmin. This is the same as saying that the
application of si does not change µ.

We say there is a path from µ to λ, µ λ , if there is a sequence λ0, . . . , λr such
that λ0 = µ, λr = λ and λi−1 → λi for i = 1, . . . , r. Hence, µ < λ if and only if there is
a path from µ to λ.

Example 1.1.28. In this language, the previous example morphs to

∨∧∧∨

∧∧∨∨ ∧∨∧∨ ∨∧∨∧ ∨∨∧∧

∧∨∨∧

s3
s2

s1

s3

s2
s1

.

Furthermore, ∨∧∧∨s2 is undefined and there is a path for example from ∧∨∧∨ to ∨∧∨∧.

Now we show different facts concerning the previous definitions that will be used in
proofs later on.

Lemma 1.1.29. Let µ′ ≤ λ′ and λ′ si−→ λ, µ′ si−→ µ for some i. Then µ ≤ λ.

Proof. The case µ′ = λ′ is clear. If µ′ < λ′ then there is a path µ′ λ′ . If this

path starts with si−→, we have µ = µ′si ≤ λ′ < λ and we are done. So assume that this
is not the case, then
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λ′ λ

µ′ µ,

si

si

where µ is not on the path µ′ λ′ . We show now that there is also a path from

µ′ to λ via µ. This will give µ ≤ λ as desired.

Consider the following
τ

µ′ ρ

sj

si

. Since we can apply si and sj , i 6= j, to µ′, we

have |i − j| > 1, because otherwise µ′(i) = ∧, µ′(j) = ∧, µ′(i + 1) = ∨, µ′(j + 1) = ∨
is not possible. Therefore, we can apply sj to ρ and si to τ and arrive at some π:

τ π

ν ρ

si

sj

si
sj

. We can now apply this to µ′ λ′ until si appears

λ′ λ

•

•

• •

µ′ µ

si

si

si

si

and get µ < λ′ < λ. If si does not appear in µ′ λ′ , we obtain

λ′ λ

µ′ µ ,

si

si

and again µ ≤ λ.

Corollary 1.1.30. Let λ � µ (i.e. λ < µ or they are not comparable) and λ′ si−→ λ.
Then µsi is undefined or λ′ � µ and λ′ � µsi.

Proof. Assume λ′ ≥ µ, then λ ≥ µ since λ > λ′ and we have a contradiction. Assume
µsi is defined and λ′ ≥ µsi, then µsi < µ since we already know λ′ � µ. Applying the
previous lemma for µ′ = µsi we obtain µ ≤ λ and thus a contradiction.

Definition 1.1.31. The relative length between λ, µ ∈ Λ(n, k) is defined, following
[BS10], as

`(λ, µ) :=

n∑
i=1

`i(λ, µ),
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where

`i(λ, µ) := #{j | j ≤ i and λ(j) = ∨} −#{j | j ≤ i and µ(j) = ∨}

for 0 ≤ i ≤ n .

So `i(λ, µ) counts the relative inversion, i.e. how many more ∨’s there are in λ compared
to µ at the positions to the left or equal to the ith place. We note that λ ≥ µ if and
only if `i(λ, µ) ≥ 0 for all 1 ≤ i ≤ n.

If λ ≥ µ, the relative length `(λ, µ) is just the minimum number of transpositions of
neighbouring ∨∧ pairs needed to get from λ to µ. Furthermore, if λ ≥ µ, then `(λ, µ) =

`(λ, λ0)− `(µ, λ0). Note that for w ∈Wmin and λ = λ0w we have `(λ, λ0) = l(w).

For example, `(∨∧∧∨,∧∨∨∧) = 1 + 0− 1 + 0 = 0 and `(∨∧∨∧,∧∨∧∨) = 2.

Lemma 1.1.32. Let λ→ λsi, µ→ µsi and µ < λ. Then µsi � λ.

Proof. Since µ < λ, we have in particular `(µ, λ0) < `(λ, λ0). Moreover, `(µsi, λ0) =

`(µ, λ0) + 1 ≤ `(λ, λ0). From λ < λsi we know that µsi 6= λ. If µsi > λ, then
0 < `(µsi, λ) = `(µsi, λ0)− `(λ, λ0), but this is a contradiction.

Lemma 1.1.33. Let λ→ λsi, µ→ µsi, λ 6= µ and `(λ, λ0) = `(µ, λ0). Then µ and λsi
are not comparable.

Proof. Assume µ and λsi are comparable. If λsi ≤ µ, then λ < λsi ≤ µ and we get a
contradiction. Hence, λsi > µ. From `(µ, λ0) + 1 = `(λ, λ0) + 1 = `(λsi, λ0) we obtain
`(λ, µ) = `(λ, λ0)− `(µ, λ0) = 1, hence λsi has to come from µ by one transposition of
a pair ∨∧, i.e. µ

sj−→ λsi for some j. But from λ → λsi, µ → µsi we know λ(i) = ∧,
λ(i + 1) = ∨ and µ(i) = ∧, µ(i + 1) = ∨. So for getting λsi from µ after applying sj
the only possibility is j = i. Thus µsi = λsi, which is a contradiction to µ 6= λ.

Lemma 1.1.34. If λ si−→ λsi
si+1−−→ λsisi+1, then the tableaux T ′ = ϕ′−1(λsisi+1) is

obtained from T = ϕ′−1(λ) by adding two boxes with content i resp. i+ 1 at the end of
a common row of T .

If λ si−→ λsi
si−1−−−→ λsisi−1, then the tableaux T ′ = ϕ′−1(λsisi−1) is obtained from T =

ϕ′−1(λ) by adding a box with content i at the end of some row and a box with content
i− 1 at the end of the row below and directly below the box with i.

Proof. Since T = ϕ′−1(λ), by (1.4) we have λ = λ0s(T ). We want to find T ′ with
λ0s(T

′) = λsisi+1 = λ0s(T )sisi+1, i.e. with s(T ′) = s(T )sisi+1. So we have to add two
boxes labelled i resp. i+ 1 to T to get T ′. The index i determines the label of the box
to be added and hence the diagonal where it can be added. So its position is unique
and then the box with entry (i+ 1) must be next to it in the same row.

For example T =

4 5 6 7
3 4 5
2
1

and i = 3, then T ′ =
4 5 6 7
3 4 5
2 3 4
1

.

The second case where the boxes have to be added in the same column works similar.
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Lemma 1.1.35. If w ∈ Wmin has a reduced expression si1 . . . sirsisi±1 it follows that
si1 . . . sirsi±1 /∈Wmin.

Proof. Consider T ∈ Y (n, k) such that w = s(T ), i.e. s(T ) and si1 . . . sirsisi±1 are
reduced expressions of w. Instead of deleting the si in si1 . . . sirsisi±1 we delete it in
s(T ) and then use the relations of Sn to show that the result has a reduced expression
starting with something other than sk. To better visualise the transformation of the
reduced expression, we stay in the language of boxes in tableaux and move these around
using the relations of Sn.

First we consider the case ± = +. By Lemma 1.1.34, in T there is a row r that contains
i (i+ 1) associated to the sisi+1 at the end of si1 . . . sirsisi+1. After we delete i, we can
move i+ 1 to the front of the row using (1.2). If r is the first row, then i+ 1 6= k since
we moved it past the first box. If r is not the first row, we can move i + 1 to the end
of the row above r. Because T ∈ Y (n, k), we know (i+ 1) (i+ 2) has to be in this row.
We can change i+ 1 to i+ 2 and move it past them (using (1.3)). Now we move i+ 2

to the front and iterate the argument until we reach the first row.

For example, let i = 3 and T =

4 5 6 7
3 4 5
2 3 4
1

. Then r is the third row from the top and

4 5 6 7
3 4 5
2 4
1

;
4 5 6 7
3 4 5
4 2
1

;
4 5 6 7
3 4 5 4
2
1

;
4 5 6 7
3 5 4 5
2
1

;
4 5 6 5 7
3 4 5
2
1

;
4 6 5 6 7
3 4 5
2
1

;
6 4 5 6 7
3 4 5
2
1

.

Now consider the case ± = −. Again by the previous lemma, there is a row r in T

that contains i − 1 (and not i) and in the row r′ above there is i and nothing bigger.
If we delete i, the row r′ is either empty or contains i − 1 at the end. If the row
r′ is empty, the i − 1 is the only entry of the row r and can now move one row up.
If r′ was the first row, then now the upper left box is not k and we are done. If r′

was not the first row, then i − 1 is by 2 smaller than all the entries above and can
be moved by (1.2) until it is the upper left box. Since it still cannot be k, we are
again finished. Now assume r′ is not empty. Then the rows r′ and r have entries
i − t, i − t + 1, . . . , i − 2, i − 1, i − t − 1, i − t, . . . i − 1. By moving the elements of r′

as much as possible to the right by (1.2) and then applying (1.3) repeatedly we get
i− t−1, (i− t, i− t−1), (i− t+1, i− t), (i− t+2, i− t+1), . . . , (i−2, i−3), (i−1, i−2).
Now the row r′ starts by i− t− 1 and the entries the rows above r′ are all bigger than
i− t. Thus, i− t− 1 can be moved by (1.2) to the upper left box and is not equal to k.

For example, let i = 5 and T =

4 5 6 7
3 4 5
2 3 4
1

. Then r′ is the second row from the top, r the

third and

4 5 6 7
3 4
2 3 4
1

;
4 5 6 7
3 4 2 3 4
1

;
4 5 6 7
3 2 4 3 4
1

;
4 5 6 7
3 2 3 4 3
1

;
4 5 6 7
2 3 2 4 3
1

;
2 4 5 6 7
3 2 4 3
1

.
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1.2 Combinatorics with cup diagrams and Temperley-Lieb
algebras

Definition 1.2.1. The Temperley-Lieb algebra TLn is the Z[q, q−1]-algebra generated
by U1, . . . , Un−1 subject to the following relations:

U2
i = [2]Ui (1.5)

UiUj = UjUi, |i− j| > 1 (1.6)

UiUi±1Ui = Ui, (1.7)

where the quantum integer [2] is defined by [2] = q + q−1.

The row reading word defines a Temperley-Lieb element similar to Definition 1.1.13.

Definition 1.2.2. Let T ∈ Y (n, k), then the row reading word defines an element in
TLn, denoted by U(T ), by sending an entry i to Ui.

Example 1.2.3. U

 5 6 7 8
4 5 6
3 4 5
2 3

 = U5U6U7U8U4U5U6U3U4U5U2U3 ∈ TLn for n ≥ 9.

Remark 1.2.4. From the definition and the bijections from the previous section, we
get: If si1 . . . sir ∈Wmin is reduced and U = Ui1 . . . Uir , then U = U(T ) for T ∈ Y (n, k).

Remark 1.2.5. Recall that TLn can also be seen diagrammatically as the Z[q, q−1]-
module with basis crossingless matchings on a rectangle with n points each on two oppos-
ite sides, for example TL3 =

〈
, , , ,

〉
. Multiplication of basis

elements is performed by putting the right on top of the left and replacing every closed
internal loop by the factor [2], regarding a wiggled line as the same as a straightened
line. For example, · = . Obviously, the diagrams generate
TLn as an algebra and satisfy precisely the relations (1.5)–(1.7) of the Ui’s, where i
denotes that the cup starts at the ith place.

In this diagrammatic point of view we have a nice description of U(T ) for T ∈ Y (n, k):

U
(

2 3
1 2

)
= ∈ TL4

U

 5 6 7 8
4 5 6
3 4 5
2 3

 = ∈ TL9

The first row of the tableau corresponds to the lowest diagonal starting at the
lowest and going up diagonally to the right. The second row corresponds to
the second diagonal, and so on. So in total the shape of the diagram corresponds
to reflecting the tableau and then rotating so that the former upper left box is the lowest:
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5
6

7
8

4
5

6
3

4
5

2
3

Following [BS11a] and [Scha12] we define cup diagrams:

Definition 1.2.6. Let λ ∈ Λ(n, k). The (extended) cup diagram C(λ) associated to λ
is defined as follows: We enlarge λ by adding k ∨’s on the left and n − k ∧’s on the
right, i.e. ∨ . . .∨︸ ︷︷ ︸

k

λ∧ . . .∧,︸ ︷︷ ︸
n−k

. Then we build the diagram inductively by connecting any

adjacent pair ∨∧ in the region below, and then continuing the process for the sequence
with these points excluded. To remember the added ∨’s and ∧’s that do not belong to
λ, we color the points at the associated position green.

When all ∨∧’s are connected, no unmatched ∧’s or ∨’s can remain. So extending the
sequence allows to connect everything with cups.

Example 1.2.7.

C(∨∧∨) = , C(∨∧∨∧∧∨) =

C(∧∨∨) = , C(∧∧∧∨∨) =

Note that in C(λ0), the first k black points are connected to left green points and the
others to right green points.

Definition 1.2.8. Let Ln,k be 2n points on a line where the leftmost k and rightmost
n− k are coloured green, the rest black.

Example 1.2.9. L7,3 =

Definition 1.2.10. We define the set of extended cup diagrams eC(n, k) as all the
crossingless matchings of Ln,k with the condition that every arc has at least one black
point above it or at the endpoint.

Remark 1.2.11. Note that the condition of having at least one black point below
(including endpoints) forbids arcs between two left green points or two right green
points.

From the definitions we immediately obtain:

Lemma 1.2.12. There is a bijection between Λ(n, k) and eC(n, k) given by λ 7→ C(λ).

Definition 1.2.13. Let êC(n, k) be the Z[q, q−1]-module with basis eC(n, k).

We recall the following well-known crucial fact:
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Proposition 1.2.14. There is a (right) action of TLn on êC(n, k) given by putting the
TLn diagram on top of an extended cup diagram and smoothing, using # = q + q−1. If
the result is not in êC(n, k), we define the result as zero.

Proof. Straightforward following the arguments of [LS13].

Example 1.2.15.

i) . = =

ii) . = = (q + q−1)

iii) . = = 0

Notation 1.2.16. We number the dots in an extended cup diagram increasing from
left to right such that the first black point is labelled 1, i.e.

. . . . . . . . .

−k+1 −k+2 0 1 n n+1 2n−k

so that the ∧∨-sequence λ gives the label λ(i) at point i. As a shorthand notation for
“the point i in C(λ)” we write “bicλ”. By t(bjcλ) we denote the target of the arc starting
at bjcλ and by s(bjcλ) the source of the arc ending at bjcλ.

We now consider some properties of the action defined above.

Lemma 1.2.17. Let λ, µ ∈ Λ(n, k) with λ si−→ µ. Then C(µ) = C(λ).Ui.

Proof. We have ∧ = λ(i) and ∨ = λ(i+ 1). Here, bicλ is the endpoint of an arc starting
in s(bicλ) and bi+ 1cλ the starting point of an arc ending at t(bi+ 1cλ). Applying Ui
connects s(bicλ) and t(bi+ 1cλ) as well as bicλ and bi+ 1cλ. But this is just C(λsi)

where λ < λsi = µ since we changed ∧∨ to ∨∧.

Corollary 1.2.18. Let s = si1 . . . sir ∈ Wmin be reduced and define U := Ui1 . . . Uir .
Then C(λ0s) = C(λ0).U .

Corollary 1.2.19. As a TLn-module, êC(n, k) is generated by C(λ0) and hence so is
êC(n, k)C := C(q)⊗Z[q,q−1] êC(n, k) as a TLCn-module.
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Lemma 1.2.20.

C(λ).Ui =



(q + q−1) C(λ) if λ(i) = ∨, λ(i+ 1) = ∧,
C(λsi) with λsi > λ if λ(i) = ∧, λ(i+ 1) = ∨,
C(λ′) with λ′ < λ if λ(i) = λ(i+ 1) = ∨ and t(bi+ 1cλ) not green,

or λ(i) = λ(i+ 1) = ∧ and s(bicλ) not green
0 otherwise.

Moreover, the λ′ from the third case can be described explicitly: If λ(i) = λ(i+ 1) = ∨,
then λ′ = λs(i+1,t(bi+1cλ)) and if λ(i) = λ(i + 1) = ∧, then λ′ = s(i,s(bicλ)), where by
s(a,b) ∈ Sn we denote the element sasa+1 . . . sb−1.

Proof. We check all the possibilities for λ(i), λ(i+ 1) ∈ {∧∨}:

• λ(i) = ∨, λ(i+1) = ∧: Then bicλ and bi+ 1cλ are connected. Applying Ui creates
a circle which we replace by (q + q−1), getting C(λ).Ui = (q + q−1) C(λ).

• λ(i) = ∧, λ(i+ 1) = ∨: This case was already proven in Lemma 1.2.17.

• λ(i) = λ(i + 1) = ∨: Then bicλ is connected to t(bicλ), bi+ 1cλ to t(bi+ 1cλ)

and t(bicλ) is to the right of t(bi+ 1cλ). So if t(bi+ 1cλ) is green, then so is
t(bicλ) and C(λ).Ui is not an element of êC(n, k), so C(λ).Ui = 0. If t(bi+ 1cλ)

is not green, then applying Ui connects bicλ and bi+ 1cλ as well as t(bicλ) and
t(bi+ 1cλ). Thus C(λ).Ui = C(λs(i+1,t(bi+1cλ))) and λs(i+1,t(bi+1cλ)) < λ since it
comes from λ by a sequence of ∧∨ to ∨∧.

• λ(i) = λ(i + 1) = ∧: Then bicλ is connected to s(bicλ), bi+ 1cλ to s(bi+ 1cλ)

and s(bi+ 1cλ) is to the left of s(bicλ). Therefore, if s(bicλ) is green, then so is
s(bi+ 1cλ) and C(λ).Ui is not an element of êC(n, k), so C(λ).Ui = 0. If s(bicλ)

is not green, then applying Ui connects bicλ and bi+ 1cλ as well as s(bicλ) and
s(bi+ 1cλ). Thus, C(λ).Ui = C(λs(i,s(bicλ))) and λs(i,s(bicλ)) < λ since it comes
from λ by a sequence of ∧∨ to ∨∧.

Definition 1.2.21. An orientation of a cup with black endpoints is a labelling of the
points with ∧ and ∨ or ∨ and ∧, e.g. ∧ ∨ or ∨ ∧ but not ∧ ∧ .

A cup with black endpoints is clockwise (anticlockwise) oriented, if its leftmost vertex
is labelled ∧ (∨) and its rightmost vertex is labelled ∨ (∧).

An orientation of a cup with one black and one green endpoint is a labelling of the
black endpoint with ∧ if it is to the right of the green one and with ∨ otherwise, e.g.
∧ or ∨ . Note that cups with a green point can only be oriented in one way.

Let µ ∈ Λ(n, k) and C ∈ eC(n, k). Then we say that Cµ is oriented, if, when we label
the black points by µ, all the cups are oriented, i.e. only cups of the following form are
allowed:

∧ ∨ ∨ ∧ ∧ ∨
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Example 1.2.22. This is oriented:
∧∨∧∧∨

whereas the following is not:
∧∨∧∨∨

Note that λ always orients C(λ). Furthermore, C(λ0) can only be oriented by λ0 since
every cup has a green endpoint determining its orientation.

Lemma 1.2.23. Let λ, µ ∈ Λ(n, k). Assume λ(i) = λ(i + 1) = ∨ and bi+ 1cλ is
connected to a green point in C(λ). If C(λ)µ is oriented, then µ(i) = µ(i+ 1) = ∨.
Assume λ(i) = λ(i+ 1) = ∧ and bicλ is connected to a green point in C(λ). If C(λ)µ is
oriented, then µ(i) = µ(i+ 1) = ∧.

Proof. If λ(i) = λ(i + 1) = ∨ and bi+ 1cλ is connected to a green point in C(λ), then

bicλ is also connected to a green point: i i+1 So only µ(i) = µ(i+1) = ∨ is possible

by definition. The other part follows analogously.

Lemma 1.2.24. Assume that C(λ).Ui = C(λ′). Then{
ν | C(λ′)ν is oriented

}
=
{
µ, µsi | C(λ)µ is oriented, µsi defined

}
.

Proof. In C(λ), bicλ is connected to some bacλ and bi+ 1cλ is connected to some bbcλ.
By assumption, in C(λ′), we have an arc between bicλ′ and bi+ 1cλ′ and between bacλ′
and bbcλ′ .
We first show ⊇: Assume µ satisfies that C(λ)µ is oriented and µsi is defined. Since
µsi is defined, we know that µ(i) 6= µ(i+ 1). Since µ orients C(λ) and µ(i) 6= µ(i+ 1),
we know that µ(a) 6= µ(b) (where we see µ(c) as ∨ if c is a left green point and µ(c) as
∧ if c is a right green point), thus µ orients C(λ′). Since bicλ′ is connected to bi+ 1cλ′ ,
we also have that µsi orients C(λ′).

We now show ⊆: Assume C(λ′)ν is oriented. Thus, ν(i) 6= ν(i + 1) and ν(a) 6= ν(b)

(where we again see ν(c) as ∨ if c is a left green point and ν(c) as ∧ if c is a right green
point). Since ν(i) 6= ν(i+ 1), νsi is defined. If ν(a) 6= ν(i), then C(λ)ν is oriented and
we are done. If ν(a) = ν(i), then νsi(a) 6= νsi(i) and for ν ′ = νsi we have that C(λ)ν ′

is oriented and ν ′si = ν is defined.

Definition 1.2.25. Let µ ∈ Λ(n, k), C ∈ eC(n, k) such that Cµ is oriented. Then we
define the degree of Cµ, deg(Cµ), as the number of clockwise oriented cups in Cµ, i.e.

deg
(
∧ ∨

)
= 1, deg

(
∨ ∧

)
= deg

(
∧
)

= deg
(
∨

)
= deg

( )
= 0.

For example,

deg

(
∧∨∧∧∨

)
= 0.

Note that we always have deg
(

C(λ)λ
)

= 0, since by construction of C(λ) all the cups
in C(λ)λ are oriented counter-clockwise.
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Lemma 1.2.26. Assume C(λ).Ui = C(λ′) and pick µ such that C(λ)µ is oriented and
µsi is defined.

If µ > µsi, then deg
(

C(λ′)µ
)

= deg
(

C(λ)µ
)
− 1 and deg

(
C(λ′)µsi

)
= deg

(
C(λ)µ

)
.

If µ < µsi, then deg
(

C(λ′)µsi
)

= deg
(

C(λ)µ
)
and deg

(
C(λ′)µ

)
= deg

(
C(λ)µ

)
+ 1.

Note that C(λ′)µ and C(λ′)µsi are oriented by the previous lemma.

Proof. Again, in C(λ), bicλ is connected to some bacλ and bi+ 1cλ is connected to
some bbcλ, whereas in C(λ′), we have an arc between bicλ′ and bi+ 1cλ′ and between
bacλ′ and bbcλ′ , and the rest is the same. We consider all the possibilities for the arcs
involving the endpoints a, b, i, i+ 1:

C(λ) C(λ′)

1)

i i+1b a

i i+1b a

2)

i i+1b a

b a i i+1

3)
i i+1 ba

i i+1 ba

4)
i i+1 ba

i i+1 ba

5)
i i+1 ba

i i+1 ba

6)

i i+1 b a i i+1 b a

7)

i i+1 b a i i+1 b a

If µ > µsi then µsi(i) = ∧ = µ(i+1) and µsi(i+1) = ∨ = µ(i). Since C(λ)µ is oriented,
we are in one of the cases 1), 2), 4), 6), 7). Furthermore, we have µsi(a) = µ(a) = ∧ or
a is a green point and µsi(b) = µ(b) = ∨ or b is green. Now we check the orientations in
the possible cases: For case 4) in C(λ)µ both arcs are oriented clockwise, as well as in
C(λ′)µsi, whereas in C(λ′)µ only one is oriented clockwise. If we are in cases 1), 2), 6),
7) then in C(λ)µ one arc is oriented clockwise, as well as in C(λ′)µsi, where in C(λ′)µ

none is oriented clockwise.

If µ < µsi then µsi(i) = ∨ = µ(i+1) and µsi(i+1) = ∧ = µ(i). Since C(λ)µ is oriented,
we are in one of the cases 2), 3), 4), 5), 7). Moreover, we have µsi(a) = µ(a) = ∨ or
a is a green point and µsi(b) = µ(b) = ∧ or b is a green point. Again we check the
orientations in the different cases: In cases 3), 4), 5) the arcs in C(λ)µ are both not
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oriented clockwise, as well as in C(λ′)µsi, where in C(λ′)µ there is one cup oriented
clockwise. If we are in cases 2) or 7), then in C(λ)µ only one arc is oriented clockwise,
as well as in C(λ′)µsi, where in C(λ′)µ both are oriented clockwise.

Definition 1.2.27. Let C,D ∈ eC(n, k) be extended cup diagrams. Then CD is
defined as reflecting D at the horizontal axis and putting it on top of C. We call CD
a circle diagram.

Example 1.2.28. Let C = and D = . Then CD =

.

Lemma 1.2.29. There are exactly n circles in C(µ)C(λ) iff C(λ) = C(µ), i.e. λ = µ.

Proof. This is true because every circle contains an even number of black or green points
(where it intersects the x-axis) and at least 2. If λ 6= µ, i.e. C(λ) 6= C(µ), then there
are points a, b that are connected in C(λ), but in C(µ) the point a is connected to some
c 6= b. So in C(µ)C(λ) the circle containing a and b contains also c and thus ≥ 3 points.
Since there are 2n points (black or green) altogether, there are now < n circles.

Definition 1.2.30. A circle inside a circle diagram is called red if it contains more then
one right green point or more then one left green point. Other circles that contain a
green point are called green. Circles without green points are called black.

This colouring is motivated by [Str09] and also allows to consider circle diagrams as
objects of the category of coloured cobordisms (cf. Section A.1).

Example 1.2.31. With C and D from Example 1.2.28, CD consists of two green

circles. Moreover, CC = consists of one black and three green circles.

Furthermore, for C as before and D = = C(λ0) we have one red and

one green circle in CD = . DD = has only green

circles.

Note that C(λ)C(λ) does not contain red circles. It consists solely of green circles if
and only if λ = λ0.



Chapter 2

The background story: The
quantum group Uq(sl2)

This chapter introduces the objects we want to categorify: The weight spaces of the
Uq(sl2)-module V ⊗n and the different bases of V ⊗n. We connect the bases to the cup
diagrams of the last chapter and to the action of the Temperley-Lieb algebra. After
that, we conclude with the definition of the Jones-Wenzl projector and recall some of
its properties.

2.1 Finite dimensional representations

For the definitions, we mostly follow [FSS12]. Let C(q) be the field of rational functions
in an indeterminate q.

Definition 2.1.1. Let Uq = Uq(sl2) be the associative algebra over C(q) generated by
E,F,K,K−1 subject to the relations:

KK−1 = K−1K = 1

KE = q2EK

KF = q−2FK

EF − FE =
K −K−1

q − q−1

Uq is a Hopf algebra with the following comultiplication:

4(E) = 1⊗ E + E ⊗K−1, 4(F ) = K ⊗ F + F ⊗ 1, 4(K±1) = K±1 ⊗K±1.

For a variable t, the t-quantum integers are defined as [k]t =
∑k−1

j=0 t
k−2j−1 and the

t-quantum binomial coefficients as
[
n
k

]
t

= [n]t!
[k]t![n−k]t!

, where [n]t! = [1]t · [2]t · · · [n]t. For
example, [1]t = 1, [2]t = t+ t−1, [3]t = t2 + 1 + t−2 and

[
4
2

]
t

= t4 + t2 + 2 + t−2 + t−4.

Note that [k]−q = (−1)k−1[k]q and
[
n
k

]
−q = (−1)n+k

[
n
k

]
q
. We leave out the index and

denote [−] = [−]q in case t = q, the indeterminate from above. Note that for t = q or
t = −q, the quantum integers and binomial coefficients live in Q(q).

25
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Let Vn be the irreducible Uq(sl2)-module with basis {v0, v1, . . . , vn} such that

K±1vi = (−q)±(2i−n)vi Evi = [i+ 1]−qvi+1 Fvi = [n− i+ 1]−qvi−1,

where we set v−1 = 0 = vn+1. A direct sum of modules of the form Vn is called a type
I-module. Note that here we differ from the conventions of [FSS12] by the change of
variable q 7→ −q. This is necessary to harmonise with the combinatorial picture.

In the following, we mostly consider the irreducible Uq-module V = V1 and its tensor
powers. Recall that V ⊗n is an Uq-module via G.(vi1⊗ . . .⊗vin) = 4n(G)(vi1⊗ . . .⊗vin)

for G ∈ {K±1, E, F}, where 4n = (1⊗ . . .⊗ 1⊗4) ◦ · · · ◦ (1⊗4) ◦ 4.

Definition 2.1.2. For M a finite dimensional Uq-module of type I the weight space
decomposition is defined as M =

⊕
βMβ , where Mβ = {m ∈ M | Km = (−q)βm} are

eigenspaces of K.

Example 2.1.3. SinceK.(vi1⊗. . .⊗vin) = Kvi1⊗. . .⊗Kvin = (−q)#1−#0vi1⊗. . .⊗vin
(where we use the shorthand notation #1 −#0 = #{j | ij = 1} −#{j | ij = 0}), the
space(

V ⊗n
)
β

=

〈
vi1 ⊗ . . .⊗ vin | {i1, . . . , in} = {1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

}, β = 2k − n
〉

consists of eigenvectors with eigenvalue β. Since these vectors vi1⊗ . . .⊗vin , i1, . . . , in ∈
{0, 1} form a basis we have V ⊗n =

⊕
(V ⊗n)β .

Definition 2.1.4. Let a = (ai1 , . . . , ain) with aij ∈ {0, 1}. As a shorthand notation we
denote va := vaij ⊗ . . .⊗ vain .

Note that we can identify a with an ∧∨-sequence λ ∈ Λ(n, k) for some k by identifying
∧ with 1 and ∨ with 0. Thus, we also write vλ for standard basis elements of V ⊗n

instead of va. In particular, standard basis elements of (V ⊗n)2k−n are of the form vλ
with λ ∈ Λ(n, k).

There is a C(q)-bilinear form (−,−) on V ⊗n, such that

(va, vb) =

{
1 if a = b,

0 otherwise,
(2.1)

(cf. [FSS12, (5)]).

Definition 2.1.5. The canonical basis in (V ⊗n)2k−n is defined via

v♥λ =
∑

µ:C(λ)µ is or.

q−deg(C(λ)µ)vµ,

where λ, µ ∈ Λ(n, k). Up to an obvious renormalisation this is the twisted canonical
basis from [BS10]. Note that the base change matrix to the standard basis of (V ⊗n)2k−n
is a triangular matrix with 1’s on the diagonal.

Example 2.1.6. For n = 4, k = 2 we have the following canonical basis of
(
V ⊗4

)
0
:
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• v♥∧∧∨∨ = v∧∧∨∨ = v1 ⊗ v1 ⊗ v0 ⊗ v0

since ∧∧∨∨ is the only orientation of

• v♥∧∨∧∨ = v∧∨∧∨ + q−1v∧∧∨∨

since C(∧∨∧∨) = has only the two orientations

∧∨∧∨ and ∧∧∨∨ with the right degrees

• v♥∨∧∧∨ = v∨∧∧∨ + q−1v∧∨∧∨

since C(∨∧∧∨) =

• v♥∧∨∨∧ = v∧∨∨∧ + q−1v∧∨∧∨

since C(∧∨∨∧) =

• v♥∨∧∨∧ = v∨∧∨∧ + q−1v∧∨∨∧ + q−1v∨∧∧∨ + q−2v∧∧∨∨

since C(∨∧∨∧) =

• v♥∨∨∧∧ = v∨∨∧∧ + q−1v∨∧∨∧ + q−1v∧∨∧∨ + q−2v∧∧∨∨

since C(∨∨∧∧) =

Note that v♥λ0 = vλ0 holds for every n, k, since λ0 is the only possible orientation of
C(λ0).

It is a well-known fact that TLCn ∼= EndUq(V
⊗n), see e.g. [Str05, Proposition 4.2]. With

our conventions this isomorphism sends Ui ∈ TLCn to Ci,n = id⊗(i−1)⊗u ⊗ id⊗(n−i−1),
where u : V ⊗2 → V ⊗2 is defined via

u(vr ⊗ vs) =


0 if r = s = 0 or r = s = 1,

v1 ⊗ v0 + qv0 ⊗ v1 if r = 0, s = 1,

q−1v1 ⊗ v0 + v0 ⊗ v1 if r = 1, s = 0.

In particular, using this isomorphism, we can view V ⊗n as a right TLCn -module. Also,
since u does not change the number of 0’s and 1’s, we have that (V ⊗n)β is an TLCn -
module, too.

Explicitly, when we label again by ∧∨-sequences, we have

vµ.Ui =


vµsi + qvµ if µsi < µ,

vµsi + q−1vµ if µsi > µ,

0 if µsi = µ.

(2.2)

The following lemma gives us the main idea for the categorification in the following
chapters.
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Proposition 2.1.7. The assignment C(λ) 7→ v♥λ defines an isomorphism êC(n, k)C ∼=
(V ⊗n)2k−n of TLCn-modules.

Proof. Since basis elements are sent to basis elements bijectively, we clearly have an
isomorphism. It remains to check the compatibility with the TLCn -action, i.e. to show
that C(λ).Ui 7→ v♥λ.Ui holds:
C(λ).Ui is determined in Lemma 1.2.20. By the formula for vµ.Ui we have

v♥λ.Ui =
∑

µ:C(λ)µ is or.
µ<µsi

q− deg(C(λ)µ)(vµsi + q−1vµ) +
∑

µ:C(λ)µ is or.
µ>µsi

q− deg(C(λ)µ)(vµsi + qvµ).

We now consider different cases of entries of λ at places i and i + 1. If λ(i) = ∨ and
λ(i+ 1) = ∧, then

{µ | C(λ)µ is oriented } = {ν, νsi | ν < νsi,C(λ)ν is oriented },

since the cup belonging to λ(i) and λ(i+ 1) can be oriented in two ways. Thus,

v♥λ.Ui =
∑

ν:C(λ)ν is or.
ν<νsi

(
q− deg(C(λ)ν)(vνsi + q−1vν) + q− deg(C(λ)νsi)(vν + qvνsi)

)

=
∑

ν:C(λ)ν is or.
ν<νsi

q− deg(C(λ)ν)(vνsi + q−1vν + qvν + q2vνsi)

=
∑

ν:C(λ)ν is or.
ν<νsi

q− deg(C(λ)ν)(q + q−1)(vν + qvνsi)

= (q + q−1)
∑

ν:C(λ)ν is or.
ν<νsi

(q− deg(C(λ)ν)vν + q− deg(C(λ)νsi)vνsi) = (q + q−1)v♥λ.

since deg
(

C(λ)νsi
)

= deg
(

C(λ)ν
)
− 1 for ν < νsi follows from λ(i) = ∨, λ(i+ 1) = ∧.

From Lemma 1.2.20 we know C(λ).Ui = (q + q−1) C(λ), so we are finished in this case.

If λ(i) = λ(i + 1) = ∨ and in C(λ) the point i + 1 is connected to a green point, then
using Lemma 1.2.23 we get that v♥λ.Ui = 0. Also, v♥λ.Ui = 0 if λ(i) = λ(i + 1) = ∧
and in C(λ) the point i is connected to a green point.

In all the remaining cases we have C(λ).Ui = C(λ′) for some λ′. Thus, using
Lemma 1.2.24 at the second equality sign and Lemma 1.2.26 at the forth, we get

v♥λ′ =
∑

ν:C(λ′)ν is or.

q− deg(C(λ′)ν)vν

=
∑

µ:C(λ)µ is or.
µsi is def.

(
q− deg(C(λ′)µ)vµ + q− deg(C(λ′)µsi)vµsi

)



2.2. JONES-WENZL PROJECTORS 29

=
∑

µ:C(λ)µ is or.
µsi<µ

(
q− deg(C(λ′)µ)vµ + q− deg(C(λ′)µsi)vµsi

)

+
∑

µ:C(λ)µ is or.
µsi>µ

(
q− deg(C(λ′)µ)vµ + q− deg(C(λ′)µsi)vµsi

)

=
∑

µ:C(λ)µ is or.
µsi<µ

(
q− deg(C(λ)µ)+1vµ + q− deg(C(λ)µ)vµsi

)

+
∑

µ:C(λ)µ is or.
µsi>µ

(
q− deg(C(λ)µ)−1vµ + q− deg(C(λ)µ)vµsi

)

=
∑

µ:C(λ)µ is or.
µsi<µ

q− deg(C(λ)µ)(qvµ + vµsi) +
∑

µ:C(λ)µ is or.
µsi>µ

q− deg(C(λ)µ)(q−1vµ + vµsi)

=v♥λ.Ui.

The previous proposition yields the following well-known fact directly from Corol-
lary 1.2.19.

Corollary 2.1.8. As TLn-module, (V ⊗n)2k−n is generated by vλ0.

Note that equation (2.2) defines the well-known parabolic Hecke module N p [Str05,
Lemma 1.4]; in particular, from this observation Corollary 2.1.8 follows immediately.

2.2 Jones-Wenzl projectors

Adapting the definition of [FSS12] to our sign convention, we define:

Definition 2.2.1. Let |a| is the number of ones in a and vm := 1

[nm]−q
vm.

Define the projection πn : V ⊗n → Vn by the formula

πn(va) = (−q)−l(a)v|a| = (−q)−l(a) 1[
n
|a|
]
−q

v|a| (2.3)

where l(a) is equal to the number of pairs (i, j) with i < j and ai < aj .

The inclusion ιn : Vn → V ⊗n is the intertwining map

vk 7→
∑
|a|=k

(−q)b(a)va (2.4)

where b(a) is the number of pairs (i, j) with i < j and ai > aj , i.e. b(a) = |a|(n− |a|)−
l(a). Note that these morphisms are Uq-equivariant. The composite pn = ιn ◦ πn is the
Jones-Wenzl projector.
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Note that when we consider for an 01-sequence a the corresponding ∧∨-sequence λ,
then l(a) = `(λ, λ0). This is true since l(a) counts the number of pairs (∨,∧) where the
∨ is to the left of the ∧. But this is exactly the number of swappings of neighbouring
∧∨ to get from ∧ . . .∧∨ . . .∨ = λ0 to λ, which is `(λ, λ0).

Example 2.2.2. In the case n = 2 we obtain

p2(v10) = ι2

(
1[
2
1

]
−q
v1

)
= −[2]−1(v01 − qv10)

and p2(v♥01) = 0, since

π2(v♥01) = π2(v01 + q−1v10) = (−q)−1v1 + q−1v1 = 0.

The Jones-Wenzl projector has the following important property (see e.g. [FSS12]).

Proposition 2.2.3. The endomorphism pn of V ⊗n is the unique Uq-morphism which
satisfies for 1 ≤ i ≤ n− 1:

i) pn ◦ pn = pn

ii) Ci,n ◦ pn = 0

iii) pn ◦ Ci,n = 0

Even a stronger version of i)-iii) holds:

Lemma 2.2.4. a) πn ◦ ιn = id

b) Ci,n ◦ ιn = 0

c) πn ◦ Ci,n = 0

Proof. a) We compute

πn ◦ ιn(vk) =
∑
|a|=k

(−q)b(a)πn(va) =
∑
|a|=k

(−q)b(a)(−q)−l(a) 1[
n
k

]
−q
vk

=
1[
n
k

]
−q

(−q)k(n−k)
∑
|a|=k

(−q)−2l(a)vk =
1[
n
k

]
−q

[
n

k

]
−q
vk = vk,

where the second last equality holds by substituting q with −q in [Sch12, Proposition
2.2.5].
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b) We calculate

ιn(vk).Ui =
∑
|λ|=k

(−q)k(n−k)−`(λ,λ0)vλ.Ui

=
∑
|λ|=k
λ<λsi

(−q)k(n−k)−`(λ,λ0)(vλsi + q−1vλ) +
∑
|λ|=k
λ>λsi

(−q)k(n−k)−`(λ,λ0)(vλsi + qvλ)

=
∑
|λ|=k
λ<λsi

(−q)k(n−k)−`(λ,λ0)(vλsi + q−1vλ) +
∑
|λ|=k
λ<λsi

(−q)k(n−k)−`(λsi,λ0)(vλ + qvλsi)

=
∑
|λ|=k
λ<λsi

(−q)k(n−k)−`(λ,λ0)
(

(vλsi + q−1vλ)− q−1(vλ + qvλsi)
)

= 0

using `(λsi, λ0) = `(λ, λ0) + 1 for λ < λsi.

c) For λ < λsi with |λ| = k, we have

πn(vλ.Ui) = πn(vλsi + q−1vλ)

=
(

(−q)−`(λsi,λ0) + q−1(−q)−`(λ,λ0)
)
vk

= (−q)−`(λsi,λ0)
(

1 + q−1(−q)
)

= 0.

The case λ > λsi follows analogously and the case λ = λsi holds trivially.

It is especially easy to consider the behaviour of πn and pn when applied to most of the
canonical basis:

Corollary 2.2.5. For λ 6= λ0 we have

πn(v♥λ) = 0 = pn(v♥λ).

On the other hand, for λ = λ0 we have πn(v♥λ0) = vk and

pn(v♥λ0) =
(−1)k+n[

n
k

] ∑
|a|=k

q−b(a)va.

Proof. For λ 6= λ0 we have v♥λ = v♥λ′ .Ui for some λ′ and some i by Proposition 2.1.7
and Lemma 1.2.17. Thus, πn(v♥λ) = 0 follows from the previous lemma. Since v♥λ0 =

vλ0 we obtain πn(v♥λ0) = vk by definition. Plugging this in yields

pn(v♥λ0) = ιn(vk) =
1[
n
k

]
−q
ιn(vk) =

(−1)k+n[
n
k

] ∑
|a|=k

q−b(a)va.

2.3 Jones-Wenzl projectors in the Temperley-Lieb algebra

Recall the following well-known statement (see e.g. [KL94, 3.1.1]):
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Proposition 2.3.1. There is a unique non-zero element Pn ∈ TLCn such that

i) P 2
n = Pn

ii) PnUi = 0 = UiPn for all i = 1, . . . , n− 1.

This assertion yields together with Proposition 2.2.3 that the Jones-Wenzl projector Pn
is sent to pn under the isomorphism TLCn

∼= EndUq(V
⊗n).

Kauffman and Lins [KL94, 3.2] even give an explicit formula which under our conven-
tions transfers to the following:

Lemma 2.3.2. In the Temperley-Lieb algebra let Hi = Ui − q Id. For s = si1 . . . sir a
reduced expression in Sn let H(s) := Hi1 . . . Hin and H(e) := Id. Then

Pn =
1

JnK!

∑
s∈Sn

(−q)l(s)H(s),

where JnK = (q2n − 1)/(q2 − 1) and JnK! = J1K · J2K · · · JnK.

Example 2.3.3. For n = 2 we obtain using the formula above

P2 =
1

J2K!

(
(−q)0 Id +(−q)1H(s1)

)
=

1

J2K

(
Id +(−q)(U1 − q Id)

)
=

1

1 + q2

(
(1 + q2) Id−qU1

)
= Id− q

1 + q2
U1 = Id− 1

[2]
U1.

When fixing n and k and applying Pn to the standard basis vector vλ0 in (V ⊗n)2k−n
using the formula above, then we can restrict the number of s for which we use H(s)

in the formula:

Lemma 2.3.4. Let λ0 ∈ Λ(n, k). Then∑
s∈Sn

(−q)l(s)vλ0 .H(s) = JkK!Jn− kK!
∑

s∈Wmin
n,k

(−q)l(s)vλ0 .H(s). (2.5)

Proof. By (2.2) vλ0 .Ui = 0 for all i 6= k. Hence, vλ0 .H(si) = −qvλ0 for i 6= k. By [BB05,
Proposition 2.4.4] every s ∈ Sn has a reduced expression of the form si1 . . . sirsj1 . . . sjl
with it 6= k for t = 1, . . . , r and sj1 . . . sjl ∈Wmin. For s with such a reduced expression
we have

vλ0 .H(s) = (−q)rvλ0 .H(sj1 . . . sjl).

By counting elements we see that for fixed t = sj1 . . . sjl all possible si1 . . . sir ∈ Sk×Sn−k
appear. Thus, in the sum on the left hand side of (2.5) a fixed vλ0 .H(s) with s ∈Wmin

appears in total with factor ∑
t∈Sk×Sn−k

(−q)2l(t) = JkK!Jn− kK!,

where the equality holds because of [Hag08, Theorem 1.1].



Chapter 3

The Bar-Natan approach to
categorification

In this chapter, we recall Bar-Natan’s categorification [BN05] of the Temperley-Lieb
algebra and use a similar construction to define a category which is the foundation for
the categorification of V ⊗n. But before doing this, we need to recollect some categorical
constructions.

3.1 Categorification tools

Definition 3.1.1. A pre-additive category is a category C in which the morphism sets
between two given objects are abelian groups and the composition maps are bilinear.

A (Z-)graded pre-additive category is a category C where every morphism set is a graded
abelian group and the composition is bilinear and respects the grading: For objects
A,B,C we have C(A,B) =

⊕
i∈Z C(A,B)i with C(B,C)j ◦ C(A,B)i ⊂ C(A,C)i+j and

idA ∈ C(A,A)0.

Let C be a graded pre-additive category. Following [MOS09] we define CZ to be the
category such that ob(CZ) = ob(C) × Z and for A,B ∈ ob(C) and i, j ∈ Z we have
HomCZ((A, i), (B, j)) = C(A,B)i−j . Composition is just composition in C.

Note that CZ is pre-additive, too.

A graded pre-additive monoidal category is a graded pre-additive category that is also
monoidal and has the property that the functor ⊗ : C × C → C satisfies C(A,B)i ⊗
C(A′, B′)j ⊂ C(A⊗A′, B ⊗B′)i+j and ⊗ is bilinear.

Note that if C is graded pre-additive monoidal, then CZ is pre-additive monoidal, indeed
we can define a functor

⊗Z : CZ × CZ → CZ(
(A, i), (B, j)

)
7→ (A⊗B, i+ j)(

f : (A, i)→ (A′, i′), g : (B, j)→ (B′, j′)
)
7→
(
f ⊗ g : (A⊗B, i+ j)→ (A′ ⊗B′, i′ + j′)

)
.

33
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If I is the unit in C and a, l, r are the associativity, left unit and right unit isomorphisms,
we define IZ = (I, 0). Then associativity and unity in Z allows us to define oZ = o× idZ
for o ∈ {a, l, r} such that the required coherence diagrams obviously commute.

On CZ we have an autoequivalence

〈1〉 : CZ → CZ

(A, i) 7→ (A, i+ 1)(
f : (A, i)→ (B, j)

)
7→
(
f : (A, i+ 1)→ (B, j + 1)

)
.

Note that

f ∈ HomCZ
(
(A, i), (B, j)

)
= C(A,B)i−j = C(A,B)i+1−(j+1)

= HomCZ
(
(A, i+ 1), (B, j + 1)

)
.

The autoequivalence has an inverse 〈−1〉, such that 〈1〉 ◦ 〈−1〉 = id = 〈−1〉 ◦ 〈1〉. We
denote 〈i〉 := 〈1〉 ◦ · · · ◦ 〈1〉︸ ︷︷ ︸

i

and 〈−i〉 := 〈−1〉 ◦ · · · ◦ 〈−1〉︸ ︷︷ ︸
i

Having this in mind, for objects in CZ we also use the notation A 〈i〉 := (A, i).

By the degree of a morphism in CZ we mean its degree in C, that is for a morphism
f ∈ HomCZ

(
(A, i), (B, j)

)
we have deg(f) = i− j.

Following [BN05] we define the additive closure of a pre-additive category:

Definition 3.1.2. For C a pre-additive category Mat(C) is the category with:
Objects: formal finite direct sums (possibly empty)

⊕n
i=1Oi of objects Oi in C.

Morphisms: For objects O =
⊕m

i=1Oi and O
′ =

⊕n
i=1O

′
i, a morphism F : O′ → O is

an m×n matrix F = (Fij) of morphisms Fij : O′j → Oi in C. Morphisms in Mat(C) are
added using matrix addition and composition is defined by a rule modelled on matrix
multiplication: (

(Fij) ◦ (Gjk)
)
ik

:=
∑
j

Fij ◦Gjk.

If C is equipped with an autoequivalence 〈1〉, then this induces one on Mat(C), too. If C
is monoidal, then there is an induced monoidal structure on Mat(C). Moreover, if there
is an autoequivalence 〈1〉 compatible with the monoidal structure on C, then it is still
compatible with the monoidal structure on Mat(C).
For C a graded pre-additive (or graded pre-additive monoidal) category we denote Ĉ =

Mat(CZ).

Remark 3.1.3. For C a graded pre-additive category, Ĉ has as objects direct sums of
some A 〈i〉 and as morphisms matrices of morphisms f : A 〈i〉 → B 〈j〉 such that seen
as a morphism in C the morphism f satisfies deg(f) + j − i = 0.

Definition 3.1.4. The split Grothendieck group K0(A) for an additive category A is
defined as

K0(A) = Z
〈
Iso(A)

〉
�
(
[A⊕B] = [A] + [B]

)
,
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i.e. it is the free abelian group generated by isomorphism classes of objects of A modulo
the relation specified above.

If A has an autoequivalence 〈1〉 we set qi[A] = [A 〈i〉] and this makes K0(A) into a
Z[q, q−1]-module.

If moreoverA is monoidal, thenA⊗A → A inducesK0(A)⊗K0(A)→ K0(A), endowing
K0(A) with an algebra structure.

In the spirit of this and also since it is better readable, we will often use A 〈i〉 and qiA
synonymously.

3.2 Categorification of the Temperley-Lieb algebra

We start with defining the category that is used to categorify TLn.

Definition 3.2.1. Let R be a integral domain in which 2 is invertible. Let CobR(n)

be the category with
Objects: Compact 1-manifolds with boundary the n upper and n lower marked points
in a rectangle, where the upper points are on the upper side of the rectangle and the
lower ones on the lower side. We call the union of the upper and lower marked points
P .
Morphisms: A morphism f : A → B is a formal R-linear combination of cobordisms
with boundary A ∪ P × [0, 1] ∪B (nicely embedded in the (rectangle×[0, 1])) regarded
up to boundary-preserving isotopies modulo the following local relations:

= 2, = 0 =
1

2
+

1

2
. (3.1)

Here, the first relation means that whenever a cobordism contains a torus as a connected
component, it may be deleted and replaced by the factor 2. Analogously, the second
relation says that every cobordism containing a genus 3 surface is 0. The last relations
means that whenever we find a tube inside a cobordism, then we can replace it by
1
2 times the sum of two cobordisms that arise when we replace the tube inside the
cobordism by the first summand of the relation resp. the second summand.

The composition is given by the bilinear extension of composing cobordisms and rescal-
ing, i.e. when we have f : A→ B and g : B → C, we glue the two copies of B and rescale
the cobordism to length 1. For a cobordism f we define a degree via deg(f) = n−χ(f),
where χ(f) is the Euler characteristic of the cobordism.

We call the relations (3.1) the Bar-Natan relations; the last of the relations is called
neckcutting. Note that the neckcutting relation is homogeneous of degree 0.

Furthermore, the degree is compatible with composition, so CobR(n) is a graded pre-
additive category.

Remark 3.2.2. When we use the shorthand notation = 1
2 the Bar-Natan
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relations become

= 1, = 0, = + .

When we refer to the Bar-Natan relations or neckcutting in the future, we will mean
this version.

First note that = 0 follows from the relations: When we apply neckcutting to

the middle of the sphere we obtain

= + = 2 .

Furthermore, we get = 0 analogously by using neckcutting to cut in the middle

between the two •’s and then use = 1. Moreover, we can show = = 0,

by using neckcutting to cut between a part containing the two •’s and the rest, and
then applying that a sphere with two or three •’s is zero.

Example 3.2.3. For example, and are objects in

CobR(5). In CobR(2) with, for example, R = Z[1
2 ], we have ∈

HomCobR(2)

(
,

)
and 5 − 3 ∈ HomCobR(2)

(
,

)
.

The boundary of is ∪ × [0, 1]∪ . Note that we usually do not draw the

rectangle resp. the cuboid where the objects resp. morphisms are embedded in. Here is

an example with these habitats drawn explicitly: : → .

Here is an example for the composition and an application of neck-cutting:

◦ = = +

Moreover we know, deg( ) = 1, deg( ) = −1 and deg( ) = 1. Since

deg

(
: 〈1〉 →

)
= 0, we have that : 〈1〉 → is a morphism

in CobR(n)Z, but : 〈2〉 → is not.

Cob(n) is even a monoidal category by putting objects or morphisms on top of each
other followed by rescaling. Furthermore, the degree defined above is compatible with
the monoidal structure, turning CobR(n) into a graded pre-additive monoidal category.

The relations in CobR(n) allow the following delooping argument from [BN07]:
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Lemma 3.2.4 (Delooping).
If an object S in CobR(n)Z contains a #, then it is isomorphic in Mat

(
CobR(n)Z

)
to

S′ 〈1〉 ⊕ S′ 〈−1〉, where S′ is S with the # removed. The isomorphism and its inverse
are given by

∅〈1〉

∅〈−1〉

⊕
.

We give the proof to help the reader to get a feeling for the relations.

Proof. We check that the compositions of the morphisms given above are the identity:
Going from # to itself, we get the right hand side of neck-cutting, which is equal to the
identity. Now going from ∅ 〈1〉 ⊕∅ 〈−1〉 to itself we obtain  =

(
1 0

0 1

)
.

We have a shorthand notation for the saddle cobordism: Between the parts, where the
saddle cobordism is applied, we draw a thick line. For example, for : →

we draw and for the saddle cobordism going in the opposite direction we draw

: → .

Remark 3.2.5. With = 2 we can write morphisms of CobR(n) as linear

combinations of cobordisms without genus and and decorated by several •’s.

Using = 0 we see that morphisms in CobR(n) are linear combinations of cobord-

isms without genus and up to one • on each connected component.

Also, we can use the Bar-Natan relations to split the cobordism into parts where each
connected component has exactly one boundary component, see also [Nao06]. In par-
ticular, cobordisms from an object T to itself are linear combinations of T × [0, 1] with
at most one dot on each component. Therefore, we draw these summands as T with

dots on the components of T . For example, for we draw .
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Notation 3.2.6. We can consider basis elements of TLn as objects of the category
CobR(n); this holds in particular for Ui ∈ TLn. To distinguish them, we write U i for
Ui seen as an object of CobR(n).

Also, most of the time we denote the tensor product A ⊗ B in CobR(n) simply by
juxtaposition AB.

Note that in this notation, the equalities (1.6) and (1.7) from the definition of the
Temperley-Lieb algebra hold now up to isomorphism: U i U j ∼= U j U i for |i− j| > 1 and
U i U i±1 U i ∼= U i.

Furthermore, using neckcutting, (1.5) has the counterpart U i U i ∼= U i 〈1〉 ⊕ U i 〈−1〉.

The following categorification result for the Temperley-Lieb algebra can be found in
[MN08, Theorem 5.2] and [CK12, Lemma 2.6]:

Theorem 3.2.7. The category ĈobR(n) categorifies TLn in the sense that we have an
isomorphism of Z[q, q−1]-algebras

K0

(
ĈobR(n)

)
∼= TLn

between the split Grothendieck ring and the Temperley-Lieb algebra.

The proof relies heavily on the fact that by using neck-cutting, every object in ĈobR(n)

is isomorphic to a direct sum of objects without circles, and of course, the isomorphisms
corresponding to the Temperley-Lieb relations from the previous remark.

3.3 The category Cup(n, k)

Our goal is to categorify V ⊗n as a TLn-module such that we can see the standard basis.
Having Proposition 2.1.7 in mind, it is conceivable that a first step should be a categor-
ification of êC(n, k) as a Z[q, q−1]-module. For this, analogously to the categorification
of TLn, we now define a new category, where objects are modelled on extended cup
diagrams (cf. Definition 1.2.10) with additional circles.

We fix n ≥ k ≥ 0. Let Ln,k be the sequence of coloured points

︸ ︷︷ ︸
k

︸ ︷︷ ︸
n

︸︷︷︸
n−k

from Definition 1.2.8.

Definition 3.3.1. Let R be a integral domain in which 2 is invertible. Let CupR(n, k)

be the category with
Objects: Compact 1-manifolds embedded in a rectangle with boundary Ln,k on the up-
per side of the rectangle, with the additional condition that no component contains two
right or two left green points.
Morphisms: A morphism f : A→ B is a formal R-linear combinations of (nicely embed-
ded) cobordisms with boundary A∪Ln,k× [0, 1]∪B regarded up to boundary-preserving
isotopies modulo the local Bar-Natan relations and the following additional relations:
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1) A connected component containing a dot and one green boundary line is equal to 0:

= 0

2) A connected component containing two left green or two right green boundary lines
is equal to 0,

where again we use the notation = 1
2 . The composition is given by the

bilinear extension of composing cobordisms and rescaling analogously to the composition
in CobR(n). Again, we define the degree of a cobordism by deg(f) = n − χ(f), which
turns CupR(n, k) into a graded pre-additive category.

Remark 3.3.2. Note that, since the Bar-Natan relations also hold in CupR(n, k), a
version of Remark 3.2.5 is true for CupR(n, k): Cobordisms in CupR(n, k) are linear
combinations of cobordisms without genus and and decorated by •’s such that every
connected component has exactly one boundary component. Furthermore, each con-
nected component is decorated by at most one •, and no •’s if it also contains green
boundary lines.

We also use the shorthand notations for cobordisms from the previous section.

Example 3.3.3. In CupR(2, 1) there are only two objects without circles up to iso-
morphisms:

and .

Possible morphisms between those are the identity morphisms, the two saddle morph-
isms and the degree 2 morphism resp.

f = : →

g = : →

h = : → .

Note that f ◦ g = h holds because of neck-cutting and Relation 1), whereas g ◦ h = 0

and h ◦ f = 0 also because of Relation 1). Furthermore, deg(f) = deg(g) = 1 and
deg(h) = 2.

In CupR(3, 1) there are 3 objects without circle up to isomorphism: ,

and . An example for an object with a circle is given by

. Moreover, the following morphisms f and g in CupR(3, 1) are interest-

ing, since the composition is zero because of Relation 2):

f = : →

g = : → .
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Note that Relation 2) does not imply that the following composition of f and g in
CupR(4, 2) is zero, which look similar locally:

f = : →

g = : → .

Here relation 2) cannot be applied since some of the boundary lines that were green in
the previous example are now black.

Notation 3.3.4. We can consider the extended cup diagrams C(λ) as objects of
CupR(n, k). When doing so we denote them by T(λ). Here T stands for tilting, see
Proposition 8.3.10. Note that every object of CupR(n, k) without circles is isomorphic
to some T(λ). To see this, we observe that differently wiggled cups are isomorphic, since
there are obvious degree 0 morphisms between them whose composition is the identity
because of isotopy: We have

: → : →

and now ◦ = id since is isotopic to . Analogously, the

other composition is the identity, too.

Lemma 3.2.4 also holds for CupR(n, k) instead of CobR(n), since only the Bar-Natan-
relations are used in the proof:

Lemma 3.3.5 (Delooping).
If an object S in CupR(n, k)Z contains a #, then it is isomorphic in Mat

(
CupR(n, k)Z

)
to S′ 〈1〉 ⊕ S′ 〈−1〉, where S′ is S with the # removed. The isomorphism is given by

∅〈1〉

∅〈−1〉

⊕
.

3.4 Alternative description for the morphisms using circle
diagrams

Before coming to our first categorification result, we need to know more about the
morphisms of our category CupR(n, k). For this, we want to give an alternative de-
scription using the function Fcol defined below.

Definition 3.4.1. Analogously to Definition 1.2.27 for C,D objects in CupR(n, k) we
define the circle diagram CD as the result of reflecting D at the horizontal axis and
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putting it on top of C. Again, a circle inside a circle diagram is called red if it contains
more then one right green point or more then one left green point. Other circles that
contain a green point are called green. Circles without green points are called black.
Note that now CD can also contain circles that arise from circles in C or D. These are
always black.

Example 3.4.2. For C = and D = the circle

diagram CD = has exactly one circle of every colour.

Definition 3.4.3. Every circle diagram is the disjoint union of coloured circles. Let
Or be a red, Og a green and Ob a black circle. We define Fcol : {circle diagrams} →
C-vector spaces via setting Fcol(Ob) = C[x]/(x2), Fcol(Og) = C, Fcol(Or) = 0 and then
tensoring together (over C), i.e. for a circle diagram O we have

Fcol(O) =

{(
C[x]/(x2)

)⊗b ⊗C C⊗g if r = 0,

0 if r > 0,

where r is the number of red circles in O, g the number of green and b the number
of black ones. Here, we keep the C⊗g on purpose to be better able to describe maps
between tensor factors later on.

Example 3.4.4. For C, D as in Example 3.4.2 we get Fcol(CD) = 0⊗C⊗C[x]/(x2) = 0.

Moreover, CC = , so Fcol(CC) =
(
C[x]/(x2)

)⊗3 ⊗ C⊗3.

Our goal now is to show HomCupC(n,k)(C,D) ∼= Fcol(DC) in Theorem 3.4.12. For
an intermediate step, we define categories CobR(n,m) analogously to CobR(n) (cf.
Definition 3.2.1). The only difference is that in CobR(n,m) the number of upper and
lower points is allowed to be different. We fix n upper and m lower points and call the
union of points P .

Definition 3.4.5. Let R be a integral domain in which 2 is invertible and let m + n

be even. Then CobR(n,m) is the category with
Objects: Compact 1-manifolds with boundary the n upper and m lower marked points
P in a rectangle, where the upper points are on the upper side of the rectangle and the
lower ones on the lower side.
Morphisms: A morphism f : A→ B is a formal R-linear combination of (nicely embed-
ded) cobordisms with boundary A∪ P × [0, 1]∪B regarded up to boundary-preserving
isotopies modulo the Bar-Natan relations (3.1). We make this category into a graded
one via

deg(f) =
m+ n

2
− χ(f). (3.2)

Note that in this case also a version of Remark 3.2.5 holds: Every morphism in
CobR(n,m) is a linear combination of cobordisms in which every connected component
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has boundary, the boundary of the component is connected itself and every component
contains at most one •.

Definition 3.4.6. The objects of CupR(n, k) reduce to objects in CobR(2n, 0) by for-
getting the colouring. Let I : ob

(
CupR(n, k)

)
→ ob

(
CobR(2n, 0)

)
be the colouring

forgetting map. Note that this does not extend to a functor in any obvious way.

However, the relations on morphisms in CupR(n, k) are the same as in CobR(2n, 0)

except for the two additional relations concerning green points. So we have a canonical
surjection

Π: HomCobR(2n,0)

(
I(C), I(D)

)
� HomCupR(n,k)(C,D)

given by quotiening out the extra relations.

In the following, we omit the base ring R in case R = C and simply denote Cob(n) :=

CobC(n), Cup(n, k) := CupC(n, k) and Cob(n,m) := CobC(n,m). From now on, we
restrict ourselves to this case, even though most of the results hold more generally for
any R.

Definition 3.4.7. Of course we can define a circle diagram CD for C,D objects in
Cob(2n, 0) as before and also apply the function Fcol. Since CD contains only black
circles we just write F(CD) in this setting. In particular, F(CD) =

(
C[x]/(x2)

)⊗b,
where b is the number of circles in CD.

For circle diagrams CD with C,D objects of Cup(n, k) we define πCD : F
(
I(C)I(D)

)
→

FCol(CD) by defining it on every tensor factor and then tensoring together:

πOb : C[x]/(x2)
id→ C[x]/(x2)

πOg : C[x]/(x2)→ C
1 7→ 1

x 7→ 0

πOr : C[x]/(x2)
0→ {0}

and πXtY = πX ⊗ πY

for Ob a black, Og a green, Or a red circle and X and Y arbitrary disjoint unions of
circles.

For objects we obviously have FCol(CD) = πCD

(
F
(
I(C)I(D)

))
.

For an alternative approach to this theory using coloured TQFT see Section A.1. The
forgetting colour map and the similarities of Π and πA will allow us to proof our desired
isomorphism first for the uncoloured case and then go over to the coloured setting.

The following lemma collects some easy topological sliding properties expressed in terms
of morphism spaces in Cob(2n, 0).

Lemma 3.4.8. a) We have isomorphisms of graded C-vector spaces

HomCob(2,0)(∪,∪) ∼= HomCob(0,0)(∅,#) 〈1〉 and

HomCob(2,0)(∪,∪) ∼= HomCob(0,0)(#,∅) 〈1〉 .



3.4. ALTERNATIVE DESCRIPTION FOR THE MORPHISMS 43

b) More generally, let C,D be objects of Cob(2n, 0). Then there are isomorphisms of
graded vector spaces

HomCob(2n,0)(C,D) ∼= HomCob(0,0)(∅, DC) 〈n〉 and

HomCob(2n,0)(C,D) ∼= HomCob(0,0)(CD,∅) 〈n〉 ,

where by DC we mean that we reflect C at the horizontal axis, put it on top of D
and identify the boundary points and analogously for CD.

Proof. a) The morphism space HomCob(2,0)(∪,∪) is 2-dimensional with basis given by
the identity morphism and the identity morphism with dot . On the other
hand, HomCob(0,0)(∅,#) is also 2-dimensional with basis and . The assignment

7→ and 7→ defines an isomorphism of vector spaces. Pictorially, the
cap gets slided to the other side:

? ? ?

?
? ?

Since deg
( )

= 0 and deg
( )

= 2 whereas deg
( )

= −1 and deg
( )

= 1,
the isomorphism is homogeneous of degree −1 and so the first isomorphism follows.
The second one is analogous.

b) Repeatedly applying sliding cups as in a) to basis elements in HomCob(2n,0)(C,D)

defines an isomorphism of vector spaces

HomCob(2n,0)(C,D) ∼= HomCob(0,0)(∅, DC).

Each sliding move does not change the Euler characteristic of the cobordism repres-
enting the basis vector, but the number of boundary points decreases by 2. Hence
by (3.2) the total change in degree is 1 per slide, thus n in total, since C has n cups.
If there is a circle, we can write it as ∩◦∪ and slide the cup and cap separately. The
degree does not change by sliding a circle this way. This gives the first isomorphism,
the second is analogous.

Recall that Cob(n) is a monoidal category (Cob(n),⊗, Id). We have the following basic
properties for homomorphism spaces:

Lemma 3.4.9. Let S, T ∈ Cob(n), then there is an isomorphism of graded vector spaces

HomCob(n)(S ⊗ U i, T ) ∼= HomCob(n)(S, T ⊗ U i).
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In particular, if U := U i1 ⊗ . . . ⊗ U ir , then HomCob(n)(U, T ) ∼= HomCob(n)(Id, T ⊗ U),
where U is obtained from U by reflection at a horizontal axis, i.e. U ∼= U ir ⊗ . . .⊗ U i1.

Proof. Since U i = ∪◦∩ we can apply the sliding move twice to obtain the isomorphism.
The Euler characteristic stays the same as well as the number of boundary points, thus
so does the degree.

Lemma 3.4.10. Let C,D be objects of Cob(2n, 0) such that DC has r circles. Then

HomCob(0,0)(∅, DC) ∼= F(DC) 〈−n〉

is an isomorphism of graded vector spaces, when we define the degree on F(DC) as
follows: Let f = x1 ⊗ . . . ⊗ xr be a basis element of F(DC), i.e. xi ∈ {1, x}. Define
deg(1) = 0, deg(x) = 2 and deg(f) = n− r +

∑r
i=1 deg(xi).

Proof. Let A = C[x]/(x2), i.e. F(DC) = A⊗r. By Remark 3.2.5, every morphism
f : ∅ → DC is a linear combination of nested and . We identify (with
deg( ) = −1) with 1 ∈ A and (with deg( ) = 1) with x ∈ A. Comparing the total
degrees gives the shift by −n.

Corollary 3.4.11. Let C,D be objects of Cob(2n, 0).Then there is an isomorphism of
graded vector spaces

HomCob(2n,0)(C,D) ∼= F(DC).

Proof. This follows directly from the previous lemma and Lemma 3.4.8 b).

Theorem 3.4.12. Let C,D be objects of Cup(n, k) such that DC has r circles. Then
there is an isomorphism of graded vector spaces

HomCup(n,k)(C,D) ∼= Fcol(DC)

with the degree in Fcol(DC) defined as follows: Let f = x1⊗ . . .⊗xr be a basis element
of Fcol(DC), i.e. xi ∈ {1, x}. Define deg(1) = 0, deg(x) = 2 and deg(f) = n − r +∑r

i=1 deg(xi).

Proof. Let

Φ: HomCob(2n,0)

(
I(C), I(D)

)
→ F

(
I(D)I(C)

)
be the isomorphism from Corollary 3.4.11. From Remark 3.4.6 we have the surjection

Π: HomCob(2n,0)

(
I(C), I(D)

)
� HomCup(n,k)(C,D).

Furthermore, from Definition 3.4.7 we have

πDC : F
(
I(D)I(C)

)
� FCol(DC)



3.4. ALTERNATIVE DESCRIPTION FOR THE MORPHISMS 45

with

FCol(CD) = πCD

(
F
(
I(C)I(D)

))
.

Let f ∈ HomCobR(2n,0)

(
I(C), I(D)

)
be a basis element and let y = Φ(f). Π(f) con-

taining a connected component with two left green lines or two right green lines is
equivalent to y having a tensor factor corresponding to a red circle, i.e. πDC(y) = 0.
Π(f) containing a connected component with a dot and one green boundary line is
equivalent to y having a tensor factor coming from an x ∈ C[x]/(x2) corresponding
to a green circle, which is send to zero by πDC . Thus, Φ induces an isomorphism
HomCup(n,k)(C,D) ∼= Fcol(DC).

Corollary 3.4.13. Let T(λ),T(µ) be objects of Cup(n, k) such that C(µ)C(λ) has r
circles. If there is no red circle in C(µ)C(λ), then there is a (up to scalar unique)
non-zero degree n − r cobordism in HomCup(n,k)

(
T(λ),T(µ)

)
. All other cobordisms in

HomCup(n,k)

(
T(λ),T(µ)

)
are of higher degree. If there is a red circle in C(µ)C(λ), then

HomCup(n,k)

(
T(λ),T(µ)

)
= 0.

Proof. The degree of the cobordism without •’s is deg(1⊗ . . .⊗ 1) = n+ r · (−1). The
rest follows from Theorem 3.4.12 above.

We also obtain the following result, which will be an important ingredient for our
categorification (Theorem 3.5.4):

Lemma 3.4.14. Let λ, µ ∈ Λ(n, k). Then

HomCup(n,k)

(
T(λ),T(µ)

)
0

=

{
C if λ = µ,

0 otherwise,

and HomCup(n,k)

(
T(λ),T(µ)

)
r

= 0 for all negative r.

Proof. Let r be the number of circles in C(µ)C(λ). By Lemma 1.2.29 we obtain r ≤ n

with equality only for λ = µ. When λ = µ there cannot be a red circle since every circle
runs through exactly two points and there are no arcs connecting two left green or two
right green points. Thus, by Corollary 3.4.13 the first assertion follows. We always have
n− r ≥ 0, hence the second assertion follows.

The morphisms from T(λ0) to itself are up to scalar only the identity:

Lemma 3.4.15.

HomCup(n,k)

(
T(λ0),T(λ0)

)
r
∼=

{
C if r = 0,

0 otherwise.

Proof. The first case is clear by Lemma 3.4.14. Since there are only green circles in
C(λ0)C(λ0), we have Fcol

(
C(λ0)C(λ0)

) ∼= C. Thus, by Theorem 3.4.12 we obtain
dim HomCup(n,k)

(
T(λ0),T(λ0)

)
= 1 and there cannot be more morphisms.
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3.5 First categorification

In this section we finally obtain our first categorification result. For that, we need to
consider the following subcategory.

Definition 3.5.1. Let CupT(n, k) be the full subcategory of Cup(n, k) with objects
{T(λ), λ ∈ Λ(n, k)}.

Remark 3.5.2. The category Mat
(

CupT(n, k)Z
)

is the skeleton of the category
Mat

(
Cup(n, k)Z

)
: By delooping (Lemma 3.3.5), every object of Mat

(
Cup(n, k)Z

)
is

isomorphic to some object of Mat
(

Cup(n, k)Z
)
without any circles, i.e. to some ob-

ject where no direct summand contains circles. But every object of Cup(n, k) without
a circle is isomorphic to some T(λ) (cf. Notation 3.3.4) and there is no isomorphism
T(λ) ∼= T(µ) for λ 6= µ by Lemma 3.4.14.

The following lemma is a slight generalisation of the main argument in the proof of
[MN08, Theorem 5.2]. For our categorification we want to apply it to Cup T(n, k).

Recall that we use the notations qX and X 〈1〉 instantaneously for X an object of some
BZ, B a graded pre-additive category. For r ∈ N[q, q−1], r =

∑
j ajq

j with aj ∈ N, we
write rX for

⊕
j q

jX ⊕ · · · ⊕ qjX︸ ︷︷ ︸
aj

.

Lemma 3.5.3. Let B be a graded pre-additive category. Let Xi, i = 1, . . . , r be rep-
resentatives of the isomorphism classes of objects. Assume that the grading has the
following additional properties:

• deg(f) ≥ 0 for all f : Xi → Xj, and

• if deg(f) = 0 for f : Xi → Xj, then i = j and f = c · id for c ∈ C.

If we now have an isomorphism ϕ :
⊕

i riXi
∼=
⊕

i r
′
iXi in Mat(BZ), where rλ, r′λ ∈

N[q, q−1] are multiplicities including degree shifts, then ri = r′i for all i.

Proof. To restrict to the case where we have only multiplicities in N we do some prelim-
inary considerations. Recall for f : qsiXi → qsjXj in Mat

(
BZ
)
we have deg(f)+sj−si =

0. Thus, from the assumptions we obtain deg(f) > 0 if si 6= sj . Furthermore, if si = sj

we only have deg(f) = 0 if i = j and in this case f = c · id. Consider qsXi
f−→ Y

g−→ qsXi,
where Y = qtXj with t 6= s or i 6= j. Then we have deg(f) > 0, deg(g) > 0 and thus
deg(g ◦ f) > 0. But this means that g ◦ f = 0, since deg(g ◦ f)− s+ s = 0.

Now assume ϕ :
⊕

α rαYα
∼=
⊕

α r
′
αYα where Yα = qsαXtα and Yα 6= Yβ for α 6= β and

rα, r
′
α ∈ N are multiplicities.

We now follow the proof of [MN08, Thm 5.2] even more closely: We fix any β and set

J =
⊕
α 6=β

rαYα, J ′ =
⊕
α 6=β

r′αYα.
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Then ϕ and ϕ−1 can be written as 2× 2-matrices

ϕ =

(
ϕ00 : rβYβ → r′βYβ ϕ01 : J → r′βYβ
ϕ10 : rβYβ → J ′ ϕ11 : J → J ′

)
,

ϕ−1 =

(
ϕ00 : r′βYβ → rβYβ ϕ01 : J ′ → rβYβ
ϕ10 : r′βYβ → J ϕ11 : J ′ → J

)
.

Calculating the composition ϕ−1ϕ we see that idrβYβ = ϕ00ϕ00 + ϕ01ϕ10. By the
considerations above, we know that ϕ01ϕ10 = 0 and ϕ00 and ϕ00 are matrices with
entries the identity up to scalars. Thus, we can write ϕ00 = M id and ϕ00 = N id where
M is a r′β×rβ-matrix and N a rβ×r′β-matrix with coefficients in C. We obtain NM = 1

and by repeating the arguments for ϕϕ−1 also MN = 1. So we get rβ = r′β .

The lemma gives us our first categorification, a categorification of êC(n, k) (cf. Defini-
tion 1.2.13).

Theorem 3.5.4. Ĉup(k, n) categorifies êC(n, k) as Z[q, q−1]-module, i.e.

K0

(
Ĉup(k, n)

)
∼= êC(n, k)

[T(λ)] 7→ C(λ).

Proof. By Remark 3.5.2 we know that every object of Ĉup(k, n) is isomorphic to some
sum of (shifted) diagrams without circles, i.e. to some sum of (shifted) T(λ)’s. Recall
that [T(λ) 〈l〉] = ql[T(λ)]. Therefore, every element in the Grothendieck group can be
written as some

∑
j aj [T(λ)] with aj ∈ Z[q, q−1].

To show that the [T(λ)] are a basis, we need to see that nothing else is identified:
Assume there is an isomorphism ϕ :

⊕
λ rλ T(λ) ∼=

⊕
λ r
′
λ T(λ), where rλ and r′λ are

multiplicities including degree shifts. Then, using Lemma 3.4.14, we can apply the
lemma above to CupT(n, k) and get rλ = r′λ.

Thus, the [T(λ)], λ ∈ Λ(n, k), are a Z[q, q−1] basis of the Grothendieck group and by
sending [T(λ)] to C(λ) we get the desired isomorphism.

Remark 3.5.5. Note that the lemma above can also be used to prove the categorific-
ation of TLn as in Theorem 3.2.7, see [MN08, Theorem 5.2].

Furthermore, in view of Proposition 2.1.7 we also have a vector space isomorphism

C(q)⊗Z[q,q−1] K0

(
Ĉup(k, n)

)
∼=
(
V ⊗n

)
2k−n ,

but since we have neither the TLn-action nor the standard basis categorified yet, we do
not call it a categorification of (V ⊗n)2k−n. Our next task is to categorify the TLn-action.





Chapter 4

Interplay of Cob(n) and Cup(n, k)

The aim of this chapter is to categorify êC(n, k) as TLn-module. To achieve this aim,
we introduce an action of Cob(n) on Cup(n, k). This action is then used to find out
more about morphisms in Cup(n, k). Finally, we consider functors from Cup(n, k) to
Cup(n− 2, k − 1) associated to elements in Cob(n− 2, n).

4.1 Categorified Temperley-Lieb algebra actions

Before defining the action of Cob(n) on Cup(n, k) we consider the general setting of a
monoidal category acting on another category.

Following [JK02] and [Hov99] we define:

Definition 4.1.1. Let A be a category and D = (D,⊗, I, a, l, r) a monoidal category.
A (right) action of D on A is a triple (., α, λ), where . : A × D → A is a functor,
αA,C,D : A.(C ⊗ D) → (A.C).D a natural isomorphism and λA : A.I → A a natural
isomorphism, such that the following diagrams commute:

A.
(
(C ⊗D)⊗ E

)
A.
(
C ⊗ (D ⊗ E)

)
(A.C).(D ⊗ E)

(
A.(C ⊗D)

)
.E

(
(A.C).

)
.E

idA .aC,D,E

αA,C⊗D,E

αA,C,D⊗E

αA.C,D,E

αA,C,D. idE

A.(I ⊗D) (A.I).D

A.D

αA,I,D

idA .lD λA. idD

A.(D ⊗ I) (A.D).I

A.D

αA,D,I

idA .rD λA.D

Remark 4.1.2. Let A be an additive category and let D be an additive monoidal
category. Assume D acts on A such that the action is compatible with the additive
structures. Then an action of D on A induces an action of K0(D) on K0(A).

We want to get an action of Cob(n) on Cup(n, k) analogously to Proposition 1.2.14.
But there is no 0 in Cup(n, k), so we need to add it artificially:

49
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Definition 4.1.3. Cup(n, k)0 is the category Cup(n, k) with an additional object 0.
More precisely ob

(
Cup(n, k)0

)
= ob

(
Cup(n, k)

)
∪ {0} and

HomCup(n,k)0(C,D) =

{
HomCup(n,k)(C,D) if C 6= 0 6= D,

{0} otherwise.

For f an object in ob
(

Cob(n)
)
and C ∈ ob

(
Cup(n, k)

)
let f̃ be obtained from f

by adding additional identities, one for each green point in C. For example, for C =

and f = we obtain f̃ = .

Let C.f = 0 if glueing f̃ on top of C is not (even after rescaling) an object in Cup(n, k).
Otherwise, let C.f be the object in Cup(n, k) obtained from this after appropriate
rescaling. Note that C.f = 0 if and only if the glueing of f̃ on top of C creates a
connected component containing two left green or two right green boundary points.

Example 4.1.4.

. = ∼=

. = ∼=

. = = 0

Similarly, for cobordisms α ∈ HomCob(n)(f, g) and F ∈ HomCup(n,k)(C,D) define F.α
by considering the cobordism M obtained by glueing α on top of F with additional
identities and rescaling, setting F.α = 0 if M is not a morphism in Cup(n, k).

Moreover, we set 0.f = 0 and 0.α = 0 for f ∈ ob
(

Cob(n)
)
and α ∈ mor

(
Cob(n)

)
.

Proposition 4.1.5. By extending the assignment (F, α) 7→ F.α from above linearly we
obtain an action of Cob(n) on Cup(n, k)0.

Proof. This follows directly from the definitions and the isotopy relations, since the
isotopy relations make morphisms, that compress parts of an object and elongate other
parts, into isomorphisms.

Remark 4.1.6. We have Ĉup(n, k) = ̂Cup(n, k)0 := Mat
((

Cup(n, k)0
)Z) since 0 gets

identified with the empty sum when applying Mat(−).

Corollary 4.1.7. The action from Proposition 4.1.5 extends to an action of Ĉob(n) on
Ĉup(n, k) compatible with the additive structures.
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Proof. The action of Cob(n) on Cup(n, k) is compatible with degrees since the Euler
characteristic is additive under glueing. Thus, the assertion follows directly from the
definitions and the remark above.

The equalities from Lemma 1.2.20 turn now into isomorphisms of objects in Cup(n, k)0

and Ĉup(n, k) respectively in the setup of Proposition 4.1.5 and Corollary 4.1.7:

Lemma 4.1.8. In Ĉup(n, k) we have

T(λ).U i ∼=



qT(λ)⊕ q−1 T(λ) if λ(i) = ∨, λ(i+ 1) = ∧,
T(λ.si) with λ.si > λ if λ(i) = ∧, λ(i+ 1) = ∨,
T(λ′) with λ′ < λ if λ(i) = λ(i+ 1) = ∨ and t(λ(i+ 1)) not green

or λ(i) = λ(i+ 1) = ∧ and s(λ(i)) not green,
0 otherwise,

where by t(λ(j)) we denote the target of the arc starting at λ(j) and by s(λ(j)) the
source of the arc ending at λ(j).

In particular, T(λ0).U i = 0 for i 6= k and T(λ0).Uk ∼= T(λ0sk).

Proof. The proof of the different cases follows step by step Lemma 1.2.20 replacing
equalities by isomorphisms.

The assertion for λ0 follows from the fact that in C(λ0) the black points 1, . . . , k are
connected to left green points and the black points k + 1, . . . , n are connected to right
green points. Thus, when λ(i) = λ(i+ 1) = ∨, then t(λ(i+ 1)) is green and also when
λ(i) = λ(i+ 1) = ∧, then s(λ(i)) is green.

Our next goal is to proof the analog of Corollary 1.2.19 in our situation.

Definition 4.1.9. Let A be a category with an action of a monoidal category D. Then
A is generated by x ∈ ob(A) if for every y ∈ ob(A) there exists f ∈ ob(D) such that
y ∼= x.f and for every F : a → b ∈ mor(A) there exists α : f → g ∈ mor(D) such that
F ′ = idx .α where F ′ : x.f ∼= a→ b ∼= x.g.

Theorem 4.1.10. Cup(n, k)0 is generated by T(λ0) under the action of Cob(n).

Before proving this, we have to consider how the morphism T(λ) → T(µ) of minimal
degree arises from a morphism in Cob(n).

Proposition 4.1.11. Let T(λ) and T(µ) be elements in Cup(n, k) and assume T(λ) ∼=
T(λ0).S and T(µ) ∼= T(λ0).T in Cup(n, k) with S, T ∈ Cob(n). Then there exists a
cobordism ϕS,T : S → T with deg(ϕS,T ) = n − l where l is the number of circles in
C(λ)C(µ). Moreover, if HomCup(n,k)

(
T(λ),T(µ)

)
6= 0, then (T(λ0)× [0, 1]).ϕS,T 6= 0.

Proof. Put C(λ)C(µ) = C(λ0)TSC(λ0) on one side of a cuboid and consider the cobor-
dism from ∅ to C(λ)C(µ) given by nested ’s. This cobordism, seen as a morphism of
Cob(0) has degree −l. Now we pull the boundary strands along the cuboid as follows:
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S̄

T

∅

S̄

T

S̄

T

The result describes a cobordism Id→ T⊗S which has now degree n−l, since the Euler
characteristic is the same as before moving the strands and we have now boundary points
in the degree formula. By Lemma 3.4.9 this corresponds to a cobordism ϕS,T : S → T

of same degree.
The neckcutting relation cannot be applied to the cobordism ϕS,T since it cannot be
applied to the cobordism from ∅ to C(λ)C(µ) it came from. Also, ϕS,T contains no
•’s. Thus, (T(λ0) × [0, 1]).ϕS,T can only be zero by the additional relation 2). But
under the isomorphism from Theorem 3.4.12 being 0 because of the additional re-
lation 2) corresponds to a red circle in C(λ0).TC(λ0).S = C(µ)C(λ), which means
HomCup(n,k)(T(λ),T(µ)) = 0 by Corollary 3.4.13.

Proof of Theorem 4.1.10. On the level of non-zero objects without circles this follows
from Lemma 4.1.8 by the arguments for Lemma 1.2.18. Moreover, since T(λ0).U i = 0

for i 6= k by definition, the object 0 can be generated from T(λ0). In case we have a
non-zero object C with circles, we first remove the circles to obtain C ′, find the element
T in Cob(n) such that C ′ = T(λ0).T by the start of the proof and then replace T by
T ′ where T ′ agrees with T except of circles (the difference of C and C ′) added.
On the level of morphisms we first consider the case where the source and target
do not contain circles, i.e. they are isomorphic to some T(λ) and T(µ), respectively.
Assume HomCup(n,k)

(
T(λ),T(µ)

)
6= 0 for T(λ) ∼= T(λ0).S, T(µ) ∼= T(λ0).T . Let

ϕS,T be the morphism from Proposition 4.1.11 and let ψS,T = (T(λ0) × [0, 1]).ϕS,T .
Then by Proposition 4.1.11 we obtain ψS,T 6= 0 and deg(ψS,T ) = n − r for r the
number of circles in C(µ)C(λ). Thus, by Corollary 3.4.13, ψS,T is the cobordism of
minimal degree in HomCup(n,k)

(
T(λ0).S,T(λ0).T

)
. By Remark 3.3.2 basis vectors in

HomCup(n,k)

(
T(λ0).S,T(λ0).T

)
not of minimal degree can be obtained by adding dots

to ψS,T which is the same as adding first dots to ϕS,T and then applying to T(λ0)×[0, 1].
If T(λ0).S and T(λ0).T contain circles let S′ be S without the circles and T ′ be T without
the circles. By Remark 3.3.2, a basis element ψ of HomCup(n,k)

(
T(λ0).S,T(λ0).T

)
is of

the form ψ′ t d t b, where ψ′ ∈ HomCup(n,k)

(
T(λ0).S′,T(λ0).T ′

)
, d is or on the

circles of S and b is or on the circles of T . Hence, ψ =
(

T(λ0)× [0, 1]
)
.(ϕ′tdt b),

where ϕ′ : S′ → T ′ is the cobordism constructed above satisfying ψ′ =
(

T(λ0) ×
[0, 1]

)
.ϕ′.

Corollary 4.1.12. Ĉup(n, k) is generated by T(λ0) as a Ĉob(n)-module.

Remark 4.1.13. On the level of Grothendieck groups, the action of Ĉob(n) on
Ĉup(n, k) matches the action of TLn on êC(n, k), so we have categorified êC(n, k)

as an TLn-module. Corollary 4.1.12 is in fact a categorified version of Corollary 1.2.19.
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4.2 More results on morphisms between tiltings

With the action of the U i and the tools from Section 3.4 we can now describe the
morphisms in Cup(n, k) more concretely. In particular, we can decide when there are
morphisms of low degrees from T(λ) to T(µ) when we know how λ and µ are related.

Proposition 4.2.1. For λ, µ ∈ Λ(n, k), there is an isomorphism of graded vector spaces

HomCup(n,k)0

(
T(λ).U i,T(µ)

) ∼= HomCup(n,k)0

(
T(λ),T(µ).U i

)
.

Proof. First assume T(λ).U i 6= 0 6= T(µ).U i. By Theorem 3.4.12, there are isomorph-
isms of graded vector spaces

HomCup(n,k)

(
T(λ).U i,T(µ)

) ∼= FCol(C(λ).UiC(µ)
)

HomCup(n,k)

(
T(λ),T(µ).U i

) ∼= FCol(C(λ)C(µ).Ui
)
.

But C(λ).UiC(µ) = C(λ)C(µ).Ui so we get the desired isomorphism. In case T(λ).U i =

0 = T(µ).U i, the assertion is clear. Now assume T(λ).U i = 0 and T(µ).U i 6= 0. In
this case, Ui connects two right green points or two left green points of C(λ). Thus,
there is a red circle in C(λ).UiC(µ) = C(λ)C(µ).Ui and the assertion follows from
Fcol

(
C(λ)C(µ).Ui

)
= 0. The remaining case follows analogously.

Remark 4.2.2. For T(λ).U i 6= 0 6= T(µ).U i, the isomorphism from the proposition
above is given by sliding the U i to the other side, analogously to Lemma 3.4.9. Even
more, ψ : T(λ).U i → T(µ) is isomorphic to some (T(λ0) × [0, 1]).ϕ for ϕ : S U i → T

and T(λ) ∼= T(λ0).S, T(µ) ∼= T(λ0).T by Theorem 4.1.10. When ϕ is send to ϕ′ under
the isomorphism of Lemma 3.4.9, then ψ is send to ψ′ ∼= (T(λ0) × [0, 1]).ϕ′ under the
isomorphism of Proposition 4.2.1.

Lemma 4.2.3. Let λ si−→ µ or µ si−→ λ. Then

HomCup(n,k)

(
T(λ),T(µ)

)
p

=

{
0 if p = 0,

C if p = 1.

Proof. First assume λ si−→ µ. Then the first case follows from Lemma 3.4.14. Since
T(µ) ∼= T(λ).U i, there is a degree 1 morphism id .Hi : T(λ). Id → T(λ).U i ∼= T(µ)

given by the saddle. This is non-zero, since none of the relations can be applied: There
is no neck to cut, no • and a single saddle cannot connect two left green or two right
green boundary lines when source and target are non-zero. By Corollary 3.4.13 it is
unique up to scalar.

For the case µ si−→ λ note that HomCup(n,k)

(
T(λ),T(µ)

) ∼= HomCup(n,k)

(
T(µ),T(λ)

)
,

since by Theorem 3.4.12 they are isomorphic to Fcol
(

T(µ)T(λ)
)
or Fcol

(
T(λ)T(µ)

)
,

respectively. But Fcol
(

T(µ)T(λ)
) ∼= Fcol(T(λ)T(µ)

)
since T(µ)T(λ) and T(λ)T(µ)

have the same number of black, green and red circles.
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Notation 4.2.4. We denote the saddle cobordism from Id → U i by Hi. This is mo-
tivated by the pictorial shorthand notation introduced in Chapter 3. The saddle
going in the other direction is denoted by Hi : U i → Id. If, as in the lemma above,
λ

si−→ µ, we also denote the saddle cobordism T(λ) ∼= T(λ). Id
id .Hi−−−→ T(λ).U i ∼= T(µ)

by Hi. Analogously, we write H i : T(µ) → T(λ) for the saddle cobordism induced by
H i : U i → Id.

Lemma 4.2.5. Let λ si−→ ν
sj−→ µ, then HomCup(n,k)

(
T(µ),T(λ)

)
p

= 0 for p = 0, 1 and

HomCup(n,k)

(
T(µ),T(λ)

)
2

=

{
C if there is no red circle in C(λ)C(µ),

0 otherwise.

Moreover, if there is no red circle, then the basis element of degree 2 is given by Hi ◦Hj

and if i 6= j ± 1, then there is no red circle.

Proof. Again, the assertion for p = 0 is true because of Lemma 3.4.14. By the
Lemma 4.2.3 and Corollary 3.4.13 we know that C(ν)C(λ) contains n− 1 circles. Since
C(µ) = C(ν).Uj we go from C(ν)C(λ) =

(
C(ν). Id

)
C(λ) to

(
C(ν).Uj

)
C(λ) = C(µ)C(λ)

by changing some to . By doing this, either two circles are connected to one or

one circle is split in two. So C(µ)C(λ) contains either n or n− 2 circles. But it cannot
contain n circles since we already know that there is no degree 0 map from T(µ) to
T(λ). Thus, by Corollary 3.4.13 there is no degree 1 map and there is (up to scalar)
a unique degree 2 map if and only if there are no red circles. Neckcutting and the
additional relation 1) cannot be applied to the degree 2 morphism Hi ◦ Hj , thus it can
only be zero by the additional relation 2). But this is equivalent to having a red circle.

It remains to check that there is no red circle if i 6= j ± 1. Since i 6= j ± 1, there
is no interaction between Ui and Uj . So red circles can only arise, when Ui or Uj
connects two arcs with left green points or two arcs with right green points in C(λ).
But C(λ).Ui = C(ν) 6= 0 and since i 6= j ± 1 we have λsisj = λsjsi, thus λ→ λsj and
C(λ).Uj = C(λsj) 6= 0. So neither Ui nor Uj can create a red circle.

Lemma 4.2.6. Let λ, µ ∈ Λ(n, k). Then there is a non-zero degree 1 map H : T(λ)→
T(µ) if and only if λ and µ differ only by changing not necessarily neighbouring ∧∨ to
∨∧ or vice versa.

Proof. First assume that in λ there is a (not necessarily neighbouring) ∨∧ which we
change to ∧∨ in µ. Because of the green dots in C(λ), there is a cup directly below
the one given by our ∨∧-pair (with one endpoint to the right and one endpoint to
the left of our given cup) and going to C(µ) just changes these two nested cups to two
neighbouring ones. In between, there is a saddle cobordism which is obviously non-zero.
Reading this cobordism the other way gives a cobordism for the other case.

Now assume the existence of the degree 1 map. Since by adding •’s we can only raise
the degree by 2, there is no degree 0 map. Thus, by Corollary 3.4.13, there are n − 1

circles in C(λ)C(µ). So there are n−2 circles containing 2 points and one with 4 points.
Let i1, i2, i3, i4 be the points on the 4-point circle from left to right. In one of C(λ) and



4.2. MORE RESULTS ON MORPHISMS BETWEEN TILTINGS 55

C(µ) we have that i1 is connected to i2 and i3 to i4 and in the other i1 to i4 and i2 to
i3. But by the definition of extended cup diagrams this just means that λ = µ.(i2, i3),
where (i2, i3) ∈ Sn is the transposition swapping i2 with i3.

The following lemma tells us conditions for factorising the degree 2 map given by two
saddles from T(µ) to T(λ) over a special degree 1 map.

Proposition 4.2.7. Let λ si−→ ν
sj−→ µ and let H : T(τ) → T(λ) be a non-zero degree

1 map, where τ < λ. Assume there is a non-zero degree 1 map H′ from T(µ) to T(τ).
Then j = i± 1.

Proof. By Lemma 4.1.8 we have T(µ) ∼= T(λ).U i U j , hence C(µ)C(τ) = C(λ)UiUjC(τ).
The existence of H′ implies that C(λ)UiUjC(τ) must contain (n − 1) circles of which
one passes through four points and the others through 2 points each. Analogously,
the existence of H implies that C(λ)C(τ) = C(λ) Id Id C(τ) has (n − 1) circles. Hence
passing from C(λ)UiUjC(τ) to C(λ) Id Id C(τ) does not change the number of circles.

Now assume i 6= j ± 1. Then, λ(i) = ∧ = λ(j) and λ(i + 1) = ∨ = λ(j + 1). Since
τ < λ and there is a degree 1 map between T(τ) and T(λ), by Lemma 4.2.6 we are in
the situation that there are indices l1 < l2 such that λ = τ except for λ(l1) = ∨ = τ(l2),
λ(l2) = ∧ = τ(l1) and l1 and l2 are connected in C(λ). By the same argument as in
the proof of Lemma 4.2.6 there is a 4 point circle in C(λ)C(τ) containing the points
l1, l2. Let l′1 < l′2 be the other two points on this circle. Note that l′1 < l1 < l2 < l′2,
λ(l′1) = τ(l′1) = ∨ and λ(l′2) = τ(l′2) = ∧ holds by the definition of extended cup
diagrams.

Because of this and since λ(i) = ∧, λ(i+1) = ∨, only one of i, i+1 can be in {l′1, l′2, l1, l2};
the same holds for j, j + 1. Consequently, the other one is part of a 2-point circle in
C(λ)C(τ). Moreover, i, i+ 1 cannot lie on the same 2-point-circle; the same is true for
j, j + 1.

Now we show that when passing from C(λ) Id Id C(τ) to C(λ)UiUjC(τ) the number of
circles does not stay the same. Changing Id to Ul (for l = i or l = j) either connects
two circles to one or splits one circle into two. The change Id to Ul can only turn one
circle into two if the points l, l + 1 lie on the same circle. We know that at the start,
i, i + 1 cannot lie on the same circle and the same holds for j, j + 1. We show that
i, i + 1, j, j + 1 lie on at least 3 different circles. Then, even after connecting two of
them, the remaining two still lie on different circles. Obviously, there cannot be a single
circle containing all i, i+1, j, j+1. Also, they cannot all lie on two 2-point circles, since
considering the up-down-sequence λ those cross the horizontal line in ∨∧∨∧ or ∨∨∧∧
which does not contain two different subsequences of ∧∨. We now consider a 2-point
circle and the 4-point circle. We consider merges of the sequences ∨∧ of the 2-point
circle and ∨∨∧∧ of the 4-point circle with the condition that the ∨∧ of the 2-point
circle are next to each other since otherwise the lines cross. All the possibilities are

∨∧∨∨∧∧,∨∨∧∨∧∧,∨∨∨∧∧∧,∨∨∧∨∧∧,∨∨∧∧∨∧

and we see that there are never two distinct subsequences of ∧∨.
Therefore, when applying first Ui and then Uj , the number of circles decreases both
times, which is a contradiction. So i 6= j ± 1 is not possible.
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Lemma 4.2.8. For X,Y, Z arbitrary objects of Cob(n), the following diagrams com-
mute in Cob(n)

a)
X U i Y IdZ X U i Y U j Z

X IdY IdZ X IdY U j Z

idX idUi
idY Hj idZ

idX Hi idY idId idZ idX Hi idY idUj
idZ

idX idId idY Hj idZ

b)
X U i Y U j Z X U i Y IdZ

XIdY U j Z XIdY IdZ

idX idUi
idY Hj idZ

idX Hi idY idUj
idZ idX Hi idY idId idZ

idX idId idY Hj idZ

where Hl : Id→ U l and Hl : U l → Id are the saddles.

Proof. In a) both compositions are equal to idX Hi idY Hj idZ and in b) both composi-
tions are equal to idX Hi idY Hj idZ .

Remark 4.2.9. From the lemma above we obtain that when T(λ).U j = 0, then Hj ◦
Hi : T(λ).U i U j → T(λ) is zero. This is true since it factorises over 0. For example, for
n = 3 and k = 1 we obtain that H2 ◦ H1 : T(λ0).U1 U2 → T(λ0).U1 → T(λ0) is zero,
since T(λ0).U2 = 0 by Lemma 4.1.8.

More general, if T(λ0).XY U j Z = 0 for some objects X,Y, Z of Cob(n), then the cobor-
dism Hi ◦Hj : T(λ0).X U i Y U j Z → T(λ0).XY Z equals zero, even if T(λ0).X U i Y Z 6=
0.

4.3 Reducing the number of boundary points

The reduction of the number of boundary points introduced in this section will be
helpful later when we want to use induction on the number of boundary points.

Let L+
n,k be Ln,k with an additional green point on the right and an additional

green point on the left. For example L4,2 = whereas L+
4,2 =

.

Let Cup(n, k)+ be the category defined as Cup(n, k) but with boundary points L+
n,k

instead of Ln,k and the additional condition that in all objects the outermost left and
the outermost right green point are connected.

For example, is an object of Cup+(4, 2).

Note that because of the neckcutting relation and the additional relation 1), every
morphism in Cup(n, k)+ consists of linear combinations of morphisms f t d× [0, 1] for
d the arc connecting the two outermost green points and f a morphism of Cup(n, k).
It follows that the functor from Cup(n, k)→ Cup(n, k)+ given by adding the arc d on
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objects and d× [0, 1] on morphisms yields an equivalence of categories. On objects, the
inverse is given by just deleting the outer arc.

Let Cup(n, k)0
+ the category Cup(n, k)+ with an extra object 0 as in Definition 4.1.3.

An object A ∈ Cob(n− 2, n) induces a functor

PA : Cup(n, k)→ Cup(n− 2, k − 1)0
+

C 7→ C.A

f 7→ f.(A× [0, 1]),

where C.A is putting A together with identities on the green points on top of C and
rescaling if this gives an element of Cup(n−2, k−1)+ and 0 otherwise and f.(A× [0, 1])

is putting (A× [0, 1]) on top of f and rescaling if this is a morphism of Cup(n−2, k−1)

and 0 otherwise. Of course we can extend this functor to Cup(n, k)0 in the obvious way.
Note that every T(λ) ∈ Cup(n, k) with λ 6= λ0 has an arc connecting the two outermost
green points. Considering T(λ0).A we see that either an arc connecting the outermost
green points or an arc connecting two right green or two left green points is created.
Thus, when C.A = 0, then the addition of C connects two left green points or two right
green points, since elements of Cup(n− 2, k − 1)+ can have circles everywhere,

Example 4.3.1.

. =

∼=

. = = 0

. =

∼=
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The equivalence Cup(n − 2, k − 1)+
∼= Cup(n − 2, k − 1) extends to an equivalence

Cup(n− 2, k − 1)0
+
∼= Cup(n− 2, k − 1)0. Using this we consider PA as a functor from

Cup(n, k)0 → Cup(n− 2, k − 1)0.

Mostly, we will use a special PA for A = ∩i :=
i

and write −.∩i instead of

P∩i(−).

Lemma 4.3.2. For λn,k0 ∈ Λ(n, k) we have

T(λn,k0 ).∩k ∼= T(λn−2,k−1
0 )

T(λn,k0 ).∩i = 0 for i 6= k.

Proof. If i 6= k we connect either two left green points or two right green points. For
i = k we have

T(λn,k0 ).∩k = ∼=

7→ = T(λn−2,k−1
0 ).

Of course, we can find similar statements for λ 6= λ0 along the lines of Lemma 4.1.8 but
we omit this, since we will not need it later on.

Lemma 4.3.3. For C,D ∈ Cup(n, k), there exists an isomorphism of graded vector
spaces

HomCup(n,k)0(C,D.U i) ∼= HomCup(n−2,k−1)0(C.∩i, D.∩i). (4.1)

Proof. Assume first that D.U i, C.∩i and D.∩i are all not zero. Then by Theorem 3.4.12

HomCup(n,k)0(C,D.U i) = HomCup(n,k)(C,D.U i) ∼= FCol(D.U iC)

HomCup(n−2,k−1)0(C.∩i, D.∩i) = HomCup(n−2,k−1)(C.∩i, D.∩i) ∼= FCol(D. ∩i C∩i).

But D.U iC and D.∩i C∩i agree except for the green outer circle that C.∩iD∩i lacks.
Thus,

FCol
(
CD.U i

) ∼= FCol(C. ∩i D∩i)⊗ C ∼= FCol(C. ∩i D∩i).
The degrees also agree, since we go from n− r to (n− 1)− (r − 1) for r the number of
circles in CD.U i and deg(1) = 0. Hence, the claim holds in this case.

We have D.∩i = 0 if and only if D.U i = 0, since this only depends on which arcs are
connected by the lower cap of U i. Thus, we are also done in this case. If C.∩i = 0

then we are done by the analogous argument since we know HomCup(n,k)0(C,D.U i) ∼=
HomCup(n,k)0(C.U i, D) by Proposition 4.2.1.
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Remark 4.3.4. For C.∩i 6= 0 6= D.∩i, there is in fact a natural and canonical iso-
morphism realising (the inverse of) (4.1) given by sliding the ∪ to the other side or
alternatively by the composition

HomCup(n−2,k−1)(C.∩i, D.∩i)→ HomCup(n,k)(C.U i, D.U i)→ HomCup(n,k)(C,D.U i)
g 7→ g̃ f 7→ f ◦ s,

where g̃ is obtained from g by adding the identity cobordism of the added cup and s is
the saddle cobordism.





Chapter 5

Homological algebra

In this chapter, we summarise the homological algebra that will be needed in the follow-
ing chapters. As in the first chapter, some statements are exactly what is used later and
their purpose might not be clear now. We start by recalling some standard definitions
and statements about homotopy equivalences between complexes. After that, we apply
the theory of spectral sequences to get Corollary 5.2.5 which will be used extensively
later on.

5.1 Homotopy equivalences

We start by recalling some standard constructions to fix the notations and sign conven-
tions.

Let A be an additive category.

Let (A, d) = · · · → Ai+1
di+1−−−→ Ai

di−→ Ai−1 → . . . be a chain complex with entries in A.
The shifted complex A[p] is defined via A[p]i = Ai−p with differential (−1)pd.

Let Ch(A) be the category of chain complexes and Chb(A) the category of bounded
chain complexes. We use ' to denote homotopy equivalences of chain complexes. Let
K(A) be the homotopy category of chain complexes and Kb(A) the homotopy category
of bounded chain complexes.

Let (A, dA), (B, dB) be chain complexes and f : A → B a chain morphism. Then
Cone(f) = A[1] ⊕ B is the complex with Cone(f)i = Ai−1 ⊕ Bi and differential
di
(
(ai−1, bi)

)
=
(
− dA(ai−1), fi−1(ai−1) + dB(bi)

)
. If X is another chain complex

and g : Cone(f) → X is a chain map, then g|B : B → X is also a chain map and
g|A : A[1]→ X is what we call a multi-map, i.e. it does not commute with the differen-
tials.

Recall (see e.g. [Wei94]) that K(A) is a triangulated category with distinguished tri-
angles given by those isomorphic to triangles of the form

A
f−→ B

i−→ Cone(f)
π−→ A[1].

If D is an additive monoidal category, then for (X, dX), (Y, dY ) ∈ Ch(D) the tensor
product X ⊗ Y is the complex defined by (X ⊗ Y )l =

⊕
i+j=lXi ⊗ Yj with differential

61
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d given by

d|Xi⊗Yj =
(
dXi ⊗ idYj , (−1)i idXi ⊗dYj

)
: Xi ⊗ Yj → Xi−1 ⊗ Yj ⊕Xi ⊗ Yj−1.

When D acts on A, i.e. the functor . : A×D → A from Definition 4.1.1 is compatible
with the additive structures, for (A, dA) ∈ Ch(A) and (X, dX) ∈ Ch(D), we define the
action A.X as the complex with (A.X)n =

⊕
i+j=nAi.Xj and differential d given by

d|Ai.Xj =
(
dAi . idXj , (−1)i idAi .d

X
j

)
: Ai.Xj → Ai−1.Xj ⊕Ai.Xj−1.

Recall that the tensor product of homotopic complexes results in homotopic complexes.
Of course, the same is true for the action.

In the following we need a notion of some complex being part of another that is weaker
than being a subcomplex. We say that A is a partcomplex of B ∈ Ch(A) if every
Ai is a summand of Bi and every differential in A appears also in B. For example,

A2
d−→ A1 → 0 is a partcomplex of A2

(d,d′)−−−→ A1 ⊕ A′1
c−→ A0. Also, if A → B is a chain

map, then A[1] is a partcomplex of Cone(A → B). In particular, every subcomplex is
also a partcomplex.

Lemma 5.1.1. Let (C, dC) and (D, dD) be chain complexes in K(A).

a) Let A be a partcomplex of C with HomK(A)(A,D) = 0. Assume we have Ci =

Ai⊕Bi for all i. Furthermore, assume there is some f ∈ HomK(A)(C,D) satisfying
fi−1 ◦ dC |Ai→Bi−1 = 0. Then there is some f ′ with f ' f ′ and f ′|A = 0. If moreover
dC |Bi→Ai−1 = 0, then f ′i |B = fi|B.

b) Let A be a partcomplex of C with HomK(A)(D,A) = 0. Assume we have Ci =

Ai ⊕ Bi for all i. Furthermore, assume there is f ∈ HomK(A)(D,C) satisfying
dC |Bi→Ai−1 ◦ fi = 0. Then there is some f ′ with f ' f ′ and f ′|A = 0. If moreover
dC |Ai+1→Bi = 0, then f ′i |B = fi|B.

Proof. a) Having fi−1 ◦ dC |Ai→Bi−1 = 0 yields that f |A is a morphism of chain com-
plexes, so we have a homotopy h : A[1] → A with f |A = dDh + hdA. Now
h′ = h ⊕ 0: C[1] → C gives a homotopy between f and f ′ = f − (dDh′ + h′dC)

since f − f ′ = dDh′ + h′dC . But

f ′|A = f |A − (dDh+ hdA + 0) = 0

as desired. Now assume in addition dC |Bi→Ai−1 = 0. Then

f ′i |B = fi|B − (dD0 + hdC |Bi→Ai−1 + 0dC |Bi→Bi−1) = fi|B.

b) This follows analogously.

Lemma 5.1.2 (Gaussian Elimination). Assume we are given a complex X in Ch(A)

which looks locally like

· · · → A→ B ⊕ C → D ⊕ E → F → . . . (5.1)
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with differentials

B D

. . . A C E F . . .

ϕ

β

α

⊕

δ

γ

ε

⊕ .

Assume ϕ : B → D is an isomorphism. Then X is homotopy equivalent to a complex
X ′ which agrees with X except that the part (5.1) is changed to

. . . A C E F . . . .
α δ − β ◦ ϕ−1 ◦ γ ε

A homotopy equivalence is given as follows

B D

. . . A C E F . . .

. . . A C E F . . .

ϕ

β

−βϕ−1

ϕ−1

id

α

id

⊕

δ

γ

id

ε

⊕

id

α

−ϕ−1γ

δ′ ε

,

where δ′ := δ−β ◦ϕ−1 ◦γ and the vertical maps define the morphisms of complexes and
the red map going from right to left defines the homotopy. All maps that are not drawn
are zero.

The passage from X to X ′ is called Gaussian elimination with respect to ϕ.

Proof. Explicit calculation, see also [BN07, Lemma 4.2].

Corollary 5.1.3. Let X,Y, Z, U in Chb(A) be complexes. Let

F =

(
ϕ γ

β δ

)
: X ⊕ Y → Z ⊕ U

(i.e. ϕ : X → Z, γ : Y → Z, β : X → U and δ : Y → U)

be a chain morphism with ϕi : Xi → Zi an isomorphism for all i and set δ′ = δ − β ◦
ϕ−1 ◦ γ : Y → U . Then

Cone(X ⊕ Y F−→ Z ⊕ U) ' Cone(Y
δ′−→ U).

The morphisms in either direction are given by

(
0 id 0 0

0 0 −βi+1 ◦ ϕ−1
i+1 id

)
: Xi ⊕ Yi ⊕ Zi+1 ⊕ Ui+1

f

�
g
Yi ⊕ Ui+1 :


ϕ−1
i ◦ γi 0

id 0

0 0

0 id

 ,
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the homotopy for the composition f ◦ g is trivial and for g ◦ f given by
0 0 ϕ−1

i 0

0 0 0 0

0 0 0 0

0 0 0 0

 : Xi−1 ⊕ Yi−1 ⊕ Zi ⊕ Ui → Xi ⊕ Yi ⊕ Zi+1 ⊕ Ui+1.

Proof. We repeatedly apply Gaussian elimination to ϕi, starting with the biggest i
which exists, since the complexes are bounded.

Corollary 5.1.4. Assume we have chain morphisms f : A → B and β : C → A of
bounded complexes. Then

(
idC 0 0

0 0 idA 0

)
: Cone

(
Cone(C

f◦β−−→ B)

(
β 0

0 id

)
−−−−−→ Cone(A

f−→ B)

)
→ Cone(β)[1]

is a homotopy equivalence with inverse


id 0

0 f

0 id

0 0

 and homotopy


0 0 0 0

0 0 0 id

0 0 0 0

0 0 0 0

 : Ci−1 ⊕Bi ⊕Ai ⊕Bi+1 → Ci ⊕Bi+1 ⊕Ai+1 ⊕Bi+2.

Proof. We repeatedly apply Gaussian Elimination with respect to id : Br → Br starting
with the smallest r.

Lemma 5.1.5. Let f : A→ B be a morphism of complexes and assume β : C
'−→ A and

α : B
'−→ D are homotopy equivalences. Then Cone(f) ' Cone(f ′) where f ′ = αfβ.

Proof. See e.g. [Ros11a, Prop.3.3].

Later on, we will need this statement more explicitly for the special case where α = id:

Lemma 5.1.6. Let f : A→ B be a morphism of complexes and β : C → A a homotopy
equivalence with inverse β′ : A→ C via homotopy maps H1 : C[1]→ C and H2 : A[1]→
A. Then the following maps are homotopy inverses(

β 0

0 id

)
: Cone(C

f◦β−−→ B) � Cone(A
f−→ B) :

(
β′ 0

−f ◦H2 id

)
.

Proof. By [Ros11b, Lemma 3.1] and the explicit formulas from its proof (with slightly
other signs due to our different sign convention for cones) we know that Cone(β) is
homotopic to zero via the homotopy

H̃ =

(
H1 + β′H2β − β′βH2 β′

−(H2H2β −H2βH1) −H2

)
: Cone(β)→ Cone(β)[1].
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Thus, Cone(β)[1] is also homotopic to zero via H̃. Composing with the the explicit

maps from Corollary 5.1.4 we obtain that Cone

( (
β 0

0 id

) )
is homotopic to zero via

H =


0 0 0 0

0 0 0 id

0 0 0 0

0 0 0 0

+


id 0

0 f

0 id

0 0

 H̃

(
idC 0 0 0

0 0 idA 0

)
.

The explicit formulas from the proof of [Ros11b, Lemma 3.1] now say that our desired

homotopy inverse of
(
β 0

0 id

)
is H12 : Cone(A→ B)→ Cone(C → B)[1]. We calculate

H =


H1 + β′H2β − β′βH1 0 β′ 0

−f(H2H2β −H2βH1) 0 −fH2 id

−(H2H2β −H2βH1) 0 −H2 0

0 0 0 0


and obtain H12 =

(
β′ 0

−fH2 id

)
.

5.2 Spectral sequences

We start by recalling some facts about total complexes that for example can be found
in [HS97]. We then use these together with the general theory of spectral sequences.
For an introduction to spectral sequences we refer to [Wei94].

Let B = (Bp,q) be a double complex with the two differentials d′ : Bp,q → Bp−1,q and
d′′ : Bp,q → Bp,q−1. Instead of the usual total complex which is defined using direct
sums we consider here the (second) total chain complex TotΠB defined by(

TotΠB
)
i

=
∏
p+q=i

Bp,q

with differential d = d′ + d′′.

Definition 5.2.1. Let (C, dC) and (D, dD) be chain complexes in Ch(A). The double
hom complex B is given by Bp,q = HomA(C−p, Dq) with differentials

d′(f) = (−1)p+q+1f ◦ dC : C−p+1 → Dq and

d′′(f) = dD ◦ f : C−p → Dq−1

for f ∈ Bp,q.

Then the total complex Hom(C,D) := TotΠB is the chain complex of homomorph-
ism from C to D. For f = {fp,q : C−p → Dq} the differential is given by (df)p,q =

(−1)p+qfp+1,q ◦ dC + dD ◦ fp,q+1.
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Lemma 5.2.2. Let C = (· · · → C1 → C0 → 0) and D = (· · · → D1 → D0 → 0) be two
chain complexes. Then there is a spectral sequence with E1

p,q = Hq

(
Hom(C−p, D), d′′

)
which weakly converges to Hp+q

(
Hom(C,D)

)
. If the spectral sequence collapses, then

it converges.

Proof. Consider the double hom complex Bp,q = Hom(C−p, Dq). By assumption, we
have Bp,q = 0 except for p ≤ 0 and q ≥ 0. So by [Wei94, 5.6.1] the conditions for
[Wei94, 5.5.10] are satisfied and the spectral sequence associated to the double complex
has E1

p,q = Hq(Bp,∗, d
′′) and weakly converges to Hp+q(TotΠB) = Hp+q

(
Hom(C,D)

)
.

If the sequence collapses, it is in particular bounded above, so we get convergence by
[Wei94, 5.5.10].

Corollary 5.2.3. Let C = (· · · → C1 → C0) and D = (· · · → D1 → D0) be two chain
complexes. Assume Hl

(
Hom(Ci, D)

)
= 0 for all i and all l 6= 0. Then the following

holds:

a) The spectral sequence from Lemma 5.2.2 with E1
p,q = Hq

(
Hom(C−p, D), d′′

)
col-

lapses at E2 at the latest and converges to Hp+q

(
Hom(C,D)

)
.

b) H0

(
Hom(C,D)

) ∼= ker
(
H0

(
Hom(C0, D)

) d̄−→ H0

(
Hom(C1, D)

))
, where d̄ is the

map induced by precomposition with dC .

c) If H0

(
Hom(C1, D)

)
= 0, then H0

(
Hom(C,D)

) ∼= H0

(
Hom(C0, D)

)
.

d) If H0

(
Hom(C0, D)

)
= 0, then H0

(
Hom(C,D)

)
= 0.

e) If H0

(
Hom(Ci, D)

)
= 0 for all i 6= j, then H−j

(
Hom(C,D)

) ∼= H0

(
Hom(Cj , D)

)
and Hl

(
Hom(C,D)

)
= 0 for all l 6= −j.

f) Assume that the maps induced by precomposition with dC

H0

(
Hom(Ci, D)

)
−→ H0

(
Hom(Ci+1, D)

)
are zero for all i. Then H−j

(
Hom(C,D)

) ∼= H0

(
Hom(Cj , D)

)
for all j.

Proof. a) By assumption, E1
p,q = 0 for q 6= 0, so E1 is concentrated in a single row.

p

q

H0

(
Hom(C0, D)

)
0H0

(
Hom(C1, D)

)
H0

(
Hom(C2, D)

)
. . .

000

000

The differentials of E1 go horizontally, so E2 is also concentrated in a single row
and therefore the spectral sequences collapses at Er for r ≤ 2. Thus, the assertion
follows from Lemma 5.2.2.
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b) The differentials at the E1-page are induced by the differential of the double complex
d′ = (−1)p+q+1 ◦ dC . Thus,

H0

(
Hom(C,D)

) ∼= E2
0,0
∼= H

(
0→ H0

(
Hom(C0, D)

) d′−→ H0

(
Hom(C1, D)

))
= ker

(
H0

(
Hom(C0, D)

) d′−→ H0

(
Hom(C1, D)

))
.

We can ignore the sign, since it does not change the kernel.

c) This follows from b) since in this case the kernel is just H0(Hom(C0, D)).

d) Again, this follows from b) since the kernel is 0.

e) With the additional assumptions, the spectral sequence even collapses at E1 and
only E1

−j,0 = H0

(
Hom(Cj , D)

)
is non-zero. The assertion follows.

f) If − ◦ dC induces the 0-map, then the spectral sequence collapses at E1 and
H−j

(
Hom(C,D)

) ∼= E1
−j,0
∼= H0

(
Hom(Cj , D)

)
.

Remark 5.2.4. For complexes C,D ∈ Ch(A), we have

Hi

(
Hom(C,D)

)
= HomK(A)

(
C,D[−i]

)
Indeed, we defined Hom(C,D) via Hom(C,D)i =

∏
p HomA(C−p, Di−p) with differ-

ential given by (df)p,q = (−1)p+qfp+1,q ◦ dC + dD ◦ fp,q+1 for f = {fp,q : C−p → Dq}. So
if we label the maps in Hom(C−p, Di−p) by fp,i instead of fp,i−p we get the following
formula for the differential:

(df)p,i−1 = (−1)i−1fp+1,i ◦ dC + dD ◦ fp,i.

Thus, for d = di : Hom(C,D)i → Hom(C,D)i−1 we have

ker di =
{
{fp,i}p

∣∣ dD ◦ fp,i = (−1)ifp+1,i ◦ dC
}

= HomCh(A)(C,D[−i])

and

im di+1 =
{
{fp,i}p

∣∣∣∃hi+1 = {hp,i+1}p : fp,i = (dhi+1)p,i = (−1)ihp+1,i+1 ◦ dC + dD ◦ hp,i+1

}
=
{
f = {fp,i}p ∈ HomCh(A)(C,D[−i])

∣∣ f ' 0
}
.

A direct consequence of this remark and the previous corollary is:

Corollary 5.2.5. Let C = (· · · → C1 → C0 → 0) and D = (· · · → D1 → D0 → 0) be
two chain complexes. Assume HomK(A)(Ci, D[l]) = 0 for all i and all l 6= 0, where Ci
is in homological degree 0. Then the following holds:

a) If HomK(A)(C1, D) = 0, then HomK(A)(C,D) ∼= HomK(A)(C0, D).

b) If HomK(A)(C0, D) = 0, then HomK(A)(C,D) = 0.
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c) If HomK(A)(Ci, D) = 0 for all i 6= j, then HomK(A)(C,D[j]) ∼= HomK(A)(Cj , D)

and HomK(A)(C,D[l]) = 0 for all l 6= j.

d) In general, HomK(A)(C,D) ∼= ker
(

HomK(A)(C0, D)
−◦dC−−−→ HomK(A)(C1, D)

)
.

e) Assume that the maps HomK(A)(Ci, D)
−◦dC−−−→ HomK(A)(Ci+1, D) are zero for all i.

Then HomK(A)(C,D[j]) ∼= HomK(A)(Cj , D) for all j.



Chapter 6

Exceptional Objects

In this chapter we inductively construct chain complexes V∗(λ) which will turn out to
form an exceptional sequence in Kb

(
Ĉup(n, k)

)
. In the first section, after the definition,

we give an alternative explicit description of the V∗(λ) by cube-complexes and consider
some immediate properties. After that we study V∗(λ).∩i as a means to show that there
are no maps from T(λ0) to (shifted) V∗(λ)’s. In the last section, we consider maps from
shifted T(λ)’s to V∗(µ) in order to investigate maps between the V∗(µ) and to finally
show that they form a graded exceptional sequence. The V∗(µ) will be an important
ingredient for categorifying the standard basis of V ⊗n in the next chapter.

6.1 Construction of the exceptional objects V∗(λ)

Let K = Kb
(
Ĉup(n, k)

)
be the homotopy category of bounded complexes with entries

in Ĉup(n, k). Recall that we use A 〈i〉 and qiA synonymously.

Definition 6.1.1 (Construction of V∗(λ)).
We inductively construct objects V∗(λ) inK. Let V∗(λ0) = T(λ0) in homological degree
0. Now assume V∗(λ) is already defined. For λ si−→ µ we define

V∗(µ) = Cone
(
qV∗(λ)

Hi→ V∗(λ).U i
)
,

where Hi = id .Hi : qV∗(λ) ∼= qV∗(λ). Id→ V∗(λ).U i given by the saddle cobordism in
every homological degree.

Example 6.1.2. For n = 3, k = 1 we have:

V∗(∧∨∨) = T(λ0) =

V∗(∨∧∨) ∼= q −−−−−−→

V∗(∨∨∧) ∼= q2
−
−−−−−−−→ q −−−−−−→

69
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For V∗(∨∨∧) note that V∗(∨∧∨).U2
∼= 0→ , thus

V∗(∨∨∧) = Cone
(
qV∗(∨∧∨)→ V∗(∨∧∨).U2

)
∼= Cone

(
qV∗(∨∧∨)→

)
is the complex depicted above.

Definition 6.1.3. Consider the r-dimensional cube Rr (cf. [BN05, 2.3]) whose vertices
are all the r-letter strings of 0’s and 1’s. The edges of the cube are marked by r-letter
strings of 0’s, 1’s and precisely one ?, where the ? marks the coordinate which changes
from 0 to 1 along a given edge. The cube is skewered along its main diagonal from
00 . . . 0 to 11 . . . 1 such that vertices with the same sum of coordinates are on a vertical
line.

For example, R3 =

001 011

000 010 101 111

100 110

0?1

?01
?1100?

0?0

?00

01?

1?1

10?

1?0

?10

11?

.

Let 1 ≤ i1, . . . , ir ≤ n. We define a complex R(i1, . . . , ir) in Ch
(
Ĉob(n)

)
as follows:

For x ∈ {0, 1} we define b(x) to be the other value, i.e. b(x) = 1− x.

For w = (w1 . . . wr) with wj ∈ {0, 1} let

w(i1, . . . , ir) = q
∑
i b(wi)Bi1 . . . Bir ,

where Bil =

{
U il if wl = 1,

Id if wl = 0.

For ξ = (ξ1 . . . ξr) an edge-label with ξj = ? let

ξ(i1, . . . , ir) = (−1)
∑
i>j b(ξi) id . . . id Hij id . . . id, (6.1)

where Hij : Id→ U ij is the saddle cobordism.

Finally, let R(i1, . . . , ir) = Rr(i1, . . . , ir), i.e.

R(i1, . . . , ir)l =
⊕

w:
∑
wi=l

w(i1, . . . , ir)

with the differential given by the outgoing edges. Note that the choice of signs for the
differential ensures that the square of the differential is zero.

Example 6.1.4. We have, for example, (001)(3, 2, 4) = q1+1+0 Id IdU4 = q2 Id IdU4

and (101)(3, 2, 4) = q U3 IdU4. The differential in between is given by (?01)(3, 2, 4) =

(−1)1+0 H3 id id = −H3 id id.
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Doing this for the whole cube R3 we obtain

R(3, 2, 4) =

q2 Id IdU4 q IdU2 U4

q3 Id Id Id q2 IdU2 Id q U3 IdU4 U3 U2 U4

q2 U3 Id Id q U3 U2 Id

id H2 id

−H3 id id H3 id idid id H4

− id H2 id

H3 id id

⊕
id id H4

−H3 id id

⊕

id H2 id

⊕
id id H4

− id H2 id

⊕
id id H4

,

where U3 U2 U4 is in homological degree 0.

Proposition 6.1.5. Let si1 . . . sir ∈Wmin be reduced, where Wmin is the set of minimal
coset representatives as in Definition 1.1.1. Then

V∗(λ0si1 . . . sir)
∼= T(λ0).R(i1, . . . , ir).

Proof. We show this by induction on r. It is obviously true for r = 0. Now assume it
is true for r − 1, i.e. V∗(λ0si1 . . . sir−1) ∼= T(λ0).R(i1, . . . , ir−1). Then V∗(λ0si1 . . . sir)

is defined as

Cone
(
qV∗(λ0si1 . . . sir−1)

Hir−→ V∗(λ0si1 . . . sir−1).U ir
)

∼= Cone
(
qT(λ0).R(i1, . . . , ir−1)

Hir−−→ T(λ0).R(i1, . . . , ir−1).U ir
)
.

Now

Cone

(
qT(λ0).R(i1, . . . , ir−1)

Hir−−→ T(λ0).R(i1, . . . , ir−1).U ir = T(λ0).R(i1, . . . , ir)

)
follows directly from the construction of the cube complex R(i1, . . . , ir): The q-shift
of qT(λ0).R(i1, . . . , ir−1) is taken into account by q

∑
i b(wi) since b(wir) = 1 there.

Because of the cone, the signs of qT(λ0).R(i1, . . . , ir−1) inside the cone are changed
by −1 and this is reflected in the formula, since b(ξir) = 1. The maps inside
T(λ0).R(i1, . . . , ir−1).U ir stay with the same sign since there b(ξir) = 0, as prescribed
by the cone. The remaining maps all get positive sign, since ir is the last index.

Example 6.1.6. For n = 6 and k = 3 we obtain T(λ0).R(3, 2, 4) ∼=

H3

H4

−H2

H2

H4

q3 q2

q

q

,

since T(λ0).X = 0 for X ∈
{
q IdU3 U4, q

2 Id IdU4, q
2 IdU2 Id

}
and the remaining

entries of R(3, 2, 4) applied to T(λ0) are isomorphic to what is depicted above.

Lemma 6.1.7. Let si1 . . . sir = sj1 . . . sjr be reduced expressions in Wmin. Then

R(i1, . . . , ir) ∼= R(j1, . . . , jr).
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Proof. By Lemma 1.1.19 the reduced expressions si1 . . . sir and sj1 . . . sjr in Wmin differ
only by a finite number of moves sisj = sjsi for |i − j| > 1. Hence, it is enough
to consider the case where (i1, . . . , ir) and (j1, . . . , jr) differ by swapping neighbouring
indices at places m and m+ 1. Say (im, im+1) = (α, β), (jm, jm+1) = (β, α) and is = js
for s /∈ {m,m+ 1}. We have the height-isomorphisms

Uα Uβ ∼= Uβ Uα, Uα Id ∼= IdUα, IdUβ ∼= Uβ Id, (6.2)

where the first holds since |α − β| > 1. We define ι : R(i1, . . . , ir) → R(j1, . . . , jr) by
defining it on the direct summands at every homological degree via

w(i1, . . . , ir) = Bi1 . . . BαBβ . . . Bir
(−1)b(wm)b(wm+1)ϕ−−−−−−−−−−−−→ Bi1 . . . BβBα . . . Bir

= Bj1 . . . BβBα . . . Bjr

= sm(w)(j1, . . . , jr), (6.3)

where ϕ is given by one of the height-isomorphisms from (6.2) or Id Id ∼= Id Id.

If ι is a chain map, it is clearly an isomorphism. We check that ι is a chain map on
every square in the cubes. It suffices to check this locally, since the global situation only
differs by an overall sign. Locally at places (m,m + 1), a square in R(i1, . . . , ir) looks
like

Uα Id

Id Id Uα Uβ

IdUβ

or

BαBβ

BαBβ BαBβ

BαBβ

.

In the second case where we have a square in which BαBβ do not change, the commut-
ativity with the differential is obvious. In the other case, we have

Uα Id

Id Id Uα Uβ

IdUβ

Uβ Id

Id Id Uβ Uα

IdUα

+

+

−

−

+

+

+

+

+−

+ +



6.1. CONSTRUCTION OF THE EXCEPTIONAL OBJECTS V∗(λ) 73

The vertical maps are the isomorphisms part of i with sign calculated from (6.3) and
the horizontal maps are the differentials with local sign as in (6.1). Since the squares
containing vertical maps commute, we are done.

For si1 . . . sir and sj1 . . . sjr general reduced expressions the isomorphism R(i1, . . . , ir) ∼=
R(j1, . . . , jr) is given by a finite composition of (6.3).

Thus, we get together with Proposition 6.1.5:

Corollary 6.1.8. The complex representing V∗(µ) does not depend (up to isomorphism
of complexes, not just homotopy equivalence) on the reduced expression si1 . . . sir for
µ = λ0.si1 . . . sir .

For later reference we calculate the overall signs in a special case of Lemma 6.1.7 using
(6.3):

Lemma 6.1.9. Let si1 . . . sir = si1 . . . ŝij . . . sirsij be reduced expressions in Wmin. Then
R(i1, . . . , ir) is isomorphic to R(i1, . . . , îj . . . , ir, ij) via

w.(i1, . . . , ir)
(−1)b(wj)(b(wj+1)+···+b(wr))ϕ−−−−−−−−−−−−−−−−−−→

(
s(j,r)(w)

)
(i1, . . . , îj . . . , ir, ij),

where s(j,r) = sj . . . sr−1 moves place j to the end and ϕ is a composition of height-
isomorphisms as in (6.2).

Now we study the entries of V∗(µ). By delooping we know that every summand with
a circle appearing in V∗(µ) is isomorphic to a sum of (shifted) T(λ)’s. The following
lemma specifies which T(λ)’s can appear.

Lemma 6.1.10. V∗(µ) is isomorphic (as a complex) to a complex X with X0 = T(µ)

and for l 6= 0, Xl has entries (shifted) T(λ) with λ < µ. In particular, all entries of X
are (shifted) T(λ) with λ ≤ µ.

Proof. We proceed by induction on `(µ, λ0). For V∗(λ0) = T(λ0) it is obviously true.
Now assume it is true for µ′ with µ′

si−→ µ, thus V∗(µ′) ∼= X ′ with X ′ satisfying the
conditions. Hence, V∗(µ) ∼= Cone

(
qV∗(µ′)→ V∗(µ′).U i

) ∼= Cone
(
qX ′ → X ′.U i

)
. By

assumption there are no circles in the summands of X ′ and all summands of X ′l are
some T(λ) with λ < µ′ < µ for l 6= 0 and X ′0 = T(µ′). Therefore, the part qX ′ of
the cone has the asserted form and V∗(µ)0

∼= T(µ′).U i ∼= T(µ) by Lemma 4.1.8 since
µ′si = µ.

We use delooping (Lemma 3.3.5) to resolve all circles in X ′.U i and consider all possible
cases of T(λ).U i given by Lemma 4.1.8. If T(λ).U i ∼= qT(λ)⊕q−1 T(λ) or T(λ).U i = 0

or T(λ).U i ∼= T(λ′) with λ′ < λ, then the assertions are obviously satisfied. In the
remaining case we have T(λ).U i ∼= T(λsi). Since λ < µ′, µ′ si−→ µ and λ

si−→ λsi we
obtain λsi ≤ µ by Lemma 1.1.29. Furthermore, λsi 6= µ′si = µ, thus λsi < µ.

Lemma 6.1.11. Let X be a complex in K. Then

Cone(qX
Hi−→ X.U i).U i ' q−1X.U i
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and the maps for the homotopy equivalence are

(
0 α

)
: qXn−1.U i⊕Xn.U i U i � q−1Xn.U i :

(
0

β

)
,

where α = idX .α
′ with α′ = id id−ρ id : U i U i → U i, where ρ is identity with a

dot, and β = idX .β
′ with β′ = id id : U i → U i U i.

Proof. We have

Cone(qX
Hi−→ X.U i).U i ∼= Cone

(
qX.U i

Hi . idUi−−−−−→ X.(U i U i)
)
.

Now we apply Lemma 3.3.5 to the second part and get an isomorphism to

Cone
(
qX.U i

id⊕ρ′−−−→ qX.U i⊕q−1X.U i
)
,

where ρ′ is identity with a dot on the lower part of U i.

We apply Corollary 5.1.3 for Y = 0 and get the first assertion. The corollary gives
homotopy inverse maps

(
0 −ρ′n id

)
: qXn−1.U i⊕qXn.U i⊕q−1Xn.U i � q−1Xn.U i :

 0

0

id

 .

We compose with the isomorphism from Lemma 3.3.5 and get the second assertion.

Corollary 6.1.12. Let µsi be defined. Then

V∗(µ).U i '

{
q−1 V∗(µsi).U i if µ > µsi,

qV∗(µsi).U i if µ < µsi.

If µ < µsi, then the homotopy equivalence is given by(
0

β

)
:
(

V∗(µ)U i
)
n
→
(
q2 V∗(µ).U i

)
n−1
⊕
(
qV∗(µ).U i U i

)
n
∼=
(
qV∗(µsi).U i

)
n
,

where β = idV∗(µ) .β
′ and β′ = id id : U i → U i U i.

Proof. If µ > µsi, then V∗(µ) ∼= Cone
(
qV∗(µsi)→ V∗(µsi).U i

)
and the assertion fol-

lows from Lemma 6.1.11 for X = V∗(µsi). If µ < µsi, then V∗(µsi) ∼= Cone
(
qV∗(µ)→

V∗(µ).U i
)
and the assertion follows from the lemma for X = V∗(µ).

Lemma 6.1.13. Let X be a complex in K and j ∈ {i+ 1, i− 1}. Then

Cone
(
qCone(qX

Hi−→ X.U i)
Hj−→ Cone(qX

Hi−→ X.U i).U j
)
.U i ' qX.U j U i[1].
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Proof. Since U i commutes with cones in the weak sense that Cone(f).U i ∼= Cone(f.U i),
we have

Cone
(
qCone(qX

Hi−→ X.U i)
Hj−→ Cone(qX

Hi−→ X.U i).U j
)
.U i

∼= Cone
(
qCone(qX

Hi−→ X.U i).U i
Hj−→ Cone(qX

Hi−→ X.U i).U j U i
)
.

By Lemma 6.1.11, (
0

β

)
: q−1X.U i

'−→ Cone(qX
Hi−→ X.U i).U i

is a homotopy equivalence, where β = idX .β
′ with β′ = id id : U i → U i U i. Thus,

Cone
(
qCone(qX

Hi−→ X.U i).U i
Hj−→ Cone(qX

Hi−→ X.U i).U j U i
)

' Cone
(
X.U i

Hj ◦
(

0

β

)
−−−−−→ Cone(qX

Hi−→ X.U i).U j U i
)

∼= Cone
(
X.U i

(
0

γ

)
−−→ Cone(qX.U j U i

Hi−→ X.U i U j U i)
)

∼= Cone
(
X.U i

(
0

id

)
−−→ Cone(qX.U j U i

ι◦Hi−−−→ X.U i)
)
,

where γ = idX .γ
′ with γ′ = Hj ◦β′ : U i → U i U i → U i U j U i and in the last step we

use the isomorphism ι : U i U j U i
∼=−→ U i with id = ι ◦ γ′. Applying Corollary 5.1.4 with

C = 0, we obtain

Cone
(
X.U i

(
0

id

)
−−→ Cone

(
qX.U j U i

ι◦Hi−−−→ X.U i
))
' qX.U i U j [1].

Proposition 6.1.14. If µ = µsi then V∗(µ).U i ' 0.

Proof. From the assertion we get µ = λ0w with wsi /∈Wmin. We prove V∗(λ0w).U i ' 0

by induction on l(w). If l(w) = 0 then V∗(µ) = T(λ0) and V∗(µ).U i = T(λ0).U i = 0

by Lemma 4.1.8, since from esi = si /∈ Wmin we know i 6= k. If l(w) > 0n then
by Corollary 1.1.6 either there is a reduced expression w = si1 . . . sir and i 6= k or a
reduced expression w = τsisi±1si1 . . . sir for some τ = sl1 . . . slt ∈Wmin where in both
cases |ij − i| > 1.

In the first case

V∗(µ).U i ∼= Cone
(
qV∗(λ0si1 . . . sir−1)→ V∗(λ0si1 . . . sir−1).U ir

)
.U i

∼= Cone
(
qV∗(λ0si1 . . . sir−1).U i → V∗(λ0si1 . . . sir−1).U i U ir

)
since U i and U ir commute. But (si1 . . . sir−1) ∈ Wmin, (si1 . . . sir−1)si =

si(si1 . . . sir−1) /∈ Wmin and l(si1 . . . sir−1) < l(w), thus V∗(λ0si1 . . . sir−1).U i ' 0 and
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thus V∗(µ).U i ' 0 by Lemma 5.1.5.

In the second case assume first r = 0. Then for X = V∗(λ0τ) in Lemma 6.1.13, we get
V∗(µ).U i ' qV∗(λ0τ).U i±1 U i[1]. Now l(τ) < l(w) and τsisi±1 ∈Wmin reduced, hence
by Lemma 1.1.35 τsi±1 /∈Wmin, thus V∗(λ0τ).U i±1 ' 0 and therefore V∗(µ) ' 0.

If r > 0 then

V∗(µ).U i ∼= Cone
(
qV∗(λ0τsisi±1si1 . . . sir−1)→ V∗(λ0τsisi±1si1 . . . sir−1).U ir

)
.U i

∼= Cone
(
qV∗(λ0τsisi±1si1 . . . sir−1).U i → V∗(λ0τsisi±1si1 . . . sir−1).U i U ir

)
since U i and U ir commute. But (τsisi±1si1 . . . sir−1) ∈Wmin , (τsisi±1si1 . . . sir−1)si /∈
Wmin and l(τsisi±1si1 . . . sir−1) < l(w), thus V∗(λ0τsisi±1si1 . . . sir−1).U i ' 0 and thus
V∗(µ).U i ' 0.

Now we know that V∗(µ).U i is either homotopic to zero or to some other V∗(µ′).U i
(up to internal shift).

6.2 Behaviour under reducing the number of boundary
points

The first goal of this section is to describe V∗(µ).∩i explicitly. ∩i has been defined
in Section 4.3 and can be considered as the lower half of U i. Thus, ∩i acts on V∗(µ)

analogously to what we have shown for the action of U i above.

Proposition 6.2.1. a) Let µ > µsi. Then V∗(µ).∩i ' q−1 V∗(µsi).∩i.

b) Let µ = µsi. Then V∗(µ).∩i ' 0.

Proof. a) By Corollary 6.1.12 we know V∗(µ).U i ' q−1 V∗(µsi).U i and by
Lemma 6.1.11, the maps for the homotopy equivalence are either zero or the iden-
tity on the upper cup of U i. Applying the functor ∩i yields V∗(µ).U i .∩i '
q−1 V∗(µsi).U i .∩i where restricted to the circle given by U i .∩i ∼= ∩i# the maps
for the homotopy equivalence are either zero or the identity. Using delooping
(Lemma 3.3.5) we obtain

qV∗(µ). ∩i ⊕q−1 V∗(µ).∩i ' V∗(µsi). ∩i ⊕q−2 V∗(µsi).∩i

and the maps for this homotopy equivalence are only between qV∗(µ).∩i and
V∗(µsi).∩i resp. q−1 V∗(µ).∩i and q−2 V∗(µsi).∩i. Hence, qV∗(µ).∩i ' V∗(µsi).∩i
and q−1 V∗(µ).∩i ' q−2 V∗(µsi).∩i, thus we obtain the assertion by shifting.

b) By Proposition 6.1.14 we have V∗(µ).U i ' 0, thus applying the functor ∩i we
obtain V∗(µ).U i .∩i ' 0. Using delooping (Lemma 3.3.5) to resolve the circle of
U i .∩i ∼= ∩i# we obtain qV∗(µ). ∩i ⊕q−1 V∗(µ).∩i ' 0. Therefore, in particular
qV∗(µ).∩i ' 0 and shifting this yields the assertion.
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For λ ∈ Λ(n, k) let λ†i be λ with places i, i+ 1 deleted. For example, for λ = ∨∨∧∧ we
obtain λ†2 = ∨∧.

Proposition 6.2.2. For µ ∈ Λ(n, k) we have

V∗(µ).∩i '


0 if µ = µsi,

V∗(µ†i) if µ < µsi,

V∗(µ†i) 〈−1〉 if µ > µsi.

Proof. We prove this by induction on the relative length `(µ, λ0). For `(µ, λ0) = 0,
i.e. µ = λ0, we have µ = µsi for all i 6= k and λn−2,k−1

0 = (λn,k0 )†k , so this is just
Lemma 4.3.2. Now assume the assumption holds for all i and all µ with `(µ, λ0) <

`(λ, λ0). We choose j such that λsj < λ, i.e. the assertion holds for λsj in particular.
We distinguish different cases of the distance of i and j.

• i = j: By Proposition 6.2.1 a) and induction hypothesis we know

V∗(λ).∩i ' q−1 V∗(λsi).∩i ' q−1 V∗
(
(λsi)

†i).
Since λ†i = (λsi)

†i and λsi = λsj < λ we are done.

• |i − j| > 1: In this case we can slide U j and ∩i past each other and we have
U j ∩i ∼= ∩i U j′ where j′ = j if i > j and j′ = j − 2 if i < j. Hence,

V∗(λ).∩i ∼= Cone
(
qV∗(λsj)

Hj−→ V∗(λsj).U j
)
.∩i

∼= Cone
(
qV∗(λsj).∩i

Hj−→ V∗(λsj). ∩i .U j′
)

'


Cone(0→ 0) if λsj = λsjsi,

Cone
(
qV∗

(
(λsj)

†i
) Hj−→ V∗

(
(λsj)

†i
)
.U j′

)
if λsj < λsjsi,

Cone
(

V∗
(
(λsj)

†i
) Hj−→ q−1 V∗

(
(λsj)

†i
)
.U j′

)
if λsj > λsjsi,

∼=


0 if λsj = λsjsi,

V∗
(
(λsj)

†isj′
)

if λsj < λsjsi,

V∗
(
(λsj)

†isj′
)
〈−1〉 if λsj > λsjsi,

∼=


0 if λsj = λsjsi,

V∗(λ†i) if λsj < λsjsi,

V∗(λ†i) 〈−1〉 if λsj > λsjsi,

,

where the homotopy equivalence holds by induction hypothesis. For the last two
isomorphisms we use that since |i − j| > 1 we have (λsj)

†isj′ = (λsjsj)
†i = λ†i

and λ†i > (λsj)
†i since λ > λsj . Now we are done since λ = λsi ⇔ λsj = λsjsi

and the same for < or > instead of = because |i− j| > 1.
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• i = j+1: By construction we know λ(j+1) = ∧ and λsj(j+1) = ∨. We consider
two cases for λ(i+ 1):

• λ(i + 1) = ∧: In this case λ(i) = λ(i + 1) = ∧ and V∗(λ).∩i ' 0 by
Proposition 6.2.1 b), thus we are done.

• λ(i + 1) = ∨: In this case λsj(i) = λsj(i + 1) = ∨, thus V∗(λsj).∩i ' 0

by Proposition 6.2.1 b). Furthermore, T(α).Ui−1.∩i ∼= T(α).∩i−1 for all α,
therefore

V∗(λ).∩i ∼= Cone
(
qV∗(λsj).∩i → V∗(λsj).Uj . ∩i

)
' Cone

(
0→ V∗(λsj). ∩i−1

) ∼= V∗(λsj). ∩i−1 .

Altogether we have λ(i − 1, i, i + 1) = ∨∧∨ and λsj(i − 1, i, i + 1) = ∧∨∨.
Therefore, λ < λsi, λsj < λsjsi−1 and λ†i = (λsj)

†i−1 . Using the induction
hypothesis we obtain

V∗(λ).∩i ' V∗(λsj).∩i−1 ' V∗
(
(λsj)

†i−1
)

= V∗(λ†i).

• i = j − 1: This works analogously to the case i = j + 1.

Lemma 6.2.3. Let B be a complex in K(Ĉup(n, k)) and A an object of Ĉup(n, k)

viewed as a complex concentrated in degree 0. Then

Hom
K(Ĉup(n,k))

(A.U i[j], B) ∼= Hom
K(Ĉup(n,k))

(A[j], B.U i)

∼= Hom
K(Ĉup(n−2,k−1))

(A. ∩i [j], B.∩i).

Proof. Consider the complexes

· · · → Hom(A.U i, Bj+1)
dB◦−−−−→ Hom(A.U i, Bj)

dB◦−−−−→ Hom(A.U i, Bj−1)→ . . .

and

· · · → Hom(A,Bj+1.U i)
(dB idUi )◦−−−−−−−→ Hom(A,Bj .U i)

(dB idUi )◦−−−−−−−→ Hom(A,Bj−1.U i)→ . . . ,

where all Hom are Hom
Ĉup

. The entries of the complexes are isomorphic by Pro-
position 4.2.1 and these isomorphisms are compatible with the differentials since the
differential only acts on the part that is not moved. Thus, the complexes are iso-
morphic and the first isomorphism of the assertion follows from Remark 5.2.4. The
second isomorphism follows analogously using Lemma 4.3.3.

Lemma 6.2.4. HomK

(
T(λ0) 〈l〉 [j],V∗(λ0sk)

)
= 0 for all j, l.

Proof. By definition, V∗(λ0sk) ∼= qT(λ0)
Hk−−→ T(λ0sk). There is only a map T(λ0) 〈l〉 →

qT(λ0) if l = 1 and in this case it is c · id for some c ∈ C by Lemma 3.4.15. Thus, if
the map
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T(λ0) 〈l〉 [1] T(λ0) 〈l〉 0

V∗(λ0sk) qT(λ0) T(λ0sk)

∼=
c · id

∼=
Hk

is non-zero, the composition of c · id with Hk is non-zero, too, i.e. it is not a chain map.
Thus, there is no non-zero chain map from T(λ0) 〈l〉 [1] to V∗(λ0sk). By Lemma 4.2.3
and Remark 3.1.3 there is only a non-zero map T(λ0) 〈l〉 → T(λ0sk) if l = 1 and in this
case it is given by c · Hk for some c ∈ C. So every non-zero chain map T(λ0) 〈l〉 [0] →
V∗(λ0sk) is homotopic to zero by c · id : T(λ0) 〈l〉 [0]→ V∗(λ0)1

∼= qT(λ0):

T(λ0) 〈l〉 [0] 0 T(λ0) 〈l〉

V∗(λ0sk) qT(λ0) T(λ0sk)

∼=
c ·Hk

c · id

∼=
Hk

Theorem 6.2.5. HomK

(
T(λ0) 〈l〉 [j],V∗(µ)

)
= 0 for all j, l and µ 6= λ0 ∈ Λ(n, k).

Proof. For k = 0 or k = n the assertion is clear since there is no ∧∨-sequence µ different
from λ0 in these cases. Now fix n, k with n > k > 0 and assume the assertion is true
for all smaller values of n and k. We do induction on `(µ, λ0). If `(µ, λ0) = 1, i.e.
µ = λ0sk, then the assertion is true by the lemma above. Now let µ→ µsi and assume
the assertion is true for µ. By definition V∗(µsi) ∼= Cone

(
qV∗(µ) → V∗(µ).U i

)
, thus

we have an exact triangle qV∗(µ)→ V∗(µ).U i → V∗(µsi)→ qV∗(µ) [1]. Therefore, we
get a long exact sequence

· · · → HomK

(
T(λ0) 〈l〉 [j],V∗(µ).U i

)
→ HomK

(
T(λ0) 〈l〉 [j],V∗(µsi)

)
→ HomK

(
T(λ0) 〈l〉 [j], qV∗(µ)[1]

)
→ . . . .

By induction we have

HomK

(
T(λ0) 〈l〉 [j], qV∗(µ)[1]

) ∼= HomK

(
T(λ0) 〈l − 1〉 [j − 1],V∗(µ)

)
= 0.

Thus, after showing HomK

(
T(λ0) 〈l〉 [j],V∗(µ).U i

)
= 0 we are done. Lemma 6.2.3

yields

Hom
Kb(Ĉup(n,k))

(
T(λ0) 〈l〉 [j],V∗(µ).U i

)
∼= Hom

Kb(Ĉup(n−2,k−1))

(
T(λ0). ∩i 〈l〉 [j],V∗(µ). ∩i

)
.

By Lemma 4.3.2 we are done in the cases i 6= k since then T(λ0).∩i = 0. In the remaining
case i = k we have T(λ0).∩i ∼= T(λ′0) for λ′0 = λn−2,k−1

0 = λ†k0 . By Proposition 6.2.2 we
know

V∗(µ).∩k '

{
0

V∗(µ†k) 〈m〉
for m ∈ {0,−1}.

In case V∗(µ).∩k = 0 we are obviously done. In the other cases we are done since the
assertion is true for all smaller n and k, except for the case that µ†k = λ0. But µ†k = λ0
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is only possible if µ = λ0 or µ = λ0sk and the former one is not a possible value of µ
while the latter case is already shown.

This theorem will be the basic ingredient for the next section.

6.3 Exceptional sequences

Before we can show that our V∗(λ) fit into the general setting of exceptional sequences
we have to define the exceptional sequences in a graded setting.

Definition 6.3.1. Let D be a C-linear triangulated category with internal grading-shift
〈−〉. Elements {Xα}α∈Ω, for Xα ∈ D and Ω a finite poset, form a graded exceptional
sequence if the following two conditions hold

(E1) HomD
(
Xα, Xβ 〈i〉 [j]

)
= 0 for α � β and all i, j

(E2) HomD
(
Xα, Xα 〈i〉 [j]

)
=

{
C if i = j = 0,

0 otherwise.

The goal for this section is the following:

Theorem 6.3.2. The V∗(λ) form a graded exceptional sequence.

As a first step, we want to consider maps from shifted T(λ) to V∗(µ). The initial case
λ = λ0 has been already covered in the last section. Now we deduce insight about maps
from shifted T(λ)’s to V∗(µ) from the initial case λ = λ0 using the sliding properties
from Proposition 4.2.1.

Lemma 6.3.3. Let λ→ λsi. Then

HomK

(
T(λsi) 〈l〉 [j],V∗(µ)

) ∼= HomK

(
T(λ) 〈l〉 [j],V∗(µ).U i

)
for all l, j.

Proof. Since λsi > λ we have T(λsi) ∼= T(λ).U i by Lemma 4.1.8. Thus, the assertion
follows directly from Lemma 6.2.3.

Lemma 6.3.4. Let µ ∈ Λ(n, k) such that µsi is not defined. Let λ′ si−→ λ. Then for all
j, l we have

HomK

(
T(λ) 〈l〉 [j],V∗(µ)

)
= 0.

Proof. By Lemma 6.3.3 and Proposition 6.1.14 we obtain

HomK

(
T(λ) 〈l〉 [j],V∗(µ)

) ∼= HomK

(
T(λ′) 〈l〉 [j],V∗(µ).U i

)
∼= HomK

(
T(λ′) 〈l〉 [j], 0

)
= 0.
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Lemma 6.3.5. Let λ→ λsi and j fixed. If µsi 6= µ and

HomK

(
T(λ) 〈l〉 [j],V∗(µ)

)
= 0 = HomK

(
T(λ) 〈l〉 [j],V∗(µsi)

)
for all l, then

HomK

(
T(λsi) 〈l〉 [j],V∗(µ)

)
= 0

for all l.

Proof. By Lemma 6.3.3 we only have to show HomK

(
T(λ) 〈l〉 [j],V∗(µ).U i

)
= 0.

Assume first µsi > µ. Then by definition V∗(µsi) = Cone
(
qV∗(µ)→ V∗(µ).U i

)
, thus

we have an exact triangle qV∗(µ)→ V∗(µ).U i → V∗(µsi)→ qV∗(µ) [1]. Therefore, we
get a long exact sequence

· · · → HomK

(
T(λ) 〈l〉 [j], qV∗(µ)

)
→ HomK

(
T(λ) 〈l〉 [j],V∗(µ).U i

)
→ HomK

(
T(λ) 〈l〉 [j],V∗(µsi)

)
→ . . .

Since we know the outer parts to be zero, the same follows for the middle part.

Assume now µ > µsi. Then V∗(µ) ∼= Cone
(
qV∗(µsi) → V∗(µsi).U i

)
and by

Lemma 6.1.12 V∗(µ).U i ' q−1 V∗(µsi).U i. As above, we have an exact triangle
qV∗(µsi)→ qV∗(µ).U i → V∗(µ)→ qV∗(µsi) [1] which gives us an exact sequence

· · · → HomK

(
T(λ) 〈l〉 [j], qV∗(µsi)

)
→ HomK

(
T(λ) 〈l〉 [j], qV∗(µ).U i

)
→ HomK

(
T(λ) 〈l〉 [j],V∗(µ)

)
→ . . .

Since we know the outer parts to be zero, we get HomK

(
T(λ) 〈l〉 [j], qV∗(µ).U i

)
= 0

for all l and thus HomK

(
T(λ) 〈l〉 [j],V∗(µ).U i

)
= 0, too.

Proposition 6.3.6. For λ � µ we have HomK

(
T(λ) 〈l〉 [j],V∗(µ)

)
= 0 for all j, l.

Proof. This is clear for λ = λ0 by Theorem 6.2.5. Now we proceed by induction on
`(λ, λ0). Consider λ′ si−→ λ where the claim is already proven for λ′.

Let λ � µ. By Corollary 1.1.30 we have that µsi is not defined or λ′ � µ, µsi.

If µsi is defined, we get HomK

(
T(λ) 〈l〉 [j],V∗(µ)

)
= 0 by Lemma 6.3.5 and the induc-

tion hypothesis, since we have µ, µsi � λ′.

Now assume µsi is not defined. Then we get HomK

(
T(λ) 〈l〉 [j],V∗(µ)

)
= 0 by

Lemma 6.3.4.

Lemma 6.3.7. Let D be a complex and A be an object in Ĉup(n, k). Assume
HomK(A[i], D) = 0 and consider a complex C with Ci = A ⊕ B. Let f be a chain
map in HomK(C,D) with fj = 0 for j < i. Then f ' g where gi|A = 0 = gj for j < i

and gi|B = fi|B.

Proof. This is a special case of Lemma 5.1.1 for Bj = Cj for all j 6= i and Bi = B. Since
fi−1 = 0 we have fj−1dC |Aj→Bj−1 = 0 for i = j and for i 6= j it holds anyway since
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then Aj = 0, thus gi|A = 0. Also, since Aj−1 = 0 for j ≤ i, we have dC |Aj−1→Bj = 0, so
gj |B = fj |B for j ≤ i.

Proposition 6.3.8. Let C,D be complexes in K and f : C → D a chain map. Let
Γ ⊂ Λ(n, k) and r ∈ Z. Assume

a) HomK

(
T(λ) 〈j〉 [l], D

)
= 0 for all j, l and λ ∈ Γ,

b) fi = 0 for i < r,

c) for all i ≥ r we have Ci ∼=
mi⊕
j=1

T(λij) 〈ij〉 with λij ∈ Γ.

Then f ' 0.

Proof. This follows inductively using Lemma 6.3.7. We start by applying the lemma to
i = r and A = T(λrj) 〈rj〉 for j = 1 and obtain a homotopy equivalent chain map which
is also zero on A. Since fi|B is not changed, we can go on by applying the lemma for
j = 2 and so on, until the new homotopy equivalent chain map is zero on all of Cr.
Then we go on with Cr+1 and iterate until we obtain a homotopy equivalent chain map
that is 0 on all of C.

We can now show the condition (E1) of the exceptional sequence where K is the trian-
gulated category and Λ(n, k) the poset:

Theorem 6.3.9. HomK

(
V∗(λ)[j] 〈l〉 ,V∗(µ)

)
= 0 for all j, l and all λ � µ.

Proof. For a fixed µ we set Γ = {λ ∈ Λ(n, k) | λ � µ} and let r = 0. Let f ∈
HomK

(
V∗(λ)[j] 〈l〉 ,V∗(µ)

)
, then condition b) of Proposition 6.3.8 is trivially satisfied.

By Proposition 6.3.6, condition a) holds. By Lemma 6.1.10 every V∗(λ)i is isomorphic
to a sum of shifted T(λ′) with λ′ ≤ λ. Assume λ′ ≥ µ. Then we get λ ≥ µ and a
contradiction. Thus, the last remaining condition for Proposition 6.3.8 is satisfied and
it yields f ' 0.

The next goal is to show that the (j 6= 0)-part of condition (E2) of the exceptional
sequence holds.

The (j < 0)-case follows analogously to the previous theorem:

Lemma 6.3.10. HomK

(
V∗(λ) 〈l〉 [j],V∗(λ)

)
= 0 for j < 0 and all l.

Proof. Let r = 0 and Γ = {µ ∈ Λ(n, k) | µ < λ} ⊂ {µ ∈ Λ(n, k) | µ � λ}. By
Lemma 6.1.10, condition c) of Proposition 6.3.8 is satisfied, by Proposition 6.3.6 con-
dition a) is satisfied, too and condition b) holds trivially, thus Proposition 6.3.8 yields
the assertion.

Proposition 6.3.11. Let j 6= 0. Then HomK

(
T(λ) 〈m〉 [j],V∗(µ)

)
= 0 for all λ, µ

and all m.



6.3. EXCEPTIONAL SEQUENCES 83

Proof. For λ � µ this is true by Proposition 6.3.6. So it remains to show the claim for
λ ≥ µ. Fix j 6= 0.

We now use double induction. The outer induction is induction on `(λ, µ) = l: The
assertion is already shown for l < 0 since l < 0 is only possible for λ � µ. Moreover,
note that `(λ, µ) = `(λ, λ0) − `(µ, λ0), since we only consider λ ≥ µ. Assume that the
assertion is true for l − 1 ≥ −1. Now we show it for l and to do this we proceed by
inner induction on `(µ, λ0).

For `(µ, λ0) = 0, i.e. µ = λ0, the assertion is clear since V∗(λ0) has no non-zero entries
outside of homological degree 0. Now consider µ and assume the assertion is shown for all
ν with `(ν, λ0) < `(µ, λ0). Since `(µ, λ0) > 0 and 0 ≤ l = `(λ, µ) = `(λ, λ−0)−`(µ, λ0),
we know λ 6= λ0 and we can choose λ′ such that λ′ si−→ λ. We have either λ′ � µ

or λ′ ≥ µ. In the first case we have HomK

(
T(λ′) 〈m〉 [j],V∗(µ)

)
= 0 for all m by

Proposition 6.3.6. In the second case consider

`(λ′, µ) = `(λ′, λ0)− `(µ, λ0) = `(λ, λ0)− 1− `(µ, λ0) = l − 1.

Therefore, also in this case, we already know HomK

(
T(λ′) 〈m〉 [j],V∗(µ)

)
= 0 for all

m by induction hypothesis of the outer induction.

Now consider µsi. We have to distinguish several cases:

• If µsi is undefined, then HomK(T(λ) 〈m〉 [j],V∗(µ)) = 0 holds for all m by
Lemma 6.3.4.

• Assume µsi > µ: Now we have either λ′ � µsi or λ′ ≥ µsi. In the first case,
HomK

(
T(λ′) 〈m〉 [j],V∗(µsi)

)
= 0 for all m by Proposition 6.3.6. In the second

case, we have

`(λ′, µsi) = `(λ′, λ0)− `(µsi, λ0) = `(λ, λ0)− 1− `(µ, λ0)− 1 = l − 2.

Therefore, HomK(T(λ′) 〈m〉 [j],V∗(µsi)) = 0 for all m also in this case by in-
duction hypothesis of the outer induction. With Lemma 6.3.5, we now get
HomK(T(λ) 〈m〉 [j],V∗(µ)) = 0 for all m.

• Assume µsi < µ: Again, we have either λ′ � µsi or λ′ ≥ µsi. In the first case,
HomK

(
T(λ′) 〈m〉 [j],V∗(µsi)

)
= 0 for all m by Proposition 6.3.6. In the second

case, we have

`(λ′, µsi) = `(λ′, λ0)− `(µsi, λ0) = `(λ, λ0)− 1− `(µ, λ0) + 1 = l.

But since `(µsi, λ0) = `(µ, λ0)−1, we know HomK(T(λ′) 〈m〉 [j],V∗(µsi)) = 0 for
allm by induction hypothesis of the inner induction. Again, we apply Lemma 6.3.5
to get HomK

(
T(λ) 〈m〉 [j],V∗(µ)

)
= 0 for all m.

Corollary 6.3.12. Let X ∈ K be a complex such that Xi = 0 for i ≤ 0. Then for all
µ ∈ Λ(n, k) we have

HomK

(
X,V∗(µ)

)
= 0.
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Proof. We apply Proposition 6.3.8 for Γ = Λ(n, k) and r = 1. The Proposition 6.3.11
yields the only non-trivial condition.

In particular, we get our needed (j > 0)-case and even more:

Corollary 6.3.13. For all λ, µ ∈ Λ(n, k), l ∈ Z and j > 0 we have

HomK

(
V∗(λ) 〈l〉 [j],V∗(µ)

)
= 0.

Now we consider the (j = 0)-case:

Proposition 6.3.14. For all λ ∈ Λ(n, k) we have

Hom
(

T(λ) 〈l〉 ,V∗(λ)
) ∼= {0 if l 6= 0,

C if l = 0.

Proof. We first consider the (l = 0)-case: By Lemma 6.1.10 we know V∗(λ)0
∼= T(λ),

so we can consider the chain map given by the identity from T(λ) to V∗(λ). By
Lemma 3.4.14, the identity morphism does not factorise and is up to scalar the only
degree 0 morphism, thus it cannot be homotopic to zero and we obtain C in case l = 0.

The case for l 6= 0 follows by induction on `(λ, λ0). By Lemma 3.4.15 it is clear for
λ = λ0. Now let λ < λsi. By Lemma 6.3.3 we have HomK

(
T(λsi) 〈l〉 ,V∗(λsi)

) ∼=
HomK

(
T(λ) 〈l〉 ,V∗(λsi).U i

)
. As before the distinguished triangle qV∗(λ) →

qV∗(λsi)→ V∗(λsi)→ qV∗(λ)[1] yields the long exact sequence

· · · → HomK

(
T(λ) 〈l〉 , qV∗(λ)

)
→ HomK

(
T(λ) 〈l〉 , qV∗(λsi).U i

)
→ HomK

(
T(λ) 〈l〉 ,V∗(λsi)

)
→ . . .

For l 6= 1 the first term is equal to zero by induction and the last term is always
zero by Proposition 6.3.6 since λ � λsi. So the middle term is zero for l 6= 1, i.e.
0 = HomK

(
T(λ) 〈l − 1〉 ,V∗(λsi).U i

) ∼= HomK

(
T(λsi) 〈l − 1〉 ,V∗(λsi)

)
for l 6= 1.

Corollary 6.3.15. For all λ ∈ Λ(n, k) we have

HomK

(
V∗(λ) 〈l〉 ,V∗(λ)

)
= 0 for l 6= 0.

Proof. Let f : V∗(λ) 〈l〉 → V∗(λ) be a chain map. By Lemma 6.1.10 V∗(λ)0
∼= T(λ)

and by Proposition 6.3.14 we have HomK

(
T(λ) 〈l〉 ,V∗(λ)

)
= 0, hence f ' g with

g0 = 0 by Lemma 6.3.7. Applying Proposition 6.3.8 for r = 1, Γ maximal and using
Proposition 6.3.11 to have condition a), we obtain g ' 0.

Corollary 6.3.16.

HomK

(
V∗(λ),V∗(λ)

) ∼= C

Proof. By Proposition 6.3.11 we have HomK

(
V∗(λ)i,V

∗(λ)[l]
)

= 0 for all i and all
l 6= 0. Using Lemma 6.1.10, Proposition 6.3.6 yields HomK

(
V∗(λ)1,V

∗(λ)
)

= 0. Thus,



6.3. EXCEPTIONAL SEQUENCES 85

by Corollary 5.2.5 a) we obtain

HomK

(
V∗(λ),V∗(λ)

) ∼= HomK

(
V∗(λ)0,V

∗(λ)
)

which gives the assertion by Proposition 6.3.14 since V∗(λ)0
∼= T(λ) by Lemma 6.1.10.

In the proof above we used the spectral sequence argument Corollary 5.2.5 a), since we
could not apply Lemma 6.3.7 because this needs all maps to the right to be zero. We
could also have used the spectral sequence argument (more precisely Corollary 5.2.5 c))
from the previous proof to show Theorem 6.3.9, Corollary 6.3.12 and Corollary 6.3.15.

Altogether (Theorem 6.3.9, Lemma 6.3.10, Corollary 6.3.13, Corollary 6.3.15, Corol-
lary 6.3.16), we finally have proven Theorem 6.3.2.

For later reference we want to collect what we have proven about maps from T(λ) to
V∗(µ).

Remark 6.3.17. All in all (Prop. 6.3.11, Prop. 6.3.6, Prop. 6.3.14) we have shown in
this section:

HomK

(
T(λ) 〈l〉 [k] ,V∗(µ)

) ∼=


0 if k 6= 0,

0 if λ � µ,

0 if λ = µ, l 6= 0,

C if λ = µ, l = 0 = k.





Chapter 7

Categorification

In this chapter we prove that the exceptional objects from Theorem 6.3.2 generate
the triangulated category K by showing that every T(λ) can be constructed as an
iterated cone from some shifted V∗(µ)’s. This can be seen as some sort of base change
between the T(λ) and the V∗(µ). We explicitly determine which V∗(µ)’s occur in this
construction. Then, we define a notion of duality and dual complexes and show that
the duals of the V∗(µ) categorify the standard basis in V ⊗n. In the last section, we
categorify the bilinear form on V ⊗n.

7.1 Iterated cones

To describe the T(λ) via cones of V∗(µ) we first investigate how to write V∗(µ).U i as a
cone of other V∗(µ′). In Corollary 6.1.12 and Proposition 6.1.14 we already considered
V∗(µ).U i, but now we want to describe it only by other V∗(ν) without U i appearing.

Proposition 7.1.1. Let µ ∈ Λ(n, k) and 1 ≤ i ≤ n. Then

V∗(µ).U i '


0 if µsi is undefined,
Cone

(
V∗(µsi)[−1]→ qV∗(µ)

)
if µ < µsi,

Cone
(
q−1 V∗(µ)[−1]→ V∗(µsi)

)
if µ > µsi.

Proof. The first case is just Proposition 6.1.14. For µsi > µ we have V∗(µsi) =

Cone
(
qV∗(µ) → V∗(µ).U i

)
and the assertion follows. In the case µsi < µ we

have V∗(µ) = Cone
(
qV∗(µsi) → V∗(µsi).U i

)
and since qV∗(µ).U i ' V∗(µsi).U i by

Corollary 6.1.12 the assertion follows again after a q-shift.

Lemma 7.1.2. If X ∈ K = Kb(Ĉup(n, k)) is an iterated cone of shifted V∗(µ)’s, then
so is X.U i.

Proof. By Proposition 7.1.1 we know that each V∗(µ).U i is a cone of some V∗(ν)’s.
Since Cone(A→ B).U i ∼= Cone(A.U i → B.U i), the assertion follows.

Theorem 7.1.3. Every T(λ) is an iterated cone of V∗(µ)’s. More precisely,

87
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i) T(λ) is an iterated cone of{
qdeg(C(λ)µ) V∗(µ) | C(λ)µ is oriented

}
ii) in the final complex, all qdeg(C(λ)µ) V∗(µ) are right-aligned, i.e. the rightmost non-

zero entry is in homological degree 0.

For i) recall that for an extended cup diagram C(λ) and a ∧∨-sequence µ we defined
that µ orients C(λ) when all the cups get oriented (Definition 1.2.21) and the degree of
this orientation is the number of clockwise oriented cups (Definition 1.2.25).

Before the proof we look at an example.

Example 7.1.4. In case n = 3 and k = 1 we have

'
q2

q2

q

q

id id

−

.

by Gaussian elimination (Lemma 5.1.2) with respect to the two identities. Note that
the complexes

V∗(∨∨∧) ∼= q2 −
−−−−−−−→ q −−−−−−→

qV∗(∨∧∨) ∼= q2 −−−−−−→ q

are right-aligned in the right complex, i.e. start on the right in homological degree
0. Furthermore, deg

(
∨∨∧

)
= 0, deg

(
∨∧∨

)
= 1 and ∧∨∨ does not orient

.

Proof. We first show that T(λ) is an iterated cone of V∗(µ)’s by induction on `(λ, λ0).
Since T(λ0) = V∗(λ0), we clearly have that T(λ0) is an iterated cone. Assume the
assertion is shown for all λ′ with `(λ′, λ0) < `(λ, λ0) and choose λ′ si−→ λ. Then T(λ) ∼=
T(λ′).U i by Lemma 4.1.8 and by induction T(λ′) is already an iterated cone, hence
T(λ) is an iterated cone by Lemma 7.1.2.

We check now that properties i) and ii) hold. For λ0 they are obviously true. We assume
that λ′ si−→ λ and T(λ′) is an iterated cone of the required form. Applying U i changes the
appearing V∗(µ)’s according to Proposition 7.1.1. By Lemma 1.2.24 and Lemma 1.2.26
(for λ′ playing the role of λ in the lemmas) we obtain property i). The right alignment
of property ii) follows then from Proposition 7.1.1 again, since if V∗(µ) is right aligned
V∗(µ).U i is of the form Cone(A[−1]→ B) with A and B right aligned.

7.2 Reflected complexes and categorification of V ⊗n

In this section we will finally obtain our categorification of V ⊗n. But beforehand we
need to describe how we obtain the complexes V(λ) by reflection.
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Definition 7.2.1. In Cup(n, k) for a cobordism f : A → B we denote by f∗ : B → A

the reflected cobordism. For example, : → and
∗

= : → .

This extends to Cup(n, k)Z via sending f : A 〈i〉 → B 〈j〉 to f∗ : B 〈−j〉 → A 〈−i〉 since
deg(f) = deg(f∗). By taking ∗ on every component of the matrix of morphisms we can
extend ∗ to Mat

(
Cup(n, k)Z

)
= Ĉup(n, k).

For a complex (A, d) we define the reflected complex A∗ by setting A∗−k =
⊕

i ai 〈−mi〉
if Ak =

⊕
i ai 〈mi〉 with differentials d∗k : A∗−k+1 → A∗−k.

Schematically:

complex

· · · →
⊕

i bi 〈mi〉
d1−→
⊕

i ai 〈si〉
d0−→
⊕

i ci 〈li〉 → . . .

reflected complex

. . . −→
⊕

i ci 〈−li〉
d∗0−→
⊕

i ai 〈−si〉
d∗1−→
⊕

i bi 〈−mi〉 → . . .

We denote V∗(λ)∗ by V(λ) for λ ∈ Λ(n, k).

Example 7.2.2. For n = 3, k = 1 we have

V∗(∨∨∧) ∼= q2 −
−−−−−−−→ q −−−−−−→

V(∨∨∧) ∼= −−−−−−→ q−1
−
−−−−−−−→ q−2

where is in homological degree 0 in both complexes.

Remark 7.2.3. For complexes A,B and a chain map f : A → B we obtain a chain
map f∗ : B∗ → A∗ by setting (f∗)i = (f−i)

∗. Then we have

Cone(A
f−→ B)∗ = Cone(B∗

−f∗−−→ A∗)[−1].

From reflecting the assertion of Theorem 7.1.3, we get that every T(λ) is an iterated
cone of the same V(µ)’s, only shifted in the other direction:

Corollary 7.2.4. For any λ ∈ Λ(n, k), the object T(λ) is an iterated cone of{
q−deg(C(λ)µ) V(µ) | C(λ)µ is oriented

}
and in the final complex, all q− deg(C(λ)µ) V(µ) are now left-aligned.

For example, for n = 3 and k = 1 we have

'

q−1

q−1

q−2

q−2

id id ,
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where is in homological degree 0.

Almost directly from the definition of K = Kb(Ĉup(n, k)) we obtain the following
statement:

Lemma 7.2.5. Every element of K can be constructed by iteratively taking cones and
homological shifts of {qi T(λ) | i ∈ Z, λ ∈ Λ(n, k)} =: Υ.

Proof. Every entry of a complex in K is isomorphic to a direct sum of elements in Υ,
which we can construct with A⊕B = Cone(A[−1]

0−→ B). From that we can construct
the complexes inductively.

Using Corollary 7.2.4, we immediately get:

Corollary 7.2.6. Every element of K can be constructed by iteratively taking cones
and homological shifts of {qi V(λ) | i ∈ Z, λ ∈ Λ(n, k)}.

Definition 7.2.7. Let A be an additive category and K(A) its homotopy category of
bounded complexes. Let K0(K(A)) be the triangulated Grothendieck group, i.e.

K0

(
K(A)

)
= Z

〈
Iso
(
K(A)

)〉
�
(
[B] = [A] + [C] for distinguished triangles A→ B → C

)
By Iso

(
K(A)

)
we mean isomorphism classes in K(A), i.e. classes of homotopy equivalent

complexes.

As for K0(A), if A has an internal grading shift 〈−〉 we set qi[A] = [A 〈i〉] and this
makes K0

(
K(A)

)
into a Z[q, q−1]-module.

By definition, in K0

(
K(A)

)
we have [C ⊕D] = [C] + [D] for two complexes C,D and

[C] =
∑∞

i=−∞(−1)i[Ci], where Ci is seen as a complex in degree 0, and the sum is finite
because the complexes are bounded. By e.g. [Ros11b] the triangulated Grothendieck
group of K(A) is canonically isomorphic to the split Grothendieck of A, i.e.

K0

(
K(A)

) ∼= K0(A). (7.1)

Remark 7.2.8. For some λi ∈ Λ(n, k), i = 1, . . . , t, assume thatX is an iterated cone of
shifted (homologically and internally) V(λi) such that in the final complex V (λi) 〈si〉 [ri]
appears. Then from the formulas above we get the following equality in K0(K):

[X] =
∑

(−1)riqsi [V (λi)].

For our main categorification theorem recall the weight space decomposition V ⊗n =⊕
(V ⊗n)2k−n from Section 2.1.

Theorem 7.2.9.

a) Kb
(
Ĉup(k, n)

)
categorifies the (2k − n)-weight space of V ⊗n. More precisely, there

is an isomorphism of C(q)-modules

Φ: C(q)⊗Z[q,q−1] K0

(
Kb
(
Ĉup(k, n)

)) ∼−→ (
V ⊗n

)
2k−n .
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b) Under this isomorphism the V(λ), λ ∈ Λ(n, k), are sent to the standard-basis vλ
whereas the T(λ) are sent to the canonical basis from Definition 2.1.5.

Corollary 7.2.10.
n⊕
k=1

Kb
(
Ĉup(k, n)

)
categorifies the C(q)-vector space V ⊗n with

weight space decomposition
n⊕
k=1

(V ⊗n)2k−n.

Proof of Theorem 7.2.9. We already know K0

(
Kb
(
Ĉup(k, n)

)) ∼= K0

(
Ĉup(k, n)

)
by

(7.1). Furthermore, by Theorem 3.5.4, we have an isomorphism of Z[q, q−1]-modules
K0

(
Ĉup(k, n)

) ∼= êC(n, k) which sends [T(λ)] to C(λ). After complexification and
identification of êC(n, k)C with (V ⊗n)2k−n we get an isomorphism Φ′ : C(q) ⊗Z[q,q−1]

K0

(
Ĉup(k, n)

) ∼= (V ⊗n)2k−n sending 1⊗ [T(λ)] to v♥λ by Proposition 2.1.7.

From Corollary 7.2.4 and Remark 7.2.8 we obtain

[T(λ)] =
∑

µ:C(λ)µ is oriented

q− deg(C(λ)µ)[V(µ)].

By Definition 2.1.5 we conclude that

Φ: C(q)⊗Z[q,q−1] K0

(
Kb
(
Ĉup(k, n)

)) ∼−→ C(q)⊗Z[q,q−1] K0

(
Ĉup(k, n)

) Φ′−→
(
V ⊗n

)
2k−n

sends 1⊗ [V(µ)] to the standard basis vector vµ.

Remark 7.2.11. Note that we still have an action of Ĉob(n) on Kb
(
Ĉup(n, k)

)
, which

induces the action of TLn on V ⊗n on the level of Grothendieck groups. Hence we have
categorified the standard basis as well as the action of the Temperley Lieb algebra.

7.3 Categorified bilinear form

We now want to investigate how to obtain the bilinear form on V ⊗n from its categori-
fication Kb(Ĉup(n, k)).

Using the isomorphism Φ: C(q)⊗Z[q,q−1] K0

(
Kb
(
Ĉup(k, n)

)) ∼−→ (V ⊗n)2k−n from The-

orem 7.2.9 we define a Z[q, q−1]-bilinear form (−,−) on K0

(
Kb
(
Ĉup(k, n)

))
via

(
[M ], [N ]

)
:=
(
Φ(1⊗ [M ]),Φ(1⊗ [N ])

)
,

where the bilinear form on V ⊗n is defined by (2.1) from Definition 2.1.4.

The goal of this section is to prove the following theorem:

Theorem 7.3.1. For two complexes M,N in K := Kb
(
Ĉup(k, n)

)
, we have(

[M ], [N ]
)

=
∑
i,j

(−1)i dim HomK

(
M,N∗ 〈j〉 [i]

)
qj .

Before the proof, we need some more properties of V(λ) which follow almost directly
from the definition via reflection.
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Lemma 7.3.2. a) There is a representative of V(λ) in K which is T(λ) in homological
degree 0 and consists of sums of shifted T(λ′) with λ′ < λ in negative homological
degrees.

b) For λ, µ ∈ Λ(n, k) we have

HomK

(
V(µ),T(λ) 〈l〉 [k]

) ∼=


0 if k 6= 0,

0 if λ � µ,

0 if λ = µ, l 6= 0,

C if λ = µ, l = 0 = k.

Proof. a) For complexes A,B in K we have that A ∼= B yields A∗ ∼= B∗ directly by the
definitions. Thus, the assertion follows from Lemma 6.1.10.

b) We have HomK

(
V(λ),T(µ) 〈j〉 [l]

) ∼= HomK

(
T(µ) 〈−j〉 [−l] ,V∗(λ)

)
, because every

map in HomK

(
T(µ) 〈−j〉 [−l] ,V∗(λ)

)
gives one in HomK

(
V(λ),T(µ) 〈j〉 [l]

)
by

reading the cobordism from the other direction (and vice versa). The same holds of
course for homotopies. Thus, the assertion follows from Remark 6.3.17.

The following theorem will be used as a basic ingredient of the proof of Theorem 7.3.1.

Theorem 7.3.3. The V(λ) are dual to the V∗(λ) in the following sense:

HomK

(
V(λ),V∗(µ) 〈t〉 [j]

) ∼= {C if j = 0 = t and λ = µ,

0 otherwise.

Proof. We distinguish three cases: λ � µ, µ � λ and λ = µ. Here, the case that λ and
µ are unrelated is treated twice, but nevertheless all possible relations appear.

First assume λ � µ. By Lemma 7.3.2 a), V(λ) has entries (shifted) T(λ′) with λ′ ≤ λ, in
particular λ′ � µ. Thus, the assertion follows from Proposition 6.3.6 using Lemma 6.3.7
inductively.

Now assume µ � λ. By Lemma 7.3.2 b) we have HomK

(
V(λ),T(µ′) 〈t〉 [j]

)
= 0 for

µ′ � λ and V∗(µ) contains only such T(µ′) by Lemma 6.1.10. The reflected version of
Lemma 6.3.7 holds and we can use this to get the assertion inductively as before.

So only the case λ = µ is left to show. Let l = `(λ, λ0), then the rightmost non-zero
entry of V(λ)[l] is in homological degree 0. The assertion is equivalent to

HomK

(
V(λ)[l],V∗(λ) 〈t〉 [j]

) ∼= {C if j − l = 0 = t,

0 otherwise.

By Lemma 6.3.11 we obtain HomK

(
(V(λ)[l])i,V

∗(λ) 〈t〉 [j]
)

= 0 for all i and all j 6= 0.
Since by Lemma 7.3.2a) we have V(λ)0 = T(λ) and other V(λ)i contain (shifted) T(λ′)

with λ′ < λ, we obtain HomK

(
(V(λ)[l])i,V

∗(λ) 〈t〉
)

= 0 for i 6= l by Proposition 6.3.6.
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Thus, by Corollary 5.2.5 c), we have

HomK

(
V(λ)[l],V∗(λ) 〈t〉 [i]

) ∼= {HomK

(
T(λ),V∗(λ) 〈t〉

)
if i = l,

0 otherwise.

But by Proposition 6.3.14, we have

HomK

(
T(λ),V∗(λ) 〈t〉

) ∼= {C if t = 0,

0 otherwise.

Lemma 7.3.4. Let A,B,X be complexes in K, f : A→ B and fix j ∈ Z. Then

a) ∑
i

(−1)i dim HomK

(
X,Cone(f) 〈j〉 [i]

)
=
∑
i

(−1)i
(

dim HomK

(
X,B 〈j〉 [i]

)
− dim HomK

(
X,A 〈j〉 [i]

))

b) ∑
i

(−1)i dim HomK

(
Cone(f), X 〈j〉 [i]

)
=
∑
i

(−1)i
(

dim HomK

(
B,X 〈j〉 [i]

)
− dim HomK

(
A,X 〈j〉 [i]

))

Proof. We only prove a), since b) is analogous. From the exact triangle A 〈j〉 → B 〈j〉 →
Cone(f) 〈j〉 → A 〈j〉 [1], we obtain the the long exact sequence

· · · → HomK

(
X,A 〈j〉

)
→ HomK

(
X,B 〈j〉

)
→ HomK

(
X,Cone(f) 〈j〉

)
→ HomK

(
X,A 〈j〉 [1]

)
→ HomK

(
X,B 〈j〉 [1]

)
→ . . . .

Thus, by calculating dimensions using that the complexes are bounded, we get

0 =
∑
i

(−1)i
(

dim HomK

(
X,A 〈j〉 [i]

)
− dim HomK

(
X,B 〈j〉 [i]

)
+ dim HomK

(
X,Cone(f) 〈j〉 [i]

))
.

Proof of Theorem 7.3.1. Let ϑ(M,N) :=
∑

i,j(−1)i dim HomK

(
M,N∗ 〈j〉 [i]

)
qj .

We first show
(
[M ], [N ]

)
= ϑ(M,N) for M = V(λ) and N = V(µ). By Theorem 7.2.9

we have

(
[V(λ)], [V(µ)]

)
= (vλ, vµ) =

{
1 if λ = µ,

0 otherwise.
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On the other hand, by Theorem 7.3.3 we know

ϑ
(

V(λ),V(µ)
)

=

{
1 if λ = µ,

0 otherwise.

Thus, we get equality in this basic case.

Now we want to show the equality for general complexes in K using Corollary 7.2.6.
For that, we consider how ([−], [−]) and ϑ(−,−) change under homological and internal
shifts and cones.

We obviously have ϑ
(
M,N 〈t〉

)
= qtϑ(M,N) = ϑ

(
M 〈t〉 , N

)
and ϑ

(
M,N [t]

)
=

(−1)tϑ(M,N) = ϑ
(
M [t], N

)
. Also,

(
[M ], [N 〈t〉]

)
= qt

(
[M ], [N ]

)
=
(
[M 〈t〉], [N ]

)
and(

[M ], [N [t]]
)

= (−1)t
(
[M ], [N ]

)
=
(
[M [t]], [N ]

)
holds directly by the definition and the

bilinearity.

Furthermore, using Lemma 7.3.4 and Remark 7.2.3, for complexes X,A,B and f : A→
B we get

ϑ
(
X,Cone(A

f−→ B)
)

= (−1)
∑
i,j

(−1)i dim Hom
(
X,Cone

(
B∗

−f∗−−→ A∗
)
〈j〉 [i]

)
qj

= (−1)
∑
i,j

(−1)i
(

dim HomK

(
X,A∗ 〈j〉 [i]

)
− dim HomK

(
X,B∗ 〈j〉 [i]

))
qj

= ϑ(X,B)− ϑ(X,A)

and

ϑ
(

Cone(A
f−→ B), X

)
=
∑
i,j

(−1)i dim HomK

(
Cone

(
A

f−→ B
)
, X∗ 〈j〉 [i]

)
qj

=
∑
i,j

(−1)i
(

dim HomK

(
B,X∗ 〈j〉 [i]

)
− dim HomK

(
A,X∗ 〈j〉 [i]

))
qj

= ϑ(B,X)− ϑ(A,X).

On the other hand, we have(
[X], [Cone(A

f−→ B)]
)

=
(
[X], [B]− [A]

)
=
(
[X], [B]

)
−
(
[X], [A]

)
and(

[Cone(A
f−→ B)], [X]

)
=
(
[B]− [A], [X]

)
=
(
[B], [X]

)
−
(
[A], [X]

)
.

Therefore, the equality for general complexes follows inductively.

Remark 7.3.5. Theorem 7.3.1 together with Theorem 7.3.3 shows that under the
categorification isomorphism Φ: C(q) ⊗Z[q,q−1] K0

(
Kb
(
Ĉup(k, n)

)) ∼−→ (V ⊗n)2k−n the
class of V∗(λ) gets sent to the dual of the standard basis element vλ. Hence, the V∗(λ)

categorify the dual standard basis.



Chapter 8

Two t-structures on Kb
(
Ĉup(n, k)

)
In this chapter, we show that V∗(λ) is a linear complex, almost exact in some precise
sense and contained in the heart of two different t-structures. Up to now we have
worked with additive categories, but these t-structures allow us to consider the abelian
subcategory given by the heart. For the first t-structure, considering a functor F we
define the notion of F -exactness and F -homology to construct an analog of the standard
t-structure using F -homology. The second t-structure is built by measuring how far a
complex is away from being linear. We study the properties of T(λ) in the two hearts.

8.1 V∗(λ) as a linear complex

The linear complexes which we define now will turn out to form an abelian subcategory
of K = Kb

(
Ĉup(n, k)

)
. Linear complexes can be defined in a general setting [MOS09],

but we restrict ourselves to the context we need.

Definition 8.1.1. We say that X ∈ Chb
(
Ĉup(n, k)

)
is a linear complex if for all i we

have Xi =
⊕

j T(λij) 〈i〉 for some λij ∈ Λ(n, k).

Before we can show that the V∗(λ)’s are homotopy equivalent to linear complexes, we
need some preparations.

Definition 8.1.2. Let F : Ĉup(n, k) → Vsp be a functor, where Vsp stands for the
category of finite dimensional vector spaces. A complex C is called F -exact, if F (C) is
an exact chain complex of vector spaces. The complex C is F -exact at Cj if F (C) is
exact at F (C)j .

Theorem 8.1.3. For all λ, µ ∈ Λ(n, k) and all l ∈ Z the complex V∗(λ) is
Hom

Ĉup

(
T(µ) 〈l〉 ,−

)
-exact at all V∗(λ)j except at V∗(λ)0.

Proof. We show that for i 6= 0 we have Hi

(
Hom

Ĉup

(
T(µ) 〈l〉 ,V∗(λ)

))
= 0. By

Remark 5.2.4 we have Hi

(
Hom

Ĉup

(
T(µ) 〈l〉 ,V∗(λ)

)) ∼= HomK

(
T(µ) 〈l〉 [i],V∗(λ)

)
,

which in turn is zero for i 6= 0 by Proposition 6.3.11.

95



96 CHAPTER 8. TWO T-STRUCTURES ON Kb
(
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)
Lemma 8.1.4. Let C = (C∗, d∗) be a complex in Kb

(
Ĉup(n, k)

)
such that all differen-

tials are degree 1 maps and all cup diagrams contained in C have at most one circle.
Let A be a (shifted) cup diagram containing a circle and assume A is a summand of
Cj. Assume C is Hom

Ĉup
(A,−)-exact at Cj. Then there is a (non-zero) part of the

differential d leaving A, i.e. there is a summand X of Cj−1 such that the restriction of
dj to A→ X is nonzero.

Proof. Assume there is no map leaving A and write Cj = A⊕B. Then

dj = (0, g) : A⊕B = Cj → Cj−1

for some g : B → Cj−1. By assumption

Hom(A,Cj+1)
dj+1

−−−→ Hom(A,Cj)
dj−→ Hom(A,Cj−1)

is exact in the middle, where dm = (dm ◦ −). At Hom(A,Cj) the kernel of dj equals{
(a, b) ∈Hom(A,A)⊕Hom(A,B) ∼= Hom(A,Cj) | (0 ◦ a, g ◦ b) = 0

}
=
{

(a, b) ∈ Hom(A,A)⊕Hom(A,B) | g ◦ b = 0
}

= Hom(A,A)⊕ ker dj |Hom(A,B).

So in particular (id, 0) has to be in the image of dj+1. We choose f ∈ Hom(A,Cj+1)

such that dj+1(f) = (id, 0).

By assumption, A ∼= qr T(λ) t # for some r and λ and Cj+1 = D1 ⊕ · · · ⊕ Dp with
Di
∼= qri T(λi) or Di

∼= qri T(λi) t # for some ri and λi. We choose the labelling such
that dj+1|Di = 0 precisely for l ≤ i ≤ p. Since by assumption the differentials are degree
1 maps, by Remark 3.1.3 we have ri = r + 1 for all 1 ≤ i ≤ l.

Write f = (f1, . . . , fp) : A→ D1 ⊕ · · · ⊕Dp. Then

A A

l⊕
i=1

Di

(f1, . . . , fl)

id

dj+1

(8.1)

commutes since dj+1(f) = (id, 0).

Using delooping (Lemma 3.3.5) we identify A ∼= qr+1 T(λ) ⊕ qr−1 T(λ) and consider
the maps induced by the maps in the previous diagram for each 1 ≤ i ≤ l. There are
two cases: Either Di

∼= qr+1 T(λi) or Di
∼= qr+1 T(λi) t# ∼= qr+2 T(λi)⊕ qr T(λi). By

Lemma 3.4.14 and Remark 3.1.3 there is only a map qx T(µ)→ qy T(ν) if x ≥ y. Thus

using delooping, the diagram
A A

Di

fi

id

dj+1

is either isomorphic to
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qr+1 T(λ) qr+1 T(λ)

qr−1 T(λ) qr−1 T(λ)

qr+1 T(λi)

id

⊕

id

⊕

or to

qr+1 T(λ) qr+1 T(λ)

qr−1 T(λ) qr−1 T(λ)

qr+2 T(λi)

qr T(λi)

id

⊕

id

⊕

⊕

,

where no arrow means the map is zero. Hence, we have dj+1 ◦ fi|qr−1 T(λ) = 0 for all i
and also

l∑
i=1

dj+1 ◦ fi|qr−1 T(λ) = 0.

But this is a contradiction to the commutativity of (8.1).

Theorem 8.1.5. V∗(µ) is homotopy equivalent to a linear complex.

Before the proof we want to look at an example.

Example 8.1.6. A complex of the form

q2 T(µ)→ qT(µ) t#→ T(µ)⊕ T(ν)

with T(µ)⊕T(ν) in homological degree 0 is not a linear complex, since T(µ)t# appears.
Using delooping (Lemma 3.3.5) we see that the complex is isomorphic to

q2 T(µ)→ q2 T(µ)⊕ T(µ)→ T(µ)⊕ T(ν).

Now, all the entries are sums of shifted T(µ′), but the shifts do not match the homolo-
gical degrees, so the new complex is still not linear. If we assume that the differentials
in the original complex were saddles such that delooping creates identities in the dif-
ferentials between the two copies of q2 T(µ) and between the two copies of T(µ), then
we can apply Gaussian elimination (Lemma 5.1.2) with respect to those identities to
obtain a homotopy equivalent complex of the form 0→ 0→ T(ν) which now is clearly
linear.
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(
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)
The important point of the following proof is to ensure that when we resolve circles,
there are enough identity maps to eliminate the two factors that come from delooping.

Proof of Theorem 8.1.5. We show this by induction on `(µ, λ0). For µ = λ0 it is ob-
viously true. For the following note that since Hom

Ĉup
(C,−)-exactness is homotopy

invariant, it is preserved under Gaussian elimination. Furthermore, if we talk about a
“map”, we always mean some f : qiC → qjD for C,D ∈ Cup(n, k), which is part of the
differential of the complex.

Consider µ such that the assertion is true for all µ′ with `(µ′, λ0) < `(µ, λ0). Choose
a µ′ such that µ′ si−→ µ. Before we start, we assign to each summand of V∗(µ) =

Cone
(
qV∗(µ′) → V∗(µ).U i

)
the label “upper” or “lower” depending on whether it is

a summand of the homological shift of qV∗(µ′) or of V∗(µ′).U i. By induction, V∗(µ′)

is linear and thus the partcomplex qV∗(µ′)[1] of V∗(µ) is linear. In particular, upper
summands do not contain circles. Lower summands arise from the application of U i to
V∗(µ′), thus they are either a qm T(ν) or contain one circle. If the lower summands
contain a circle, they are of the form qmX = qm T(ν)t# = qm T(ν).U i. Here T(ν).U i =

T(ν) t# hold by Lemma 4.1.8.

We inductively construct a homotopic complex that is linear by reducing step by step
the number of circle-summands of V∗(µ)j for minimal j.

After each reduction step, the following conditions (∗) hold:

• every summand that still exists has already been a summand at the start (i.e.
summands are only deleted, not changed or added)

• for each lower summand of V∗(µ)l, l ≥ j, there is exactly one upper summand
with a map from the upper summand to the lower summand and it is of the form
qr+1 T(τ)

±Hi−−−→ qr T(τ).U i for some τ

• all maps are saddles up to scalars

By induction and construction of V∗(µ) as a cone this is obviously true in the beginning.

Now let j be minimal such that V∗(µ)j has a summand containing a circle. By con-
struction of V∗(µ) this summand is some qjX with X = T(ν).U i, i.e. qjX is a lower
summand. By Lemma 8.1.4 we know that there is a map leaving qjX.

By condition (*) there is exactly one map α entering qjX that is coming from an upper
summand and it is of the form qr+1 T(ν)

±Hi−−−→ qr T(ν).U i. When we resolve the circle
in qjX using delooping (Lemma 3.3.5) we get qj−1 T(ν) ⊕ qj+1 T(ν) and α composed
with the delooping isomorphism is an isomorphism onto the summand qj+1 T(ν). Using
Gaussian elimination (Lemma 5.1.2) we can delete qj+1 T(ν)

∼=−→ qj+1 T(ν). Since qjX
has only this one entering map coming from an upper summand, by Gaussian elimin-
ation only maps that go from lower to upper summands are changed, where the lower
summand is a summand of V∗(µ)j+1. These new maps are still saddles (up to scalar),
since in the Gaussian elimination process we compose two degree 0 maps with a saddle.

In particular, the map leaving qjX composed with the resolving-isomorphism is still
there. Let Z be its target. By minimality assumption Z = qj−1 T(ν ′) and the map
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qjX → qj−1 T(ν ′) was a saddle. Since X contains a circle and T(ν ′) does not, the
saddle s has to connect the circle to another component. Composing this with
: qj−1 T(ν)→ qjX, which is part of the resolving-isomorphism, we get a non-zero degree
0 map, i.e. an isomorphism qj−1 T(ν) → qj−1 T(ν ′). (Note that by Lemma 3.4.14 this
means ν = ν ′.)

So we can delete qj−1 T(ν) → qj−1 T(ν ′) by Gaussian elimination. This only changes
maps going from V∗(µ)j to V∗(µ)j−1 and does this by composing two degree 0 morph-
isms with a saddle. Therefore, all morphisms are still saddles (up to scalar). Hence,
after each step the conditions (∗) are still satisfied.

We iterate until no summand with a circle is left. Since all the surviving summands
are summands already present at the start, they have the right degree. Note that
the elimination process never eliminates V∗(µ)0

∼= T(µ): From the process above that
elimination would mean that after delooping V∗(λ)1 contains a summand T(λ). But
we know from Lemma 6.1.10 that this cannot be true.

Since V(λ) is just the reflected complex (cf. Definition 7.2.1) and by definition the
reflected complex of a linear complex is again linear, we immediately get

Corollary 8.1.7. V(λ) is homotopy equivalent to a linear complex.

8.2 Generalities on t-structures

We start by recalling the definition of a t-structure in a triangulated category, for a
more detailed treatment see e.g. [KS94].

Definition 8.2.1. Let D be a triangulated category and let D≤0 and D≥0 be full
subcategories. Then (D≤0,D≥0) is a t-structure on D if the following conditions are
satisfied with D≤n = D≤0[−n] and D≥n = D≥0[−n]:

(T1) D≤−1 ⊂ D≤0 and D≥1 ⊂ D≥0

(T2) HomD(X,Y ) = 0 for X ∈ ob(D≤0) and Y ∈ ob(D≥1)

(T3) For any X ∈ ob(D), there exists a distinguished triangle X0 → X → X1 → X0[1]

in D with X0 ∈ ob(D≤0) and X1 ∈ ob(D≥1).

The full subcategory D≤0 ∩ D≥0 is called the heart of the t-structure.

The heart has the following important properties:

Proposition 8.2.2. The heart is an abelian category. A sequence 0→ X
u−→ Y

v−→ Z →
0 in the heart is exact if and only if there exists a distinguished triangle X u−→ Y

v−→
Z

w−→ X[1] in D.

Proof. See e.g. [KS94, Prop 10.1.11] resp. [KW01, Theorem II.3.1].

For later use we need the following property of Ext1 in the heart, see e.g. [KW01,
Lemma II.3.2]:
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Lemma 8.2.3. Let C = D≤0 ∩ D≥0, then for X,Y ∈ C we have

Ext1
C(X,Y ) ∼= HomD(X,Y [1]).

Remark 8.2.4. The isomorphism ϕ of Lemma 8.2.3 can be defined as follows: An
element a of Ext1

C(X,Y ) is given by an exact sequence 0→ Y → Z → X → 0. By [KS94,
Proposition 10.1.11 (iii)] there is a unique h : X → Y [1] such that Y → Z → X

h−→ Y [1]

is a distinguished triangle in D. We define the map ϕ by sending a to h.

We will now construct two different t-structures in the triangulated category K =

Kb
(
Ĉup(n, k)

)
. The first one should be viewed as an analog of the standard t-structure

in the bounded derived category Db(A) for an abelian category A. Since we neither
start with an abelian category nor work with the derived category of some module
category this construction requires some work.

8.3 The homological t-structure

The first of the two t-structures is build using homology functors (measuring F -
exactness).

Definition 8.3.1. Let F : Ĉup(n, k) → Vsp be a functor. The F -homology of a
complex X ∈ Ch

(
Ĉup(n, k)

)
is the family of vector spaces HF

∗ (X) defined by

HF
i (X) = Hi

(
F (X)

)
,

which is the ith homology of the complex F (X).

We are mainly interested in the case where F is the functor

F (−) =
⊕

λ∈Λ(n,k)
i∈Z

Hom
Ĉup

(T(λ) 〈i〉 ,−). (8.2)

Lemma 8.3.2. For X ∈ Kb
(
Ĉup(n, k)

)
and λ ∈ Λ(n, k) there are only finitely many

i ∈ Z such that Hom
Ĉup

(
T(λ) 〈i〉 , X

)
6= 0. Therefore, F (X) is a finite sum for F as

in (8.2).

Proof. By Theorem 3.4.12 all HomCup(n,k)

(
T(λ),T(µ)

)
are finite dimensional, and since

there are only finitely many λ and µ, the maximal degree of maps is bounded by some
b. By delooping (Lemma 3.3.5) X is isomorphic to a complex containing only direct
sums of shifted qr T(λ)’s for some r ∈ Z and some λ ∈ Λ(n, k). Since X is bounded, the
appearing q-shifts in X are bounded above by ma and below by mb. Hence, if we take
i larger than b + ma, then Hom

Ĉup
(T(λ) 〈i〉 , X) = 0 for all i. Since degrees of maps

are non-negative by Lemma 3.4.14, we obtain the same result when taking i < mb. The
second assertion follows from the finiteness of Λ(n, k).

From now on we consider the triangulated category D = K = Kb
(
Ĉup(n, k)

)
together

with the functor F from (8.2). We define subcategories for the t-structure in analogous
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fashion as for the standard t-structure, where we have to note that the inequalities look
slightly different since we denote our complexes homologically and not cohomologically.
Let D≥0 be the full subcategory of D with objects complexes X with HF

i (X) = 0 for
i > 0; D≤0 is defined analogously with < 0.

Our goal is to show that this gives a t-structure. But before doing this, we need to
understand D≤0 better.

Lemma 8.3.3. Let X be an object in D≤0. Then X ' Z for some complex Z with
Zj = 0 for all j < 0.

Proof. By Gaussian elimination (Lemma 5.1.2), the complex X is homotopic to a com-
plex Z that contains no isomorphisms as a part of the differential, i.e. written in the
matrix form of Definition 3.1.2 the entries of the differential matrices are never iso-
morphisms. Since X is an object of D≤0, the same holds for Z. Let m be minimal such
that Zm 6= 0 and assume that m < 0. Since Zm 6= 0 there are some λi ∈ Λ(n, k) and
li ∈ Z such that Zm ∼=

⊕r
i=1 T(λi) 〈li〉. Now HomK

(
T(λ1) 〈l1〉 [m], Z

)
contains the

map given by T(λ1) 〈l1〉 ↪→ Zm since by minimality of m this is a chain map:

T(λ1) 〈l1〉 [m] . 0 T(λ1) 〈l1〉

Z . . . Zm+1 Zm 0

=

=

It is not homotopic to zero, since there are no isomorphisms in the differential of Z.
Thus Hm(HomCup(T(λ1) 〈l1〉 , Z)) ∼= HomK(T(λ1) 〈l1〉 [m], Z) 6= 0. But this contradicts
HF
m(Z) = 0 for m < 0.

Corollary 8.3.4. (T2) for t-structures holds.

Proof. Let X ∈ ob(D≤0) and Y ∈ ob(D≥1) = ob(D≥0). Then HomK(X,Y ) ∼=
HomK(Z, Y ) for Z as in the lemma above. By assumption, HF

i (Y ) = 0 for all i > −1,
thus HomK

(
T(λ) 〈j〉 [i], Y

) ∼= Hi

(
Hom

Ĉup
(T(λ) 〈j〉 , Y )

)
= 0 for all i ≥ 0, all j ∈ Z

and all λ ∈ Λ(n, k). Since Zi = 0 for i < 0 we can use Lemma 6.3.7 analogously to the
proof of Proposition 6.3.8 to obtain HomK(Z, Y ) = 0 and we are done.

Proposition 8.3.5. (T3) for t-structures holds.

Proof. Let X be a complex in K. If HF
0 (X) 6= 0 we have HomK

(
T(λi) 〈li〉 [0], X

)
6= 0

for finitely many choices (λi, li) ∈ Λ(n, k)×Z, say 1 ≤ i ≤ m. For each such pair (λi, li)

let f1
i , . . . , f

ri
i be a basis of HomK

(
T(λi) 〈li〉 [0], X

)
. We now enlarge X to a complex

B constructed inductively, such that B ∈ ob(D≥1). Let B1 = X1 ⊕A0 for

A0 =
⊕
i

ri⊕
j=1

T(λi) 〈li〉 .

Then,

B0 = · · · → X3 → X2
d2−→ B1

d1−→ X0 → X−1 → . . .
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with differentials as in X except for d2|X2→A0 = 0, d2|X2→X1 = dX2 , d1|X1→X0 = dX1
and

d1|⊕ri
j=1 T(λi)〈li〉→X0

= (f1
i , . . . , f

ri
i )

for all i is a complex, since the f ji are chain maps. Now HomK(T(λi) 〈li〉 [0], B0) = 0

for all i since all the possible maps into X0 factorise over B1 via maps of the form c · id,
thus HF

0 (B0) = 0. We continue to do the same procedure for 1 instead of 0 and B0

instead of X and obtain a complex B1 with HF
j (B1) = 0 for j = 0, 1. Iterating until

we reach m = max{l | Xl 6= 0} we obtain a complex B = Bm with HF
j (B) = 0 for all

j ≥ 0. Therefore, we have B ∈ ob(D≥1). Let A be the partcomplex given by the Aj , j =

0, . . . ,m but now starting in homological degree 0. By construction, A is concentrated
in non-negative homological degrees, thus A ∈ ob(D≤0). Let g : B[−1] → A be the
chain map given by gj |Xj+1→Aj = 0, gj |Aj→Aj = id. Then, for example by iterated
Gaussian elimination (Lemma 5.1.2) starting from the left of the complex Cone(g) we
obtain finally X ' Cone(g). In particular, X fits into a distinguished triangle B[−1]→
A→ X → B. By rotation we get the desired triangle A→ X → B → A[1].

Since condition (T1) of the t-structure is clearly satisfied we obtain in total:

Theorem 8.3.6. (D≤0,D≥0) is a t-structure on D.

We call this t-structure the homological t-structure on K and denote by Ch its heart.

Proposition 8.3.7. The qr V∗(λ)’s are contained in the heart Ch for every r.

Proof. This follows directly from Theorem 8.1.3.

Our next goal is to justify our notation T(λ) by showing that these objects are tilting
objects in Ch in the sense of [Soe99]. We start by verifying the assumptions from there.

Proposition 8.3.8. In the heart Ch of the homological t-structure the V∗(λ) 〈j〉, λ ∈
Λ(n, k), j ∈ Z≥0, are indecomposable objects such that

1. HomCh
(

V∗(λ) 〈m〉 ,V∗(µ) 〈j〉
)

= 0 unless λ ≥ µ,

2. Ext1
Ch
(

V∗(λ) 〈m〉 ,V∗(µ) 〈j〉
)

= 0 unless λ > µ,

3. dim HomCh
(

V∗(λ) 〈m〉 ,V∗(µ) 〈j〉
)
<∞, and

dim Ext1
Ch
(

V∗(λ) 〈m〉 ,V∗(µ) 〈j〉
)
<∞ for all λ, µ, m, j.

Proof. By Theorem 6.3.2 we know

End
(

V∗(λ) 〈j〉
)

= End
(

V∗(λ)
)

= C

which is local, thus V∗(λ) 〈j〉 is indecomposable. Since

HomCh(V∗(λ) 〈m〉 ,V∗(µ) 〈j〉) = HomK(V∗(λ) 〈m〉 ,V∗(µ) 〈j〉)

= HomK(V∗(λ) 〈m− j〉 ,V∗(µ)),
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the first condition holds by Theorem 6.3.9. For the second condition note that by
Lemma 8.2.3 we know

Ext1
Ch(V∗(λ) 〈m〉 ,V∗(µ) 〈j〉) = HomK(V∗(λ) 〈m〉 ,V∗(µ) 〈j〉 [1])

∼= HomK(V∗(λ) 〈m− j〉 [−1],V∗(µ))

which is zero unless λ ≥ µ by Theorem 6.3.9. By Lemma 6.3.10 we also see that it is
zero for λ = µ, so we have the second condition.
By Theorem 3.4.12 HomCup(n,k)

(
T(ν),T(ν ′)

)
is finite dimensional. Since V∗(λ)

can be represented by a bounded complex of shifted T(ν)’s by Lemma 6.1.10,
HomK

(
V∗(λ) 〈j〉 ,V∗(µ)

)
is contained in a finite product of HomCup(n,k)

(
T(ν),T(ν ′)

)
’s

and hence also finite. By the same argument using Lemma 8.2.3 the other part of the
third condition follows, too.

Definition 8.3.9. Analogously to [Soe99] we say that an object M in the heart Ch
admits a finite V∗-flag if 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M such that Mi/Mi−1

∼=
qs V∗(λi) for some λi ∈ Λ(n, k) and some s ∈ Z. Moreover, the V∗-flag ends with V∗(λ)

if V∗(λ) ∼= Mr/Mr−1.

Proposition 8.3.10. The T(λ)’s are indecomposable tilting objects in the sense that
they are the unique indecomposable objects in Ch satisfying

(a) Ext1
Ch
(

T(λ),V∗(ν) 〈j〉
)

= 0 for all ν ∈ Λ(n, k) and all j ∈ Z

(b) T(λ) admits a finite V∗-flag ending with V∗(λ).

Proof. Here we want to apply the dual version of [Soe99, Proposition 3.1] under the
condition of Proposition 8.3.8. The proof works analogously to the proof of [Soe99,
Proposition 3.1]: As induction start one takes T (λ) = V∗(λ) for λ minimal. In the
induction step, instead of reducing the set {∆(ν) | ν ∈ Λ} to {∆(ν) | ν ∈ λ, ν 6= µ} for
µ a smallest element below λ, we have to reduce the set {V∗(ν) 〈j〉 | ν ∈ Λ(n, k), j ∈ Z}
to {V∗(ν) 〈j〉 | ν ∈ Λ(n, k), ν 6= µ, j ∈ Z}, where ν is a smallest element below λ

which exists since Λ(n, k) is finite. The rest works in the same way. Thus, there
exist indecomposable objects T = T(λ), λ ∈ Λ(n, k), called the indecomposable tilting
objects, which satisfy conditions a) and b) and they are unique up to isomorphism.
We check the defining conditions for our T(λ): We have

EndCh
(

T(λ)
)

= HomK

(
T(λ),T(λ)

)
= HomCup(n,k)

(
T(λ),T(λ)

)
0
∼= C

by Lemma 3.4.15, thus EndCh(T(λ)) is local and hence T(λ) is indecomposable. Since

Ext1
Ch
(

T(λ),V∗(ν) 〈j〉
) ∼= HomK

(
T(λ),V∗(ν) 〈j〉 [1]

)
by Lemma 8.2.3, Propositon 6.3.11 yields

Ext1
Ch
(

T(λ),V∗(ν) 〈j〉
)

= 0

for all ν and all j. We prove the existence of the flags by induction on `(λ, λ0). It is
clear for T(λ0) = V∗(λ0). If there is such a flag for some T(λ) and λ→ λsi, then there
is one for T(λsi) ∼= T(λ).U i by the next lemma (Lemma 8.3.12).
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Remark 8.3.11. Applying the grading shift by j there exists a unique T(λ) 〈j〉 which
satisfies a) and admits a finite V∗-flag ending with V∗(λ) 〈j〉. An object of the form
T =

⊕
λ,j T(λ)⊕aλ,j 〈j〉 is called tilting.

The above result makes a connection to standard results from representation theory.
It is known [BS11a] that the algebra A from Remark A.2.3 is quasi-hereditary (or its
category C of finitely generated A-modules is highest weight) in the sense of Cline,
Parshall and Scott. In particular, C has a class of standard objects ∆(λ) and dual
standard objects ∇(λ), λ ∈ Λ(n, k). A module T in C is then tilting if and only if it
has both a ∆-filtration and a ∇-filtration. In particular, it is tilting in the above sense
by [Don98, Appendix].

Under the identification of
⊕

λ,µ∈Λ(n,k) Hom
(

T(λ),T(µ)
) ∼= A our V∗(λ) and V(λ)

correspond to the standard and dual standard objects, resp.

To finish the proof of Proposition 8.3.10 we have to prove the following lemma:

Lemma 8.3.12. Let M ∈ Ch and assume M has a finite V∗-flag. Then M.U i ∈ Ch
and M.U i has a finite V∗-flag. If the V∗-flag of M ends with V∗(λ) and λ→ λsi, then
the V∗-flag of M.U i ends with V∗(λsi).

Proof. We do induction on the length r of the filtration. If r = 1, then M = qs V∗(λ)

for some λ. By Proposition 7.1.1 we either have M.U i ' 0, and M.U i is in the heart
with a filtration of length 0, or there is a distinguished triangle

qt V∗(ν)[−1]→ qp V∗(µ)→M.U i → qt V∗(ν)

for some t, p and some ν, µ. If λ → λsi, then ν = λsi and t = s. By rotation
we get the distinguished triangle qp V∗(µ) → M.U i → qt V∗(ν) → qp V∗(µ)[1]. Since
qp V∗(µ) and qr V∗(ν) are in the heart, so is M.U i by [KS94, Proposition 10.1.11]. By
Proposition 8.2.2 the sequence

0→ qp V∗(µ)→M.U i → qt V∗(ν)→ 0

is exact in Ch and thus we obtain a filtration 0 ⊂ qp V∗(µ) ⊂ M.U i with
M.U i /qp V∗(µ) ∼= qt V∗(ν). In particular, if λ → λsi, then the filtration ends with
V∗(λsi).

Now assume r > 1. Then there is an exact sequence 0 → Mr−1 → M → qs V∗(λ) → 0

in Ch, where qs V∗(λ) ∼= M/Mr−1, giving a distinguished triangle Mr−1 → M →
qs V∗(λ) → Mr−1[1]. Since Cone(A → B).U i ∼= Cone(A.U i → B.U i), the triangle
Mr−1.U i → M.U i → qs V∗(λ).U i → Mr−1.U i[1] is also distinguished. By [KS94,
Proposition 10.1.11] and Proposition 8.2.2 M.U i is in Ch and

0→Mr−1.U i
ι−→M.U i

π−→ qs V∗(λ).U i → 0

is an exact sequence in Ch. By induction there is a finite V∗-flag 0 = M ′0 ⊂M ′1 ⊂ · · · ⊂
M ′l = Mr−1.U i and by the induction start we have an exact sequence

0→ qp V∗(µ)→ qs V∗(λ).U i
π′−→ qt V∗(ν)→ 0



8.4. THE LINEAR T-STRUCTURE 105

for some t, p and µ,ν with ν = λsi and t = s if λ → λsi. Let p = π′ ◦ π : M.U i →
qs V∗(λ).U i → qt V∗(ν) and let M ′l+1 := ker(p). Since ι ◦ π = 0 we have M ′l ⊂ M ′l+1.
Furthermore 0 → M ′l+1 → M.U i

p−→ qt V∗(ν) → 0 is exact, thus M ′l+1 ⊂ M ′l+2 :=

M.U i with M ′l+2/Ml+1
∼= qt V∗(ν). It remains to show M ′l+1/M

′
l = ker(p)/Mr−1.U i ∼=

qp V∗(µ). But this follows from Lemma 8.3.13 below with A = Mr−1.U i, B = M.U i,
C = qs V∗(λ).U i, E = qt V∗(ν), F = ker(p), X = qp V∗(µ) and Y = ker(p)/Mr−1.U i.

Lemma 8.3.13. Assume in an abelian category all sequences in the following diagram
are exact

0

0 Y 0

F X

0 A B C 0

0 E

0 0

f

a

Then X ∼= Y .

Proof. We apply the snake-lemma to

0 A F Y 0

0 B B 0

a f 0

id

and since ker(f) = 0, ker(0) = Y , coker(a) = C, coker(f) = E, coker(0) = 0 we get an
exact sequence

0→ Y → C → E → 0.

Thus, by uniqueness of the kernel we obtain X ∼= Y .

8.4 The linear t-structure

The second t-structure is constructed such that the heart is given by the linear complexes
from Definition 8.1.1. All the important complexes appearing in this thesis will turn
out to be (homotopy equivalent to) linear complexes.

Theorem 8.4.1. Let D = Kb
(
Ĉup(n, k)

)
and let D≥0 be the full subcategory with objects

complexes X with Xi =
⊕
qkµ T(µ) where kµ − i ≥ 0; D≤0 is defined analogously with

≤ 0. Then (D≤0,D≥0) is a t-structure on D.
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We call this t-structure the linear t-structure and denote by Cl its heart.

Proof. We have that D≥n is the full subcategory of complexes X with Xi =
⊕
qkµ T(µ)

where kµ − i ≥ n; analogously for ≤. Therefore, D≤−1 ⊂ D≤0 and D≥1 ⊂ D≥0 is clear.

For (T2) note that because of Corollary 3.4.13 all morphisms in Cup T(n, k) are of
non-negative degree and every complex is isomorphic to one with entries direct sums of
shifted T(λ)’s. Assume there is A ∈ ob(D≤0) and B ∈ ob(D≥1) with fj : Aj → Bj not
zero for some j. Then there is some summand qr T(µ) of Aj and qs T(λ) of Bj such
that fj restricted to those is not zero. Let g : qr T(µ)→ qs T(λ) be the restriction. We
have r − j ≤ 0 and s − j ≥ 1, so deg(g) = r − s = r − j − (s − j) < 0, which is a
contradiction to Lemma 3.4.14. Thus, there is no non-zero map from A to B.

Now let X ∈ D. We write each Xi as Xi = X−i ⊕ X+
i where X−i =

⊕
qkµ T(µ)

where kµ − i ≤ 0 and X+
i =

⊕
qkµ T(µ) where kµ − i ≥ 1. We have di|X−i : X−i →

X−i−1 ⊕X
+
i−1 = (d−i , 0) by the proof of (T2). Thus (X−, d−) defined by (X−)i = X−i is

a complex and the inclusion ι : X− → X is a morphism of complexes. Using Gaussian
elimination (Lemma 5.1.2) with respect to all ιi to eliminate all summands of X− we see
that Cone(ι) is homotopy equivalent to some Y ∈ D≥1. Thus, the desired distinguished
triangle for (T3) is X− → X → Y → X−[1].

Corollary 8.4.2. The linear complexes form an abelian subcategory of Kb(Ĉup(n, k)).

Proof. Clearly, the linear complexes are the heart of the linear t-structure which is
abelian by Proposition 8.2.2.

Thus, by Theorem 8.1.5 and Corollary 8.1.7, we have:

Corollary 8.4.3. The V∗(λ)’s and V(λ)’s are contained in the heart Cl of the linear
t-structure.

Proposition 8.4.4. The T(λ)’s are simple objects in the heart Cl.

Proof. Let Z be a linear complex and f : T(λ) → Z a chain map. We have to show
that f is either a monomorphism or 0. Assume f 6= 0. By [KS94, (10.1.17)], ker f '
τ≤0(Cone(f)[−1]) and for X0 → X → X1 → X0[1] a triangle as in (T3) we have
τ≤0X ' X0 by [KS94, Proposition 10.1.4].

Since f 6= 0 because of Lemma 3.4.14 we have Z0 = Y ⊕ T(λ) and f ′ := f |T(λ)→T(λ) =

c · id. Thus, inside Cone(f) we can apply Gaussian elimination (Lemma 5.1.2) with
respect to f ′ and obtain Cone(f) ' Z ′ with Z ′i = Zi for i 6= 0 and Z ′0 = Y . Now Z ′ is
still a linear complex, thus (Z ′[−1])i contains only summands qrµ T(µ) with rµ− i = 1,
thus τ≤0(Z ′[−1]) ' (Z ′[−1])− ' 0, i.e. ker f ' 0 and f is a monomorphism.

Corollary 8.4.5. The simple objects in Cl are the T(λ) 〈i〉 [i]’s.

Proof. Let i 6= 0 and assume Z is a linear complex such that 0 6= f : T(λ) 〈i〉 [i] → Z

is not a monomorphism. Then Z 〈−i〉 [−i] is also a linear complex and f 〈−i〉 [−i] :

T(λ)→ Z 〈−i〉 [−i] is not a monomorphism which contradicts Proposition 8.4.4. Thus,
the T(λ) 〈i〉 [i]’s are simple.
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Assume some linear complex Y with Yi 6= 0 is simple and Y is not isomorphic to some
T(µ) 〈i〉 [i]. Let T(λ) 〈i〉 be a summand of Yi and consider f : Y → T(λ) 〈i〉 [i] given
by id on T(λ) 〈i〉 and 0 elsewhere. To Cone(f) we can apply Gaussian elimination
(Lemma 5.1.2) with respect to id and obtain Cone(f) ' Z[1] where Z is the linear
complex with Zj = Yj for j 6= i and Yi = Zi⊕T(λ) 〈i〉. By the formulas from the proof
of Proposition 8.4.4 we know

ker f ' τ≤0 Cone(f)[−1] ' τ≤0Z ' Z 6= 0,

where τ≤0Z ' Z since Z is in Cl and Z 6= 0 since Y is not isomorphic to T(λ) 〈i〉 [i].
Thus, f is not a monomorphism and Y cannot be simple.

We will revisit linear complexes in Chapter 10 when we consider the role of the complex
L(λ0) constructed there in the heart of the linear t-structure.





Chapter 9

Morphisms between exceptional
objects

In this chapter, we investigate morphisms of degree 1 and 2 between the V∗(λ)’s. Un-
derstanding these morphisms will be crucial for constructing the complex L(λ0) in the
next chapter, which will lead to a categorification of the projection πn. We give an ex-
plicit construction of all degree 1 morphisms and examine how they give rise to degree
2 morphisms.

9.1 Degree 1 morphisms

As a first step to understand morphisms from qV∗(λsi) to V∗(λ) for λ → λsi, we
consider maps from qV∗(λsi)0

∼= qT(λsi) and qV∗(λsi)1 to V∗(λ).

Lemma 9.1.1. Let λ→ λsi. Then

HomK

(
qT(λsi),V

∗(λ)
) ∼= C.

Proof. By Lemma 4.2.3 there is (up to scalar) only one degree 1 map from T(λsi) to
T(λ) which gives a chain map qT(λsi)→ V∗(λ), since V∗(λ)0

∼= T(λ) by Lemma 6.1.10.
Assume that it is homotopic to zero:

qT(λsi)

V∗(λ) . . . V∗(λ)2 V∗(λ)1 T(λ)∼=
d2 d1

This means there is a factorisation of the map f : qT(λsi) → T(λ) over V∗(λ)1. We
have deg(f) = 1 = deg(d1), thus the factorisation map T(λsi) → V∗(λ)1 has to be of
degree 0. By Lemma 6.1.10, V (λ)1 has entries (shifted) T(µ) with µ < λ < λsi. In
particular, µ 6= λsi and therefore, by Lemma 3.4.14, there is no degree 0 morphism
T(λsi)→ V∗(λ)1. Thus, there is no such nullhomotopy.

109
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Proposition 9.1.2. Let λ→ λsi. Then

HomK

(
qV∗(λsi)1,V

∗(λ)
)

= 0.

Proof. We have V∗(λsi) ∼= Cone
(
qV∗(λ)→ V∗(λ).U i

)
, thus

qV∗(λsi)1
∼= q2 V∗(λ)0 ⊕ qV∗(λ)1.U i ∼= q2 T(λ)⊕ qV∗(λ)1.U i .

By Lemma 6.1.10, any summand qr T(µ) of V∗(λ)1 satisfies µ < λ. Using Lemma 4.1.8
gives

T(µ).U i ∼=


qT(µ)⊕ q−1 T(µ),

T(ν) for ν < µ < λ,

T(µsi) with µsi > µ,

0.

But Lemma 1.1.32 provides µsi � λ if µsi > µ. Thus, qV∗(λ)1.U i ∼=
⊕

some ν:ν�λ
qrν T(ν)

for some rν and

qV∗(λsi)1
∼= q2 T(λ)⊕

⊕
some ν:ν�λ

qrν T(ν).

Therefore, we can apply Remark 6.3.17 to obtain HomK(qV∗(λsi)1,V
∗(λ)) = 0.

Theorem 9.1.3. Let λ→ λsi. Then

HomK

(
qV∗(λsi),V

∗(λ)
) ∼= C.

Proof. By Remark 6.3.17 we have HomK

(
(qV∗(λsi))j ,V

∗(λ)[l]
)

= 0 for l 6= 0 and all
j. By Proposition 9.1.2, we know HomK

(
qV∗(λsi)1,V

∗(λ)
)

= 0, thus the assertion
follows from Corollary 5.2.5 a) and Lemma 9.1.1.

Our next task is to construct a non-trivial element of the homomorphism space
HomK

(
qV∗(λsi),V

∗(λ)
)
.

Remember that for w = (w1, . . . , wr) a vector with entries 0 and 1, w.(i1, . . . , ir) was
defined as Bi1 . . . Bir (up to shift), where

Bil =

{
U il if wl = 1,

Id if wl = 0.

Definition 9.1.4. Let λ → λsi = ν. We define a collection of maps fλ,ν : qV∗(ν) →
V∗(λ) as follows:
We know qV∗(ν) = Cone

(
q2 V∗(λ) → qV∗(λ).U i

)
. Let fλ,ν = α ⊕ β where β :

qV∗(λ).U i
id .Hi−−−→ V∗(λ) is given by the saddle from U i to Id.

To define the map α we switch to the cube description. Let ν = λ0.si1 . . . sir
where si1 . . . sir ∈ Wmin is a reduced expression and sir = si. Recall that V∗(ν) ∼=
T(λ0).R(i1, . . . , ir) and the entries of the complex V∗(ν) are (up to degree-shift) of the
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form T(λ0).
(
w.(i1, . . . , ir)

)
, wherew is a 0, 1-vector as before. In particular, every entry

of V∗(ν) is determined by its w (cf. Definition 6.1.3, Example 6.1.4).

For w = (w1, . . . , wr) let w = (w1, . . . , wr−1). Assume wj = 1, then we denote by w↓j
the tuple where wj is changed to 0. We know that w↓i describes an entry of V∗(λ) for
i = 1, . . . , r − 1.

Now let w describe an entry of qV∗(λ) inside V∗(ν), i.e. wr = 0. For each j such that
wj = 1 we define a map αw,j : T(λ0).

(
w.(i1, . . . , ir)

)
→ T(λ0).

(
(w↓j).(i1, . . . , ir−1)

)
via αw,j = ηw,j · id Hj id where ηw,j ∈ {±1, 0} will be specified later. Finally we define
α via α|T(λ0).(w.(i1,...,ir)) = {αw,j}j:wj 6=0. All the other maps are zero.

One crucial step will be to choose the ηw,j such that fλ,ν becomes a chain map (cf.
Proposition 9.1.10).

Note that we always have an easy description of fλ,ν in homological degree 0: (fλ,ν)0 =

β0 = idH i.

Example 9.1.5. Recall

R(3, 2, 4) =

q2 IdU2 Id q U3 U2 Id

q3 Id Id Id q2 U3 Id Id q IdU2 U4 U3 U2 U4

q2 Id IdU4 q U3 IdU4

− id H2 id

id id H4 id id H4− id H2 id

H3 id id

id id H4

⊕
− id H2 id

id id H4

⊕

H3 id id

⊕
id H2 id

−H3 id id

⊕
id H2 id

,

from Example 6.1.4. We have

R(3, 2, 4) = Cone
(
qR(3, 2) Id

H4−−→ R(3, 2).U4

)
for

R(3, 2) =

q IdU2 U3 U2

q2 Id Id q U3 Id

H3 id

−H3 id

id H2 ⊕
id H2 .

Now we want to describe a chain map

qV∗(λ0s3s2s4) ∼= qT(λ0).R(3, 2, 4)→ T(λ0).R(3, 2) ∼= V∗(λ0s3s2)

as in the definition above.

In a first step we get a collection of maps qR(3, 2, 4)→ R(3, 2):
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q3 IdU2 Id q2 U3 U2 Id

q4 Id Id Id q3 U3 Id Id q2 IdU2 U4 q U3 U2 U4

q3 Id IdU4 q2 U3 IdU4

q IdU2 U3 U2

q2 Id Id q U3 Id

η3 idH2 id

−

η1H3 id id

η2 idH2 id

−

η4H3 id id

⊕
−

id idH4

⊕

id idH4

id idH4

⊕

−

id idH4

⊕

−

⊕

Here, the blue maps are β and the red maps are α with the ηi ∈ {0, 1,−1}, where we
denote η1 = η(110),1, η2 = η(110),2, η3 = η(010),2 and η4 = η(100),1. Consider for example
w = (110), then w describes the entry w(3, 2, 4) = q U3 U2 Id inside R(3, 2, 4). For
j = 1 we have wj = 1 and w↓j = (01) describes the entry (01)(3, 2) = q IdU2 inside
R(3, 2). Thus we have some αw,j = η1H3 id : q2 U3 U2 Id → q IdU2. Analogously the
other red maps are constructed.

The trick is now to choose the ηi such that we obtain a chain map after applying
everything to T(λ0). In this example one might be able to guess them, in particular
since T(λ0). IdU2 = 0 = T(λ0). IdU2 Id, but there is still some calculation involved.

The first part of showing that fλ,ν is a chain map is easy:

Lemma 9.1.6. The map β : qV∗(λ).U i → V∗(λ) from the previous definition is a
chain map.

Proof. This follows directly from Lemma 4.2.8 a), since the signs in V∗(λ).U i and V∗(λ)

are the same.

Now we need to work out the coefficients ηw,j from the definition.

The next notation is motivated by the following: When we consider the composition of
the two saddles

q2 H−→ q
H−→ ,

then using neckcutting this composition is equal to + in the shorthand nota-
tion from Remark 3.2.5.

By (•l)
(
w.(i1, . . . , ir)

)
we denote the sum of the following two cobordisms from(

w.(i1, . . . , ir)
)
to itself: They both consist of

(
w.(i1, . . . , ir)

)
× [0, 1] with one dot
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each. For the first summand, there is a dot on one of the components of Bil × [0, 1] and
for the other one on the other component.

Example 9.1.7. Still using the shorthand notation for cobordisms with •’s (Re-
mark 3.2.5), in the simple case of our motivation above we have for w = (1) and
(i1) = 1 that (•1)

(
w.(i1)

)
= + . In a bigger case, for (i1, . . . , ir) =

(5, 6, 7, 8, 4, 5, 6, 3, 4, 5, 2, 3) and w = (1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1) we have

(•6)
(
w.(i1, . . . , ir)

)
= + ,

since w.(i1, . . . , ir) = . As in Remark 1.2.5, the U ij or Idij are pictured

diagonally inside the boxes starting from the lowest box and counting following the
diagonals, and the •’s have to be on the two components of the 6th box.

Now let z = (z1, . . . , zr) be a vector with entries 0, 1,−1. We define z
(
w.(i1, . . . , ir)

)
=∑

l zl · (•l)
(
w.(i1, . . . , ir)

)
. It is a morphism from

(
w.(i1, . . . , ir)

)
to itself in Cup(n, k)

of degree 2.

Example 9.1.8. In the previous example take z = (0, 0, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0). Then

z
(
w.(i1, . . . , ir)

)
= + − −

Finally, by T(λ0).z
(
w.(i1, . . . , ir)

)
we denote the previous cobordism applied to T(λ0)×

[0, 1].

Proposition 9.1.9. Let w be a vector with entries 0 and 1 and fix (i1, . . . , ir) such
that si1 . . . sir ∈ Wmin is reduced. Then there is a choice of z such that zr = −1 and
T(λ0).z

(
w.(i1, . . . , ir)

)
= 0 for all w with wr = 0.

Proof. Since the − × [0, 1] plays no role when considering connected components, we
reformulate the calculus using the diagrams from Example 9.1.8 above. Applying a
diagram to T(λ0) gives 0 if the diagram has a dot on a line connected to the bottom,
so we just use this formulation. Altogether we are considering a Z-linear combination
X of diagrams each of which is obtained from a fixed Temperley-Lieb diagram T by
adding exactly one dot. The coefficients will turn out to be in {±1}. We therefore
can abbreviate X a the single Temperley-Lieb diagram T equipped with signed dots
indicating the coefficients.

First consider w = (1, . . . , 1, 1). We have w.(i1, . . . , ir) = U i1 . . .U ir . By Remark 1.2.4
we know that w.(i1, . . . , ir) is isomorphic to some U(T ) for T ∈ Y (n, k) and U ir is asso-
ciated with a box B which is rightmost in a row of T. Let {j1, . . . , jd} ⊂ {i1, . . . , ir−1}
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be the entries of the row of B in T , read from right to left, beginning one left to B. We
set

zjl =

{
1 if l ≡ 1 mod 2,

−1 if l ≡ 0 mod 2.

{j′1, . . . , j′d′} ⊂ {i1, . . . , ir−1} be the entries of the column of B, read from bottom to
top, beginning one above B. We set

zj′l =

{
1 if l ≡ 1 mod 2,

−1 if l ≡ 0 mod 2.

We set zr = −1 and all other zi = 0.

−
+

+ − + −

This satisfies the conditions for all w with wr = 0:
Let {k1, . . . , kr} be a permutation π of {i1, . . . , ir} such that U j1 . . .U jr ∼= Uk1 . . .Ukr =

U(T ), the Temperley-Lieb diagram constructed from the row reading word of T . We
know that w.(i1, . . . , ir) ∼= ŵ.(k1, . . . , kr) where ŵ = π(w). Also z

(
w.(i1, . . . , ir)

)
=

ẑ
(
ŵ.(k1, . . . , kr)

)
where ẑ = π(z). Thus, it is enough to show the claim for

ẑ
(
ŵ.(k1, . . . , kr)

)
. We denote the index associated to the box B in T by a, so ik = a;

and let ks = ik in the permutation, so ik = ks = a.

5 6 7 8

4 5 6

3 4 5

2 3

;

Then j1, . . . , jd = a − 1, . . . , a − d and (•s)
(
ŵ.(k1, . . . , kr)

)
is the sum of the diagram

which has dots on top of the strands a and a+ 1.
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?

?

?

?

?

?

?

?

?

?

?

? −−

Let jl = kl′ . Independent of whether Bjl = U jl or = Id, we know that
(•l′)

(
t̂.(k1, . . . , kr)

)
is the sum of the diagram with one dot above Bjl on strand a− l+1

and one below Bjl on strand a− l.

±

±
=

±

±

, ± ± =
±

±

With the choice of signs for z as described above, in ẑ(ŵ(k1, . . . , kr)) these kill each
other and furthermore the one dot on strand a of Bks except for the lower dot of Bjd .
But since we know that the diagram is of Y (n, k)-form, this dot is on a line connected
to the bottom and the diagram is zero anyway.

?

?

?

?

?

?

?

?

?

?

?

?

−

−

+

+
−

−

+

+

−−

Since ks = a we know that j′1, . . . , j′d′ = a+1, . . . , a+d′. Again, for j′l = kl′′ independent
of whether Bj′l = U j′l or = Id, (•l′′)

(
ŵ.(k1, . . . , kr)

)
is the sum of the diagram with one

dot above Bj′l on strand a+ l and one below Bj′l on strand a+ l+ 1. With the choice of
signs as before, in ẑ

(
ŵ(k1, . . . , kr)

)
these kill the dot on strand a + 1 of Bks and each

other except for the dot below Bj′
d′
. But since j′d′ is in the first row, this dot is always

on a line connected to the bottom.

Proposition 9.1.10. With the notation from before and z as in Proposition 9.1.9 let

ηw,j := (−1)
∑
r>l>j b(wl)zj .

Then (α⊕ β)|qV∗(λ) from Definition 9.1.4 is a chain map.

Before proving this we consider what the map fλ,ν now looks like:
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Remark 9.1.11. Let T ∈ Y (n, k) such that U(T ) = U i1 . . .U ir . Note that up to sign
the chain map from Definition 9.1.4 T(λ0).R(i1, . . . , ir)→ T(λ0).R(i1, . . . , ir−1) is given
by id Hij id : w.(i1, . . . , ir)→ w′.(i1, . . . , ir) where w′ = w↓j for some j such that ij is
in the same row or column of T as ir and wj = 1. Here, w↓j is again setting the jth
entry to zero and v means deleting the last entry of v. In particular, the maps α and
β from fλ,ν = α ⊕ β can be described in the same fashion since setting the last entry
from 1 to 0 and then deleting it agrees with the other definition of β.

Example 9.1.12. For k = 1 and arbitrary n we only have one ∧ in the sequences in
Λ(n, k) and every λ ∈ Λ(n, k) can be described as λ = λ0.s1 . . . st for some t < n. The
tableau associated to λ is a single row of the form 1 2 3 . . . r .Therefore, for r+1 < n

and ν = λ0.s1 . . . st+1 the vector z constructed in Proposition 9.1.9 is of the form(
(−1)t−1, (−1)t−2, . . . ,−1,+1,−1

)
. Thus, the chain map fλ,ν consists up to sign of all

possible saddle cobordisms (i.e. no ηw,j is zero) and the sign is (−1)
∑
t+1>l>j b(wl)(−1)t−j

for the map starting at the entry determined by w when j < t+ 1 is deleted and +1 if
j = t+ 1 is deleted.

Proof of Proposition 9.1.10. We show that all possible squares commute. All squares
are given by an starting point determined by w with wr = 0 and an endpoint w′.
First we consider squares with w 6= w′. Because of this assumption, the map β is not
involved in such squares and only the differentials inside qV∗(λ) play a role. Also w

and w′ have to contain the same number of 1’s, so w 6= w′ can only happen if there are
1 ≤ i 6= j < r such that wk = w′k for all k 6= i, j and wi = wi = 1, w′i = 0, wj = wj = 0,
w′j = 1. Let wi be the same as w but for wi = 0 (i.e. wi = w↓i) and let wj be the
same as w except wj = 1. So (up to signs) we consider the square

w wj

wi w′.

id Hj id

idHiid idHiid

id Hj id

Up to signs, this square commutes by Lemma 4.2.8 a). The map w → wj has sign
(−1)

∑
q>j b(wq). Since wj = 0 but (wj)j = 1, the map wj → w′ has sign

(−1)
∑
r>q>i b(w

j
q)zi = (−1)

∑
r>q>i b(wq)zi(−1)γ(i,j),

where

γ(i, j) =

{
1 if j > i,

0 otherwise.

Thus w → wj → w′ has in total the sign

(−1)γ(i,j)(−1)
∑
q>j b(wq) · (−1)

∑
r>q>i b(wq)zi = −(−1)γ(i,j)zi,

since wr = 0. The map w → wi has sign (−1)
∑
r>q>i b(wq)zi and wi → w′ has sign

(−1)
∑
q>j b(w

i
q) = (−1)

∑
r>q>j b(wq)(−1)γ(i,j)+1.
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Thus for w → wi → w′ we have total sign

(−1)
∑
r>q>i b(wq)zi(−1)

∑
r>q>j b(wq)(−1)γ(i,j)+1 = −(−1)γ(i,j)zi

and the signs agree.

If w′ = w, then (up to signs) we have to consider

w {wj}wj=0

{wi}wi 6=0 w′,

id Hj id

idHiid idHjid

id Hi id

where the vertices other than w and w′ are the sum of all possible wi = w↓ i and wj .
First going α and then dV∗(λ) gives∑

i:wi 6=0

dwi→w ◦ αw,i =
∑
i:wi 6=0

(−1)
∑
j>i b(w

i
j) id Hi id ◦(−1)

∑
r>j>i b(wj)zi id Hi id

=
∑
i:wi 6=0

(−1)
∑
r>j>i b(wj)(−1)

∑
r>j>i b(wj)zi id Hi id ◦ id Hi id

=
∑
i:wi 6=0

zi id(Hi ◦Hi) id .

Going first d and then β gives id Hir ◦ id Hir = id(Hir ◦Hir). And going first d and then
α gives∑

i<r:wi=0

αwi,i ◦ dw→wi =
∑

i<r:wi=0

(−1)
∑
r>j>i b(w

i
j)zi id Hi id ◦(−1)

∑
j>i b(wj) id Hi id

=
∑

i<r:wi=0

(−1)
∑
r>j>i b(wj)zi(−1)

∑
j>i b(wj) id Hi id ◦ id Hi id

=
∑

i<r:wi=0

−zi id(Hi ◦Hi) id .

Since for wi = 0 we have id(Hi ◦Hi) id = (•i)
(
w.(i1, . . . , ir)

)
and for wi 6= 0 instead

id(Hi ◦Hi) id = (•i)
(
w.(i1, . . . , ir)

)
by neckcutting, we have to show that the following

holds when applied to T(λ0)× [0, 1]∑
i:wi 6=0

zi(•i)
(
w.(i1, . . . , ir)

)
=

∑
i<r:wi=0

−zi(•i)
(
w.(i1, . . . , ir)

)
+ (•r)

(
w.(i1, . . . , ir)

)
⇔
∑
i

zi(•i)
(
w.(i1, . . . , ir)

)
= 0

where zr = −1. But this is just Proposition 9.1.9, since
∑

i zi(•i)
(
w.(i1, . . . , ir)

)
=

z
(
w.(i1, . . . , ir)

)
by definition.

Remark 9.1.13. For the construction of fλ,ν we assumed that ν = λ0.si1 . . . sitsi and
λ = λ0.si1 . . . sit . Now we want to consider the signs (the rest does not change), if
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ν = λ0.sj1 . . . sjr for sj1 . . . sjr = s(T ) for T ∈ Y (n, k) and we delete an entry as-
sociated to a lower-right box in T , but possibly not sjr . Let js be the entry we
delete and λ = λ0.sj1 . . . ŝjr . . . sjr . Then by Lemma 6.1.9, we have an isomorph-
ism T(λ0).R(j1, . . . , jr) → T(λ0).R(j1, . . . , ĵs, . . . , jr, js) given by height isomorphisms
from each entry determined by w to the isomorphic entry determined by w′ with sign
(−1)b(wjs )(b(wjs+1

)+···+b(wjr )). Here w′ is defined by

w′i =


wi if i < s,

wi+1 ifr > i ≥ s,
ws if i = r.

When considering the map

fλ,ν : T(λ0).R(j1, . . . , ĵs, . . . , jr, js)→ T(λ0).R(j1, . . . , ĵs, . . . , jr)

restricted to the entry determined by w′, then the signs are as follows: The sign is
(−1)

∑
r>j>i b(w

′
j)zi if the entry at the ith position is deleted for i 6= r and the sign is +1

if r = s. By definition of w′ we obtain

(−1)
∑
r−1>j>i b(w

′
j) = (−1)

∑
s>j>i b(wj)(−1)

∑
r>j≥s b(wj+1).

Now we put this together to a map from T(λ0).R(j1, . . . , jr) to T(λ0).R(j1, . . . ĵs . . . , jr):
Since we can only delete js if b(wjs) = 0, the sign for this is +1. And if we delete
something else that is in the same row or column as js then the sign is

(−1)b(wjs )(b(wjs+1
)+···+b(wjr ))(−1)

∑
s>j>i b(wj)(−1)

∑
r>j≥s b(wj+1)

= (−1)(b(wjs )+1)(b(wjs+1
)+···+b(wjr ))(−1)

∑
s>j>i b(wj)

= (−1)wjs (b(wjs+1
)+···+b(wjr ))(−1)

∑
s>j>i b(wj)

multiplied with the appropriate sign given by where in the tableau the entry stands.
This appropriate sign for ji is (−1)l(ji,js) where by l(ji, js) we mean the number of lines
one has to cross while going from js to ji in the tableau associated to j1, . . . , jr.

Finally, we have constructed our desired non-zero homomorphism.

Theorem 9.1.14. Let λ → λsi, then we know that fλ,λsi is a non-zero element of
HomK(qV∗(λsi),V

∗(λ)).

Proof. We just showed that fλ,λsi is a chain map. It remains to show that it is not
homotopic to 0: If there was a homotopy, then there would be a factorization of the non-
zero map qV∗(λsi)0 → V∗(λ)0 over V∗(λ)1. But as shown in the proof of Lemma 9.1.1
this is not possible.

The non-zero representatives fλ,ν will be used in the next chapter to construct a complex
containing all the V∗(λ) as partcomplexes in a non-trivial way.
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9.2 Degree 2 morphisms

The obvious way to get a degree 2 morphism is to compose two degree 1 morphisms.
To describe the relations of these compositions we use the notion of diamonds.

Definition 9.2.1. Following [Bra02] and [ES13], we call a quadruple (λ, ν, ν ′, λ′) of

distinct elements in Λ(n, k) an (oriented) diamond if we have

ν

λ λ′.

ν ′

We call the triple (λ, ν, λ′) straight if λ′ → ν → λ and there is no ν ′ such that (λ, ν, ν ′, λ′)

is a diamond.

We start our investigation of degree 2 morphisms with the case where we have a dia-
mond.

Theorem 9.2.2. If (λ, ν, ν ′, λ′) is a diamond, then fλ′,ν ◦ fν,λ = fλ′,ν′ ◦ fν′,λ.

Proof. Let T be the tableau associated to σ, where λ = λ0.σ. Recall that a right-lower
box in the tableau is a box at the bottom of its column and at the right of its row. We
get from λ to ν or to ν ′ by deleting (different) right-lower boxes and from there to λ′

by deleting the other right-lower box. Since we have a diamond, these two boxes are
neither in the same row nor in the same column. Let �1 be the box that is deleted while
going from λ to ν and �2 the box for going from λ to ν ′. Let L1 be the set of entries of
T in the same row or column as �1 and define L2 analogously. Then, by Remark 9.1.11,
up to sign, the chain map fν,λ is given by some id Hi id, where i ∈ L1, and the same
is true for fλ′,ν′ . Analogously, chain maps fν′,λ or fλ′,ν are up to sign given by some
id Hj id with j ∈ L2. Restricted to any homological degree fλ′,ν ◦ fν,λ = fλ′,ν′ ◦ fν′,λ
holds up to signs because of the involved height moves from Lemma 4.2.8 b). Thus, it
only remains to check the signs.

For the signs, we assume that for µ ∈ {λ, ν, ν ′, λ′} we have V∗(µ) = T(λ0).R(i1, . . . , ir)

with i1, . . . , ir of tableau-form. So for the signs we can use Remark 9.1.13. Let l1 be
the entry of �1 and l2 the one of �2.

If we delete first the entry l1 and then l2, the sign is +1, the same for the other way
around. Now assume without loss of generality that �1 is above �2 in T .

Let l1 = is1 and l2 = is2 , so we know s1 < s2. We now consider different cases:

If we delete first the entry k = ij ∈ L1 r {l1} and then l2, then the sign is
(−1)ws1 (b(ws1+1)+···+b(wr))(−1)

∑
s1>i>j

b(wi)zk. For the other way around, we get the sign
(−1)ws1 (b(ws1+1)+...b̂(ws2 )···+b(wr))(−1)

∑
s1>i>j

b(wi)zk. But since we can delete l2, we know
that b(ws2) = 0 and the signs are the same.

If we delete first k = ij ∈ L2 r {l2} and then l1, then the sign is
(−1)ws2 (b(ws2+1)+···+b(wr))(−1)

∑
s2>i>j

b(wi)zk. For the other way around, we get the sign
(−1)ws2 (b(ws2+1)+···+b(wr))(−1)

∑
s1>i>j,i 6=s1

b(wi)zk. But since we can delete l1, we know
that b(ws1) = 0 and the signs are the same.
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By the same considerations, if we first delete something in L2r{l2} and then in L1r{l1},
then the signs agree, since the b(wi) that appears in one direction and not in the other
is = 0 anyway.

Now we consider the case where there is no diamond. First, we go back to ∧∨-sequences
and investigate how a straight triple can occur.

Lemma 9.2.3. If (λ, ν, λ′) is straight, then ν = λ′si and λ = νsi±1.

Proof. By definition of straight, ν = λ′si and λ = νsj with i 6= j. If j 6= i ± 1, then
λ = λ′sisj = λ′sjsi and (λ, ν, λ′sj , λ

′) is a diamond which is a contradiction.

Proposition 9.2.4. Let (λ, ν, λ′) be straight. Then

HomK

(
q2 T(λ),V∗(λ′)

)
= 0.

Proof. By Lemma 9.2.3, we know that λ = λ′sisi±1.

By Lemma 4.2.5 there is up to scalar at most one degree 2 map from T(λ′sisi±1) to
T(λ′) and it is given by

q2 T(λ′sisi±1) ∼= q2 T(λ′).U i U i±1
id Hi±1−−−−→ qT(λ′).U i

id Hi−−−→ T(λ′). (9.1)

If it is zero, then we are finished, so assume the opposite. The goal then is to construct
a null-homotopy for (9.1).

By Lemma 4.2.8 b), the diagram

q2 T(λ′).U i U i±1 qT(λ′).U i Id

qT(λ′). IdU i±1 T(λ′)

id Hi

id Hi±1

id Hi

id Hi±1

(9.2)

commutes.

First assume λ = λ′sisi+1.

We know that T(λ′) ∼= T(λ′0).U(T ) for some T ∈ Y (n, k). By Lemma 1.1.34, there is a
tableau T ′ ∈ Y (n, k) such that U(T )U i U i+1

∼= U(T ′) and T and T ′ differ in the way
that T ′ contains two more boxes, Oi and Oi+1, labelled i and i+ 1 at the end of some
row.

Assume the boxesOi, Oi+1 are in the first row. We have T(λ′).U i U i+1
∼= T(λ′0).U(T ′) ∼=

T(λ0).Uk Uk+1 . . .U i−1 U i U i+1? . . .?, where ? . . .? stands for some U j1 . . .U jl that are
unimportant for the following calculations. Thus,

T(λ′). IdU i+1
∼= T(λ0).Uk Uk+1 . . .U i−1 IdU i+1? . . .?

∼= T(λ0).U i+1 Uk Uk+1 . . .U i−1 Id? . . .? = 0,
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since i + 1 6= k because i + 1 > i was in the first row. So using the diagram (9.2), we
get that the only map q2 T(λ)→ T(λ′) is zero.

Now assume that the boxes Oi, Oi+1 are not in the first row of T ′. Let Oi+2 be the box
(labelled i+ 2) directly on top of Oi+1 in T ′. We call the associated box in T also Oi+1.

Let U(T ) = U i1 . . .U ir , then V∗(λ′) ∼= T(λ0).R(i1, . . . , ir). Let U(T ′) = U j1 . . .U jr+2 .
Let l, l′, s, s′ ∈ N such that U il corresponds to Oi+2 in T , U jl′ corresponds to Oi+2 in
T ′, U js corresponds to Oi+1 in T ′ and U js′ to Oi.
Let w = (1, . . . , 1, 0, 1, . . . , 1), where there are r entries and the 0 is at place l. Let w′

be a 0, 1-vector of length r + 2, containing 0 only at places l′, s and s′ and let w′′ be a
0, 1-vector containing 0 only at place s′.

We claim that the following diagram commutes.

qT(λ′).IdU i+1 T(λ′)

qw′′.(j1, . . . , jr+2) (1, . . . , 1).(i1, . . . , ir)

qw′.(j1, . . . , jr+2) w.(j1, . . . , jr+2)

qw.(i1, . . . , ir) (1, . . . , 1).(i1, . . . , ir)

id Hi+1

α1

α2

β2

α3

β−1
1

id Hil id

β1

(9.3)

Here, the top and bottom vertical maps α1, α3, β1, β2 are the obvious isomorphisms of
the form IdU i ∼= U i Id ∼= U i and U i U j ∼= U j U i only moving the involved U j vertically
or adding or forgetting Id’s. The vertical map α2 is the isomorphism of the form
U i+1 U i+2 U i+1

∼= U i+1, pictorially

∼= . (9.4)

On the other hand,

γ := β1◦(id Hil id)◦α3 = , δ := β1◦β−1
2 ◦(id Hi+1)◦α−1

1 = ,

(9.5)
which implies γ ◦ α2 = δ. Thus, the diagram commutes and therefore

id Hi+1 = β2 ◦ (id Hil id) ◦ α3 ◦ α2 ◦ α1.

Hence, we constructed a homotopy h for the map (9.1), namely h = σh′, where

h′ : q2 T(λ′sisi+1) ∼= q2 T(λ′).U i U i+1
Hi−→ qT(λ′).U i+1

α3◦α2◦α1−−−−−−→ qw.(i1, . . . , ir)
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and σ is the sign attached to id Hil id as part of the differential V∗(λ′)1 → V∗(λ′)0 in
the complex realising V∗(λ′) from Proposition 6.1.5. (Recall that the isomorphism β2

is used in the interpretation of V∗(λ′) as cube complex.) Thus, we are done in the case
λ = λ′sisi+1.

The case λ = λ′sisi−1 works analogously. Namely, if the boxes with entries i, i − 1,
which are now next to each other by Lemma 1.1.34, have no box to the left, then the
map (9.1) is zero anyway. If not, we take the box to the left of the (i− 1)-box. We get
again a commutative diagram as in (9.3), which allows us to define the homotopy. The

analog of (9.4) is ∼= and the two compositions in (9.5) are

and .

Note that the straightness assumption is really necessary, otherwise we have a totally
different situation:

Lemma 9.2.5. Let j 6= i ± 1 and λ′ si−→ λ′si
sj−→ λ. (In particular, (λ, λ′si, λ

′) is not
straight by Lemma 9.2.3.) Then

HomK

(
q2 T(λ),V∗(λ′)

) ∼= C.

Proof. By Lemma 4.2.5 there exists a non-zero chain map f from q2 T(λ) to V∗(λ′).
By Theorem 8.1.5, V∗(λ′) is a linear complex, thus V∗(λ′)1 contains only summands
qT(µ) which by Lemma 6.1.10 satisfy µ < λ′. Thus, we have V∗(λ′)1 =

⊕
qT(µ) for

some µ < λ′ and dV∗(λ′)|qT(µ) : qT(µ) → V∗(λ′)0
∼= T(λ′) is a degree 1 map. But by

Proposition 4.2.7, there is no degree 1 map from q2 T(λ) to qT(µ), so f cannot factorise,
i.e. it cannot be nullhomotopic.

We see that under the straightness assumption there are no degree 2 morphisms:

Theorem 9.2.6. Let (λ, ν, λ′) be straight, then

HomK

(
q2 V∗(λ),V∗(λ′)

)
= 0.

Proof. Since entries of q2 V∗(λ) are some (shifted) T(µ), we get
HomK(q2 V∗(λ)i,V

∗(λ′)[l]) = 0 for l 6= 0 and all i by Proposition 6.3.11. Using
Proposition 9.2.4, the assertion follows from Corollary 5.2.5 b).

From the previous theorem we obtain in particular that for (λ, ν, λ′) straight there is a
homotopy hλ,ν,λ′ such that fλ′,ν ◦ fν,λ ' 0.

Example 9.2.7. Here is an Example where the composition is not zero but only
homotopic to zero: Let n = 4, k = 2. Then for λ = ∨∨∧∧, ν = ∨∧∨∧ and
λ′ = ∨∧∧∨ we have that (λ, ν, λ′) is straight (cf. Example 1.1.28). Now consider(
fλ′,ν ◦ fν,λ

)
0

=
(
fλ′,ν

)
0
◦ (fν,λ)0 : q2 V∗(λ)0 → qV∗(ν)0 → V∗(λ′)0. This map is given
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by the composition of two saddles from V∗(λ)0
∼= T(λ) to V∗(λ′)0

∼= T(λ′). Thus, it is

non-zero by Lemma 4.2.5 since C(λ)C(λ′) = contains no red circle.





Chapter 10

The main player L(λ0)

We have already seen that λ0 plays an important role in all the constructions. In the
next chapter we will construct two functors F and G categorifying the projection and
inclusion of the factorisation of the Jones-Wenzl projector. For this, we construct a
certain complex L(λ0) that contains all the V∗(λ) in a non-trivial way. After that, we
study properties of this complex: We show that Cob(n) acts trivially on L(λ0). We
investigate maps from L(λ0) to itself and construct them for k = 0 and k = 1. Finally,
we show that L(λ0) is the injective hull of T(λ0) in the heart of the linear t-structure.

10.1 The construction of L(λ0)

In this section we want to construct a complex L(λ0) which satisfies L(λ0).U i ' 0 and
whose class [L(λ0)] in the Grothendieck group is up to a factor equal to vλ0 .Pn. Here,
vλ0 is the standard basis element in V ⊗n which is also an element of the canonical basis
and Pn is the Jones-Wenzl projector (cf. Chapter 2). Having Lemma 2.3.4 in mind, our
first attempt is to define

L′ :=
⊕

λ∈Λ(n,k)

q`(λ,λ0) V∗(λ)[`(λ, λ0)].

Indeed, this L′ satisfies the desired condition about its class in the Grothendieck group
K0

(
Kb
(
Ĉup(k, n)

))
:

Proposition 10.1.1. We have

[L′] =

s
n

k

{
vλ0 .Pn,

where
q
n
k

y
= JnK!

JkK!Jn−kK! and JnK = (q2n − 1)/(q2 − 1) as in Lemma 2.3.2.

Proof. In Kb
(
Ĉob(n)

)
, let Hi = q Id

Hi−→ U i and H(s) = Hi1 . . .Hir for s = si1 . . . sir ∈
Sn a reduced expression. Here, we write the tensor product in Kb

(
Ĉob(n)

)
simply by

juxtaposition, analogously to the tensor product in Ĉob(n).

125
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For λ → λsi we have V∗(λ).Hi ∼= V∗(λ.si), since Cone
(
qV∗(λ)

Hi−→ V∗(λ).U i
)
and

V∗(λ).Hi agree up to signs and the obvious sign-changing morphism is an isomorphism.
Therefore, V∗(λ0).H(s) ∼= V∗(λ0s) for s ∈Wmin. Thus,

[L′] =
∑

λ∈Λ(n,k)

(−q)`(λ,λ0)[V∗(λ)]

=
∑

s∈Wmin

(−q)l(s)[V∗(λ0).H(s)]

=
∑

s∈Wmin

(−q)l(s)vλ0 .H(s)

and the assertion follows from Lemma 2.3.2 and Lemma 2.3.4.

But since not every µ satisfies V∗(µ).U i ' 0 we cannot have L′.U i ' 0.

Thus, we want to construct a complex having the V∗(λ) as the same places as in L′ but
differentials in between:

Definition 10.1.2. Let r = max
{
`(λ, λ0) | λ ∈ Λ(n, k)

}
= k(n − k). For 0 ≤ j ≤ r

consider the complex

M(j) =
⊕

`(λ,λ0)=j

V∗(λ).

We define inductively (depending on certain morphisms gj , 0 ≤ j ≤ r − 1) complexes
L(j) as follows: Set L(r) = M(r). Assume L(s) for r ≥ s > j is already constructed
and we are given a chain map gj : qL(j + 1)→M(j). Set L(j) = Cone(gj).

Note that by construction [L(0)] = [L′] is independent of the choices for gj .

In a perfect world we could construct L(0) by using only maps gj given by the fλ,ν
constructed in Chapter 9. But as we have seen in Theorem 9.2.6 and Example 9.2.7 in
general we only know fλ′,ν ◦ fν,λ ' 0 for (λ, ν, λ′) straight and not fλ′,ν ◦ fν,λ = 0, so we
cannot obtain a chain complex using this naive approach.

We also need to introduce some signs such that using Theorem 9.2.2 for diamonds we
obtain 0 when doing the differential twice.

Definition 10.1.3. Let ~P := {(ν, λ) ∈ Λ(n, k)× Λ(n, k) | ν → λ}. Let σ : ~P → {±1}
be a sign assignment such that for every diamond (λ, ν, ν ′, λ′), the signs satisfy

σ(ν, λ)σ(λ′, ν)σ(ν ′, λ)σ(λ′, ν ′) = −1.

In particular we have σ(ν, λ)σ(λ′, ν)+σ(ν ′, λ)σ(λ′, ν ′) = 0. Such sign assignments exist
by [BS10, Section 7]. From now on we fix such a choice.

The goal now is to show the following theorem which tells us that it is possible to choose
the gj such that they contain the fλ,ν together with the new signs:
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Theorem 10.1.4. In each step of the construction from Definition 10.1.2, there is a
unique choice of gj : qL(j + 1)→M(j) such that

gj |qM(j+1) =
⊕

λ:`(λ,λ0)=j+1

{
σ(ν, λ)fν,λ

}
λ←ν . (10.1)

We will prove this by downward induction. For the base case note that there is a
unique λr ∈ Λ(n, k) of maximal length `(λr, λ0), namely λr = ∨ . . .∨︸ ︷︷ ︸

n−k

∧ . . .∧︸ ︷︷ ︸
k

, and a

unique λr−1 ∈ Λ(n, k) of length one smaller, namely λr−1 = λrsn−k. Thus, the base
case j = r − 1 is true, since L(r) = V∗(λr), M(r − 1) = V∗(λr−1) and λr−1 → λr, thus
by Theorem 9.1.14 the unique map exists.

For the other induction steps, we need some preparation:

Definition 10.1.5. We call ν ∈ Λ(n, k) single, if there is only one µ such that ν → µ.

For example, in Λ(4, 2), the element ∧∨∨∧ is single since there is only ∧∨∨∧ → ∨∧∨∧,
cf. Example 1.1.28.

For ν single, the construction of gj is in some sense local, i.e. it does not involve the
already constructed gi’s.

Proposition 10.1.6. Assume L(j + 1) is already constructed. Let ν be single and
`(ν, λ0) = j ≤ r − 2. Then

a) HomK

(
qL(j + 1),V∗(ν)

) ∼= C

b) there exist some (by a) unique) fj ∈ HomK

(
qL(j + 1),V∗(ν)

)
such that

fj |qM(j+1) =
⊕

λ:`(λ,λ0)=j+1
λ←ν

σ(ν, λ)fν,λ.

Proof. By Proposition 6.3.11 we have HomK

(
(qL(j+1))i[m],V∗(ν)

)
= 0 for all m 6= 0.

Furthermore, by Lemma 6.1.10(
qL(j + 1)

)
0

=
(
qM(j + 1)

)
0

= q
⊕

λ:`(λ,λ0)=j−1

V∗(λ)0
∼=

⊕
λ:`(λ,λ0)=j−1

qT(λ)

= qT(µ)⊕
⊕

λ:`(λ,λ0)=j+1
not ν→λ

qT(λ),

where µ is given by ν single, i.e. ν → µ. Thus, by Proposition 6.3.6 and Lemma 9.1.1
we obtain

HomK

(
(qL(j + 1))0,V

∗(λ)
) ∼= HomK

(
qT(ν),V∗(λ)

) ∼= C.

Moreover,(
qL(j + 1)

)
1

= q2M(j + 2)0 ⊕ qM(j + 1)1
∼=

⊕
λ:`(λ,λ0)=j+2

q2 T(λ)⊕
⊕

λ:`(λ,λ0)=j+1

qV∗(λ)1.



128 CHAPTER 10. THE MAIN PLAYER L(λ0)

Since ν is single, for λ with `(λ, λ0) = j + 2 we either have that ν and λ are not
comparable or (λ, µ, ν) is straight. Thus, by Proposition 6.3.6 and Proposition 9.2.4

HomK

( ⊕
λ:`(λ,λ0)=j−2

q2 T(λ),V∗(ν)

)
= 0.

On the other hand, the λ with `(λ, λ0) = j + 1 are either equal to µ or not comparable
to ν. If λ is not comparable to ν and T(λ′) a shifted summand of V∗(λ)1, then by
Lemma 6.1.10 λ′ < λ and therefore λ′ < ν or λ′ not comparable to ν. So using
Proposition 6.3.6 and Proposition 9.1.2, we get

HomK

((
qL(j + 1)

)
1
,V∗(ν)

)
∼= HomK

( ⊕
λ:`(λ,λ0)=j−1

qV∗(λ)1,V
∗(ν)

)
= 0.

Finally, we can apply Corollary 5.2.5 a) to obtain assertion a).

Now let 0 6= f ∈ HomK

(
qL(j+ 1),V∗(ν)

)
. Then f = g′⊕ g, where g′ : q2L(j+ 2)[1]→

V∗(ν) is a multi-map and g : qM(j + 1) → V∗(ν) is a chain map. By the next lemma
(Lemma 10.1.7) and Theorem 6.3.9, we can assume that

g|⊕
λ:`(λ,λ0)=j−1,λ 6=µ qV∗(λ) = 0.

Assume that also g|qV∗(µ) = 0. Then g′ is a chain map and by Corollary 6.3.12 ho-
motopic to zero. But this is a contradiction to f 6= 0, so g|qV∗(µ) 6= 0. By The-
orem 9.1.3, we know HomK

(
qV∗(µ),V∗(ν)

)
= C, so there is a scalar τ such that

τg|qV∗(µ) = σ(ν, µ)fν,µ. We choose fj := τf which yields assertion b).

For the last proof we need the following rather general lemma.

Lemma 10.1.7. Let ϕ ∈ HomK

(
Cone

(
A → (B ⊕ C)

)
, D
)

and HomK(C,D) = 0.
Then ϕ is homotopic to some ϕ′ with ϕ′|C = 0.

Proof. This is a special case of Lemma 5.1.1 a). Since we have a cone and a direct sum,
the differential of Cone

(
A→ (B ⊕ C)

)
goes from Ci to nothing else except Ci−1.

For considering the harder case where ν is not single, we need the following easy state-
ment.

Lemma 10.1.8. Assume ν → µ1, ν → µ2 and µ1 6= µ2. Then there is a λ such that
(λ, µ1, µ2, ν) is diamond. Furthermore, if ν → δ → λ, then δ ∈ {µ1, µ2}.

Proof. By definition µ1 = νsi and µ2 = νsj with i 6= j. Also i 6= j ± 1, since otherwise
not both si and sj can be applied. We set λ = νsisj which makes of course (λ, µ1, µ2, ν)

into a diamond. The second part follows from the description of λ = νsisj = νsjsi.

Lemma 10.1.9. Fix ν not single and assume that for all diamonds (λ, µ, µ′, ν) we have

σ(µ, λ)τν,µ + σ(µ′, λ)τν,µ′ = 0
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for some τν,µ, τν,µ′ ∈ C. Then there is a constant c ∈ C such that

τν,µ = c · σ(ν, µ)

for all ν → µ.

Proof. Since ν is not single, for every ν → µ1 there is some ν → µ2 with µ1 6= µ2.
Thus, by the lemma above there is some λ such that (λ, µ1, µ2, ν) is a diamond. From
σ(µ1, λ)τν,µ1 + σ(µ2, λ)τν,µ2 = 0 we obtain by the definition of σ(−,−) that

τν,µ1 = τ(µ1, µ2)σ(ν, µ1)

τν,µ2 = τ(µ1, µ2)σ(ν, µ2),

for τ(−,−) a scalar.

For every µ0 with ν → µ0, by Lemma 10.1.8, for all ν → µ 6= µ0, we have τν,µ0 =

τ(µ0, µ)σ(ν, µ0), so τ(µ0, µ) = τ(µ0, µ
′) for all ν → µ, µ′. Using τ(µ, µ′) = τ(µ′, µ) for

all ν → µ, µ′, we obtain τ(−,−) ≡ c for some constant c.

Proposition 10.1.10. Assume L(j+1) is constructed using the gj+1 satisfying (10.1),
i.e.

dqL(j+1)|q2M(j+2)[1]→qM(j+1) =
⊕

λ:`(λ,λ0)=j+2

{
σ(µ, λ)fµ,λ

}
λ←µ.

Then

HomK

(
qL(j + 1),V∗(ν)

) ∼= C.

Proof. As before, by Proposition 6.3.11 we have

HomK

(
(qL(j + 1))i[m],V∗(ν)

)
= 0

for all m 6= 0. Furthermore,(
qL(j + 1)

)
0
∼=

⊕
µ:`(µ,λ0)=j+1

qT(µ) =
⊕

µ:`(µ,λ0)=j+1
notν→µ

qT(µ) ⊕
⊕

µ:`(µ,λ0)=j+1
ν→µ

qT(µ).

Thus, by Proposition 6.3.6 and Lemma 9.1.1 we obtain

HomK

(
(qL(j + 1))0,V

∗(ν)
) ∼= HomK

( ⊕
µ:`(µ,λ0)=j+1

ν→µ

qT(µ),V∗(ν)

)
∼=

⊕
µ:`(µ,λ0)=j+1

ν→µ

C.

Moreover, (
qL(j + 1)

)
1
∼=

⊕
µ:`(µ,λ0)=j+2

q2 T(µ)⊕
⊕

µ:`(µ,λ0)=j+1

qV∗(µ)1
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=
⊕

µ:`(µ,λ0)=j+2
ν→→µ

q2 T(µ)⊕
⊕

µ:`(µ,λ0)=j+2
ν,µ unrel.

q2 T(µ)

⊕
⊕

µ:`(µ,λ0)=j+1
ν→µ

qV∗(µ)1 ⊕
⊕

µ:`(µ,λ0)=j+1
not ν→µ

qV∗(µ)1.

By Proposition 6.3.6 we know

HomK

( ⊕
µ:`(µ,λ0)=j+2
ν,µ unrel.

q2 T(µ),V∗(ν)

)
= 0.

We have that ν → δ → µ can either be straight or part of a diamond. So by Proposi-
tion 9.2.4 and Lemma 9.2.5, we get

HomK

( ⊕
µ:`(µ,λ0)=j+2

ν→→µ

q2 T(µ),V∗(ν)

)
∼=

⊕
µ:`(µ,λ0)=j+2

ν→→µ in diamond

C

Furthermore, by Proposition 9.1.2

HomK

( ⊕
µ:`(µ,λ0)=j−1

ν→µ

qV∗(µ)1,V
∗(ν)

)
= 0.

If µ is not comparable to ν and T(µ′) a shifted summand of V∗(µ)1, then by
Lemma 6.1.10 µ′ < µ and therefore µ′ < ν or µ′ not comparable to ν; so using Propos-
ition 6.3.6 we get

HomK

( ⊕
µ:`(µ,λ0)=j−1

not ν→µ

qV∗(µ)1,V
∗(ν)

)
= 0.

Thus, altogether, we have

HomK

(
(qL(j + 1))1,V

∗(ν)
) ∼= HomK

( ⊕
µ:`(µ,λ0)=j+2

ν→→µ in diamond

q2 T(µ),V∗(ν)

)
∼=

⊕
µ:`(µ,λ0)=j+2

ν→→µ in diamond

C

Now, by Corollary 5.2.5d), we have to consider

ker
(

HomK

(
(qL(j + 1))0,V

∗(ν)
) −◦dL−−−→ HomK

(
(qL(j + 1))1,V

∗(ν)
))

∼= ker

(
HomK

( ⊕
µ:`(µ,λ0)=j+1

ν→µ

qT(µ),V∗(ν)
)
−◦dL−−−→ HomK

( ⊕
µ:`(µ,λ0)=j+2

ν→→λ in diamond

q2 T(λ),V∗(ν)
))

.
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By assumption dL =
⊕

λ:`(λ,λ0)=j+2

{
σ(µ, λ)fµ,λ

}
λ←µ, thus we have to precompose with⊕

ν→→λ

{
σ(µ, λ)(fµ,λ)0

}
λ←µ =

⊕
ν→→λ

{
σ(µ, λ)Hµ,λ

}
λ←µ,

where Hµ,λ = Hi for µ
si−→ λ.

By Lemma 4.2.3, every f ∈ HomK

(⊕
µ:`(µ,λ0)=j+1

ν→µ
qT(µ),V∗(ν)

)
is of the form f =⊕

ν→µ cµHν,µ. Thus,

f ◦ dL =
⊕
ν→→λ

in diamond

∑
ν→µ→λ

cµHν,µ ◦ σ(µ, λ)Hµ,λ

=
⊕
ν→→λ

(λ,µ,µ′,ν) diamond

(
cµHν,µ ◦ σ(µ, λ)Hµ,λ + cµ′Hν,µ′ ◦ σ(µ′, λ)Hµ′,λ

)

=
⊕
ν→→λ

(λ,µ,µ′,ν) diamond

(
cµσ(µ, λ) + cµ′σ(µ′, λ)

)
Hν,µ ◦Hµ,λ,

since for every ν →→ λ in a diamond there are unique µ1 6= µ2 such that (ν, µ1, µ2, λ)

is a diamond and they satisfy Hν,µ ◦ Hµ,λ = Hν,µ′ ◦ Hµ′,λ because the saddles are on
different strands since we have a diamond.

Therefore, for f to be in the kernel we need

cµσ(µ, λ) + cµ′σ(µ′, λ) = 0.

By Lemma 10.1.9 we get cµ = c · σ(ν, µ) for all ν → µ for a fixed c ∈ C. Thus, the
kernel is isomorphic to C.

Proposition 10.1.11. Let ν be not single and `(ν, λ0) = j ≤ r − 2. Assume L(j + 1)

is constructed using the gj+1 satisfying (10.1), i.e.

dqL(j+1)|q2M(j+2)[1]→qM(j+1) =
⊕

λ:`(λ,λ0)=j+2

{
σ(µ, λ)fµ,λ

}
λ←µ.

Then there is a unique fj ∈ HomK

(
qL(j + 1),V∗(ν)

)
such that

fj |qM(j+1) =
⊕

λ:`(λ,λ0)=j+1
λ←ν

σ(ν, λ)fν,λ.

Proof. Let 0 6= g ∈ HomK

(
qL(j + 1),V∗(ν)

)
. For µ with `(µ, λ0) = j + 1 we have

g|qV∗(µ) is a chain map. We can assume that g|qV∗(µ) = 0 if ν and µ are not compar-
able, since otherwise we can homotope it to 0 using Theorem 6.3.9 and Lemma 10.1.7.
Furthermore, if ν → µ, then g|qV∗(µ) = τµfν,µ for some τµ ∈ C by Theorem 9.1.3.
Now consider λ with `(λ, λ0) = j + 2. For every such λ we have a multi-map
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g|q2 V∗(λ)[1] : q2 V∗(λ)[1] → V∗(ν). Moreover, for all µ → λ with `(µ, λ0) = j + 1

we have that

g|q2 V∗(λ)[1] ⊕
⊕
µ→λ

g|qV∗(µ) : Cone

(
q2 V∗(λ)

⊕
µ→λ σ(µ,λ)fµ,λ

−−−−−−−−−−−→
⊕
µ→λ

qV∗(µ)

)
→ V∗(ν)

is a chain map.

By Lemma 10.1.8, for ν → µ1, ν → µ2, µ1 6= µ2, there is some λ such that (λ, µ1, µ2, ν)

is diamond. We apply the chain map-condition when starting at q2 T(λ) ∼= q2 V∗(λ)0.

By Proposition 4.2.7, there is no map q2 T(λ) → V∗(ν)1: By Theorem 8.1.5, V∗(ν) is
a linear complex, thus V∗(ν)1 contains only summands qT(τ) which by Lemma 6.1.10
satisfy τ < ν. Thus, every map from q2 T(λ) to a qT(τ) is of degree 1 and the same
is true for the differential qT(τ) → T(ν). Thus, Lemma 4.2.7 gives λ = νsisi±1, i.e.
ν →→ λ is not part of a diamond, which is a contradiction.

Since 0 = (g|q2 V∗(λ)[1])0 : 0→ V∗(ν)0, this forces

0 =

(⊕
ν→µ

(g|qV∗(µ))0

)
◦

⊕
µ→λ

σ(µ, λ)(fµ,λ)0


=

⊕
ν→µ
µ→λ

τµ · (fν,µ)0

 ◦
⊕
µ→λ

σ(µ, λ)(fµ,λ)0


=
∑
ν→µ
µ→λ

σ(µ, λ)τµ · (fν,µ)0 ◦ (fµ,λ)0

= σ(µ1, λ)τµ1 ·
(
fν,µ1 ◦ fµ1,λ

)
0

+ σ(µ2, λ)τµ2 ·
(
fν,µ2 ◦ fµ2,λ

)
0
,

where the last equality holds since by Lemma 10.1.8 there is no δ with ν → δ → λ

except for µ1, µ2. By Theorem 9.2.2, we have fν,µ1 ◦ fµ1,λ = fν,µ2 ◦ fµ2,λ, hence

σ(µ1, λ)τµ1 + σ(µ2, λ)τµ2 = 0.

By Lemma 10.1.9 we obtain τµ = c · σ(µ, λ), which yields g|qV∗(µ) = cσ(µ, λ)fµ,λ.
Now choosing fj := 1

cg gives the desired result. Uniqueness follows from Proposition
10.1.10.

Now we have inductively proven Theorem 10.1.4 and can use it to define our desired
complex.

Definition 10.1.12. Let the gj : qL(j+ 1)→M(j) be as in Theorem 10.1.4. Then we
define L(λ0) := L(0).

We will show that L(λ0) satisfies L(λ0).U i in Section 10.3. The next section is dedicated
to a special family of examples of L(λ0). Before passing to them we want to make some
general observations.
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Remark 10.1.13. We can describe the entries of L(λ0) via the entries of the V∗(λ)’s:
In the ith homological degree of L(λ0) we have

L(λ0)i =
⊕

j+l=i,`(λ,λ0)=j

qj V∗(λ)l.

Since λ0 is the only λ that satisfies `(λ, λ0) = 0 we have L(λ0)0 = V∗(λ0)0 = T(λ0).
Furthermore, there is only one λ ∈ Λ(n, k) with `(λ, λ0) = 1 and it is λ = λ0sk since
λ0si = λ0 for all i 6= k. Hence, L(λ0)1 = V∗(λ0sk)0

∼= T(λ0sk).

Note that L(λ0) is concentrated in homological degrees 0 to 2k(n− k).

Furthermore, we have [L(λ0)] =
q
n
k

y
vλ0 .Pn as explained at the beginning of this section.

10.2 L(λ0) for special cases

We consider the complex L(λ0) for k = 0 and k = 1.

For k = 0, we have Λ(n, k) = {λ0} = {∨ . . .∨︸ ︷︷ ︸
n

}, thus

L(λ0) = V∗(λ0) = T(λ0) = .

For k = 1, the T(λ) with λ ∈ Λ(n, k) contain exactly one cup that has two black
endpoints if λ 6= λ0. For this section, we introduce a new notation:

T(0) := T(λ0) =

and T(i) = T(λi) where λi has the ∧ at place i+ 1, i.e.

T(i) = .

The same notation is used for the V∗(λ)’s.

Now the morphisms between the T(i) in Cup(n, 1) are easy to determine and they are
described by the following quiver:

T(0)
H1 ,,

T(1)
H1

ll

H2 ,,
T(2)

H2

ll

H3 ** · · ·
H3

ll

Hn−1..
T(n− 1)

Hn−1

kk
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modulo the relations

Hi+1 Hi = 0 = HiHi+1 (10.2)

Hi+1 Hi+1 = Hi Hi (10.3)

H0 H0 = 0. (10.4)

We have already considered some of the relations for n = 2, 3 in Example 3.3.3. The
relations can be seen directly from the relations of Cup(n, 1), but some also follow
easier from the theory of Section 3.4: Relation (10.4) follows from Lemma 3.4.15 or
alternatively from neckcutting and the additional relation 1) of Cup(n, 1). Relation
(10.2) follows either directly from the additional relation 2) of Cup(n, 1) or from the
fact that

HomCup(n,1)

(
T(i),T(i+ 2)

)
= 0 = HomCup(n,1)

(
T(i+ 2),T(i)

)
by Corollary 3.4.13, since T(i)T(i+ 2) has a red circle. From neckcutting and the
additional relation 1) and of Cup(n, 1) we see that

Hi+1 Hi+1 = = Hi Hi,

so relation (10.3) holds. Also, for i 6= 0, T(i)T(i) has one black and several green circles.

Since we know

dim HomCup(n,1)

(
T(i),T(j)

)
r

=


1 if r = 0, i = j,

1 if r = 1, i = j ± 1,

1 if r = 2, i = j 6= 0,

0 otherwise,

from the considerations above and Lemma 4.2.3 the dimensions are as required those
are all relations needed.

Furthermore, from the description via hypercubes V∗(i) = V∗(λ0.s1 . . . si) ∼=
T(0).R(1, . . . , i) (cf. Proposition 6.1.5) we obtain

V∗(i) ∼=
(
qi T(0)

(−1)i−1 H1−−−−−−−→ qi−1 T(1)
(−1)i−2 H2−−−−−−−→ . . .

−Hi−1−−−−→ qT(i− 1)
Hi−→ T(i)

)
,

since T(0).U j = 0 for j 6= 1 and T(0).U1 . . .U j ∼= T(j). Hence, V∗(i) is isomorphic to

qi T(0)
H1−−→ qi−1 T(1)

H2−−→ . . .
Hi−1−−−→ qT(i− 1)

Hi−→ T(i)

(see also Remark 10.2.1 below) giving us the representative for the isomorphism class
of V∗(i) we will use from now on. The chain maps fν,λ for ν → λ from the construction
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of L(λ0) for this representative are now fi−1,i : qV∗(i)→ V∗(i− 1) given by the saddle
Hj : qT(j)→ T(j − 1) in every degree, see also Example 9.1.12.

The following remark allows us to ignore the signs:

Remark 10.2.1. Let W and W ′ be double complexes with W = W ′ when forgetting
the differentials and assume the differentials differ only by signs. Let R = Tot(W )

and R′ = Tot(W ′) be the associated total complexes. Then there is an isomorphism
ι consisting of maps ± id only in each degree between R and R′, i.e. every ιj : Rj =

A1⊕· · ·⊕Al → R′j = A1⊕· · ·⊕Al is a diagonal matrix with the entries on the diagonal
either id or − id. We call such an isomorphism a ±-isomorphism.

Indeed, since the squares in the double complex have to anti-commute, when considering
the same square in W as in W ′, then the signs of 0, 2 or 4 maps differ. Thus, it is
possible to make the map id : W →W ′ into a morphism of double complexes by adding
signs going square by square. This gives a ±-isomorphism between the double complexes
which induces one between the total complexes.

In particular, viewing the complex as a one row double complex, all the possible signs
for the V∗(j) give rise to ±-isomorphisms. Moreover, if we have a complex R that can
be written as the total complex of a double complex W where every Wi,j is just a single
qri T(tj), then we can ignore the signs of the differentials since every possible choice
leads to a complex isomorphic to R.

Lemma 10.2.2. For k = 1, L(λ0) is of the form Tot(W ), where W is the double
complex having the qi V∗(i) as rows with vertical maps given by the fi−1,i (up to signs).

Proof. The only non-zero maps in the definition of L(λ0) (Definition 10.1.2 and 10.1.12)
are the fi−1,i, since the other maps in the definition would result in maps qri T(i) →
qrj T(j) with i > j + 1. But there are no T(i)→ T(j) for i 6= j ± 1 in Cup(n, 1) due to
relation (10.2). Taking repeatedly the cone as in the definition of L(λ0) is (up to signs)
the same as taking the total complex of all the maps.

Remark 10.2.3. Let L := L(λ0), then Remark 10.1.13 reduces in our special case to

Li ∼= qi
⊕

j≤i, j≡i mod 2

T(j)

for i ≤ n−1 and Li = q2i−2(n−1)L2(n−1)−i for i > n−1. Up to sign, the differentials are
the saddles Hi+1 : qT(i) → T(i + 1) and Hi : qT(i) → T(i − 1) if i > 0. One possible
choice of signs is to take the saddles without signs except for −Hi+1 : qT(i)→ T(i+ 1)

if and only if this map is part of q2l+1 V∗(2l + 1).

Example 10.2.4. For n = 5 we have L(λ0) ∼=
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q8 T(0) q7 T(1) q6 T(2) q5 T(3) q4 T(4)

q6 T(0) q5 T(1) q4 T(2) q3 T(3)

q4 T(0) q3 T(1) q2 T(2)

q2 T(0) qT(1)

T(0)

H1 H2

H1

H3

H2

H4

H3 H4

−H1 −H2

H1

−H3

H2 H3

H1

H1

H2

H2

−H1

H1

10.3 Categorification of a trivial TLn-module

Now we prove the important property of L(λ0) that made us use the maps fλ,ν in the
construction of L(λ0).

Theorem 10.3.1. L(λ0).U i ' 0 for all i.

Proof. We show that L(λ0).U i satisfies the conditions of the next proposition (Pro-
position 10.3.2). As in Definition 10.1.2 let r = k(n − k). Our goal is to change the
numbering such that L(λ0).U i := L(0).U i = Y (r + 1) = Y . For this we choose{

Xi,j | 1 ≤ j ≤ ri
}

=
{
ql(µ,λ0) V∗(µ).U i | l(µ, λ0) = r + 1− i

}
for every 1 ≤ i ≤ r + 1. Thus, we have X(1) = qrM(r).U i, X(2) = qr−1M(r − 1).U i
and so on until finally Y (r + 1) = M(0).U i. When we now set g2 = gr−1. idUi , g3 =

gr−2. idUi , . . . , gr+1 = g0. idUi with gi as in Definition 10.1.12 we obtain Y = L(λ0).U i.

By Proposition 6.1.14 we know that ql(µ,λ0) V∗(µ).U i ' 0 if µ = µsi. All the
other µ satisfy µ 6= µsi and therefore, by Corollary 6.1.12 they split into pairs(
ql(µsi,λ0) V∗(µsi).U i, ql(µ,λ0) V∗(µ).U i

)
for µ < µsi which are homotopy equivalent

as required. Let l = l(µ, λ0) and l′ = r + 1− l. The homotopy equivalence is

f l
′,µ,µsi =

(
0

β

)
: ql V∗(µ).U i → ql+1 V∗(µsi).U i

where β = idV∗(µ) .β
′ and β′ = id id : U i → U i U i. By construction

gl
′ |ql+1 V∗(µsi).Ui→ql V∗(µ).Ui = σ(µ, µsi)fµ,µsi . idUi .

But fµ,µsi |V∗(µ).Ui→V∗(µ) = idV∗(µ) Hi, so when we compose we get

gl
′ |ql+1 V∗(µsi).Ui→ql V∗(µ).U i ◦ f

l′,µ,µsi = σ(µ, µsi) idV∗(µ)

(
(Hi idUi) ◦ (id id)

)
= σ(µ, µsi) idV∗(µ).Ui .

Finally, for the last condition, we need that for µ < µsi, λ < λsi, `(λ, λ0) = l = `(µ, λ0),
we get that µsi and λ are not comparable, so that there is no map between ql+1 V∗(µsi)

and ql V∗(λ). But this is just Lemma 1.1.33.
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To show the theorem above we reduce it to the following abstract framework.

Proposition 10.3.2. Assume we are in the following situation:

• We have chain complexes Xi,j, i = 1, . . . , s, j = 1, . . . , ri with entries in an additive
category

• there are complexes X(i) :=
⊕ri

j=1X
i,j

• a complex Y is constructed inductively via setting Y (1) = X(1), Y (t) =

Cone
(
Y (t− 1)

gt−→ X(t)
)
for t ≥ 2 and some chain maps gt and finally Y = Y (s)

• for some i, j we have Xi,j ' 0

• all other Xi,j split into pairs (Xi,t, Xi+1,t′) such that

• Xi,t ' Xi+1,t′ via f i,t,t′ : Xi+1,t′ → Xi,t with gi+1|Xi,t→Xi+1,t′ ◦ f i,t,t
′

= ± id

• for (Xi,t, Xi+1,t′) 6= (Xi,t̄, Xi+1,t̄′) different pairs we have gi+1|Xi,t→Xi+1,t̄′ =

0.

Then X ' 0.

Proof. We show this by induction on s. If s = 1, then X =
⊕r1

j=1X
1,j with X1,j ' 0.

Of course, then X ' 0.

Now for bigger s consider X(s) = Xs,1 ⊕ · · · ⊕ Xs,rs . For some j we have Xs,j ' 0,
assume wlog. Xs,j ' 0 for j = m + 1, . . . , rs. Thus, via fs := (id, . . . , id, 0, . . . , 0) :

X(s)→ Xs,1⊕· · ·⊕Xs,m =: X ′(s) we have X(s) ' X ′(s). Therefore, by Lemma 5.1.5,

Y = Y (s) = Cone
(
Y (s− 1)

gs−→ X(s)
)
' Cone

(
Y (s− 1)

fs◦gs−−−→ X ′(s)
)
.

Since f s ◦ gs is just the restriction of gs, we denote it by gs| . We know

Y (s− 1) = Cone

(
Y (s− 2)

gs−1

−−−→ X(s− 1)

)
(for s = 2 set Y (s− 2) = 0). Hence,

Y ' Cone

(
Cone

(
Y (s− 2)

gs−1

−−−→ X(s− 1)
) gs|−→ X ′(s)

)
= Cone

(
Y (s− 2)[1]

gs−1⊕gs,2−−−−−−→ Cone
(
X(s− 1)

gs,1−−→ X ′(s)
))

,

where gs| = gs,1 ⊕ gs,2 for gs,1 : X(s− 1)→ X ′(s) a chain map and gs,2 : Y (s− 2)[1]→
X ′(s) a multi-map.

By the assumptions, we know that for everyXs,j , j = 1, . . . ,m, there is a partnerXs−1,j′

satisfying the conditions above. Wlog. we can assume that Xs−1,j is the partner of Xs,j

for j = 1, . . . ,m. Thus, we have

X(s− 1) ' Xs,1 ⊕ · · · ⊕Xs,m ⊕Xs−1,m+1 ⊕ · · · ⊕Xs−1,rs−1 =: X ′(s− 1)
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via

f s−1 := (f s−1,1,1 ⊕ · · · ⊕ fs−1,m,m ⊕ id⊕ · · · ⊕ id) : X ′(s− 1)→ X(s− 1)

and homotopy inverse

f
s−1

:= (f
s−1,1,1 ⊕ · · · ⊕ fs−1,m,m ⊕ id⊕ · · · ⊕ id) : X(s− 1)→ X ′(s− 1)

by assumption, where fs−1,i,i is the homotopy inverse of fs−1,i,i for i = 1, . . . ,m. Thus,
by Lemma 5.1.5 we have

Cone

(
X(s− 1)

gs,1−−→ X ′(s)

)
' Cone

(
X ′(s− 1)

gs,1◦fs−1

−−−−−−→ X ′(s)

)
.

and

(gs,1 ◦ f s−1)|Xs,i→Xs,j =

{
± id if 1 ≤ i = j ≤ m,
0 if 1 ≤ i 6= j ≤ m,

by assumption, since gs,1|Xs−1,j = gs|Xs−1,j by construction.

But now, by Lemma 10.3.3 below, we obtain

Cone

(
X ′(s− 1)

gs,1◦fs−1

−−−−−−→ X ′(s)

)
' (Xs−1,m+1 ⊕ · · · ⊕Xs−1,rs−1)[1]

via α : Cone(gs,1◦fs−1)→ Xs−1,m+1⊕· · ·⊕Xs−1,rs−1 with α|Xs,j = 0 for all j = 1, . . . ,m

and α|Xs−1,j→Xs−1,l = δj,l id for all m+ 1 ≤ j, l ≤ rs−1.

Altogether, Cone

(
X(s− 1)

gs,1−−→ X ′(s)

)
' Xs−1,m+1 ⊕ · · · ⊕Xs−1,rs−1 via some

h : Cone

(
X(s− 1)

gs,1−−→ X ′(s)

)
→ Xs−1,m+1 ⊕ · · · ⊕Xs−1,rs−1 .

By Lemma 5.1.6 we know h = α ◦

(
f
s−1

0

−gs,1 ◦H id

)
, where

(
f
s−1

0

−gs,1 ◦H id

)
: Cone

(
X(s− 1)

gs,1−−→ X(s)

)
→ Cone

(
X ′(s− 1)

fs−1◦gs,1−−−−−−→ X(s)

)
and H : X(s− 1)[1]→ X(s− 1).

Finally,

Y ' Cone

(
Y (s− 2)[1]

gs−1⊕gs,2−−−−−−→ Cone
(
X(s− 1)

gs,1−−→ X ′(s)
))

' Cone

(
Y (s− 2)[1]

h◦(gs−1⊕gs,2)−−−−−−−−−→ Xs−1,m+1 ⊕ · · · ⊕Xs−1,rs−1

)
.

The explicit description of fs−1 and α yields that h ◦ (gs−1 ⊕ gs,2) : Y (s− 2)[1] →
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Xs−1,m+1 ⊕ · · · ⊕Xs−1,rs−1 satisfies

h ◦ (gs−1 ⊕ gs,2)|Xs−2,j→Xs−1,i = gs−1|Xs−2,j→Xs−1,i

for all i, j. Therefore, Y ' Y ′ for some Y ′ that satisfies the conditions for s − 1 when
we choose Xs−1,m+1 ⊕ · · · ⊕ Xs−1,rs−1 as the new X(s − 1). Thus, we are done by
induction.

Lemma 10.3.3. Let X1, . . . , Xr be chain complexes in an additive category. Let m ≤ r
and f : X1 ⊕ · · · ⊕Xr → X1 ⊕ · · · ⊕Xm be a chain map such that

f |Xi→Xj =

{
± id if 1 ≤ i = j ≤ m,
0 if 1 ≤ i 6= j ≤ m.

Then Cone(f) ' (Xm+1 ⊕ · · · ⊕Xr)[1] via α : Cone(f) → (Xm+1 ⊕ · · · ⊕Xr)[1] with
αl : (X1 ⊕ · · · ⊕Xr)l−1 ⊕ (X1 ⊕ · · · ⊕Xm)l → (Xm+1 ⊕ · · · ⊕Xr)l−1 satisfying

α|
Xi
l→X

j
l−1

= 0 for all i, j and

α|
Xi
l−1→X

j
l−1

=

{
id if i = j,

0 otherwise.

Proof. We can apply Corollary 5.1.3 for X = X1⊕· · ·⊕Xm = Z, Y = Xm+1⊕· · ·⊕Xr

and U = 0 since by the assumptions ϕ : X → Z is a diagonal matrix with ± id on the
diagonal, hence an isomorphism. Therefore, Cone(f) ' Cone(Y → 0) = Xm+1 ⊕ · · · ⊕
Xr[1]. Since U = 0, the homotopy equivalence is given by α : Cone(f) → Y [1] with
αi =

(
0 id 0

)
: Xi−1 ⊕ Yi−1 ⊕ Zi → Yi−1.

10.4 Endomorphisms of L(λ0)

The endomorphisms of L(λ0) form a ring which is interesting on its own but will also
be used for the functor G in the next chapter.

For this section we denote L := L(λ0) and let End(L) :=
⊕

i,j∈Z HomK(L,L 〈i〉 [j]).

Before we can consider End(L), we need to know more about maps from shifted T(µ)

into L. This uses the following consequence of Theorem 10.3.1.

Corollary 10.4.1. HomK

(
T(µ)[j] 〈l〉 , L(λ0)

)
= 0 for all µ 6= λ0 and all j, l.

Proof. For every µ 6= λ0 there is some ν and some i such that µ = νsi. Thus,
by Lemma 4.1.8 we know 0 → T(µ) → 0 ∼= (0 → T(ν) → 0).U i. Therefore, by
Lemma 6.2.3, we have HomK(T(µ)[j] 〈l〉 , L(λ0)) ∼= HomK

(
T(ν)[j] 〈l〉 , L(λ0).U i

)
. But

by Theorem 10.3.1 we know L(λ0).U i ' 0, so we are finished.

Proposition 10.4.2. HomK

(
T(λ0)[j] 〈l〉 , L(λ0)

) ∼= {C if j = l = 0,

0 otherwise.
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Proof. By Remark 10.1.13 we know that L(λ0)0 = T(λ0) and L(λ0)1
∼= qT(λ0.sk).

Furthermore, HomK(T(λ0), L(λ0)0) ∼= C and it does not factorise through L(λ0)1 by
Lemma 3.4.15, i.e. there is no nullhomotopy. Therefore, HomK

(
T(λ0), L(λ0)

) ∼= C.
For l 6= 0, Lemma 3.4.15 yields

HomK

(
T(λ0) 〈l〉 , L(λ0)

)
= HomK

(
T(λ0) 〈l〉 , L(λ0)0

)
= 0.

For j < 0 we trivially have

HomK

(
T(λ0) 〈l〉 [j], L(λ0)

)
= HomK

(
T(λ0) 〈l〉 , 0

)
= 0.

Now assume j > 0. We know that L(λ0) contains all V∗(µ) as (shifted) partcomplexes
with additional maps going to V∗(ν)’s with ν < µ. And by Proposition 6.2.5 we have
HomK

(
T(λ0) 〈l〉 [j],V∗(µ)

)
= 0 for all l, j and µ 6= λ0. Consider now α : T(λ0) →

L(λ0)j , j > 0. Again by Remark 10.1.13 we have

L(λ0)j =
⊕

i+l=j,`(λ,λ0)=i

qi V∗(λ)l.

Now choose i maximal such that there is a λ with `(λ, λ0) = i and α|T(λ0)→V∗(λ) 6= 0.
In the construction of L(λ0) we first take M(a) =

⊕
`(λ′,λ0)=a and then find maps

between M(a) and shifted M(b) for different a and b. Thus inside L(λ0) there are
no maps between V∗(λ) and other V∗(λ′) with `(λ′, λ0) = `(λ, λ0). Therefore, we
can use the next lemma (Lemma 10.4.3) by which α is homotopic to some β with
β|T(λ0)→V∗(λ) = 0. Because there are no maps between the V∗(λ′) inside L(λ0), we can
do the same for the other V∗(λ′) with `(λ′, λ0) = i without destroying that the map
restricted to V∗(λ) is zero. Then we continue with i− 1 until all maps are zero. Thus,
HomK

(
T(λ0) 〈l〉 [j], L(λ0)

)
= 0 for j 6= 0.

Lemma 10.4.3. Consider C := Cone(A
f−→ B) and an object P considered as a chain

complex concentrated in homological degree 0. Assume that HomK(P [j], A) = 0 for all
j. Then every α ∈ HomK(P [j], C) is homotopic to some β with β|P→A = 0.

Proof. This is a special case of Lemma 5.1.1. Since C is a cone, we have dC |B→A = 0.

Armed with the facts above we can calculate the dimensions of End(L).

Theorem 10.4.4. We have dim End(L) =
(
n
k

)
. More precisely,

dim HomK

(
L,L 〈i〉 [j]

)
=

{
rj if i = j,

0 otherwise,

where ri := #{λ ∈ Λ(n, k) | 2`(λ, λ0) = i}.

Proof. We first compute dim HomK(L,L 〈i〉 [j]). By Corollary 10.4.1 and Proposi-
tion 10.4.2 we have HomK

(
T(λ) 〈l〉 , L[t]

)
= 0 for all l and all t 6= 0. Thus, for fixed s

we obtain HomK(Li 〈s〉 , L[t]) = 0 for all i and t 6= 0. By construction the only shifted
T(λ0)-summand inside V∗(λ) is q`(λ,λ0) T(λ0) = V∗(λ)`(λ,λ0). By Remark 10.1.13 we
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know that Li contains ri summands qi T(λ0). Thus, by Corollary 10.4.1 and Proposi-
tion 10.4.2 when we consider Li in homological degree 0 then HomK(Li 〈s〉 , L) = 0 for
all i 6= −s and dim HomK(Li 〈−i〉 , L) = ri. Therefore, by Corollary 5.2.5 c) we obtain
HomK(L 〈s〉 , L[j]) = 0 for all j 6= −s and HomK(L 〈s〉 , L[−s]) ∼= HomK(L−s 〈s〉 , L).

Thus,

dim HomK(L,L 〈−s〉 [−s]) = dim HomK(L 〈s〉 , L[−s]) = dim HomK(L−s 〈s〉 , L) = r−s,

i.e. dim HomK(L,L 〈s〉 [s]) = rs. Now dim End(L) =
∑

i ri =
(
n
k

)
, since every V∗(λ)

contains exactly one T(λ0)-summand and the number of all V∗(λ) contained in L is the
whole Λ(n, k), i.e. we have

∑
i ri = |Λ(n, k)| =

(
n
k

)
.

Definition 10.4.5. End(L) is a ring with the following multiplication: Let f ∈
HomK(L,L 〈i〉 [j]) and g ∈ HomK(L,L 〈i′〉 [j′]). Then

g.f = g ◦ f ∈ HomK

(
L,L

〈
i+ i′

〉
[j + j′]

)
,

where we use

HomK

(
L 〈i〉 [j], L

〈
i+ i′

〉
[j + j′]

)
= HomK

(
L,L

〈
i′
〉

[j′]
)
.

Lemma 10.4.6. End(L) is a local ring.

Proof. Let I =
⊕

i>0 HomK(L,L 〈i〉 [i]). Since by Theorem 10.4.4 all non-zero sum-
mands of End(L) are of the form HomK(L,L 〈i〉 [i]) for i ≥ 0, I is an ideal. Furthermore,
r0 = #{λ ∈ Λ(n, k) | 2`(λ, λ0) = 0} = #{λ0} = 1, thus I is maximal.

We now compute End(L) in the cases k = 0 and k = 1.

The case k = 0 is trivial: End(L) = End(T(λ0)) ∼= C by Lemma 3.4.15.

For the rest of this section we consider k = 1 and we use again the notations of Sec-
tion 10.2.

Proposition 10.4.7. We have L ∼= L∗ 〈2(n− 1)〉 [2(n − 1)] and the isomorphism is a
±-isomorphism, where ∗ denotes again the reflection from Definition 7.2.1.

Proof. By Remark 10.2.3 the two complexes have obviously the same entries. Up to
sign, in the reflected complex we still have all the possible saddles as differential. So by
Remark 10.2.1, they are ±-isomorphic.

Definition 10.4.8. For r ≤ n let Lr be the complex Tot(W r) where W r is the double
complex having the qi V∗(i) with i < r as rows with vertical maps given by the fi−1,i

(up to signs).

Example 10.4.9. In general, we have L(λ0) = Ln (cf. Lemma 10.2.2). For n = 5 we
have L5 = L(λ0) (cf. Example 10.2.4) and



142 CHAPTER 10. THE MAIN PLAYER L(λ0)

L4 ∼=

q6 T(0) q5 T(1) q4 T(2) q3 T(3)

q4 T(0) q3 T(1) q2 T(2)

q2 T(0) qT(1)

T(0),

−H1 −H2

H1

−H3

H2 H3

H1

H1

H2

H2

−H1

H1

L3 ∼=

q4 T(0) q3 T(1) q2 T(2)

q2 T(0) qT(1)

T(0),

H1

H1

H2

H2

−H1

H1

L2 ∼=
q2 T(0) qT(1)

T(0)

−H1

H1 and L1 = T(0).

From the definition we immediately obtain:

Lemma 10.4.10. Lr contains the Ls for s < r as a subcomplex starting at homological
degree 0 on the right.

Corollary 10.4.11. For r < n, Ln contains a partcomplex called Lr, which is left-
aligned inside Ln, such that Lr 〈−2(n− r)〉 [−2(n− r)] is ±-isomorphic to Lr.

Proof. We have the partcomplex Lr in Ln right-aligned, which by going via the ±-
isomorphism to (Ln)∗ 〈2(n− 1)〉 [2(n − 1)] is sent to (Lr)∗ 〈2(n− r)〉 [2(n − r)] =: Lr.
Thus, the desired ±-isomorphism comes from composing this ±-isomorphisms with the
one from Proposition 10.4.7.

Now we see that the End(Ln) are well-known rings.

Proposition 10.4.12. End(Ln) ∼= C[x]/(xn).

Proof. By Theorem 10.4.4, we know the dimensions and only have to find non-null-
homotopic maps corresponding to xr ∈ C[x]/(xn). We define fx : Ln → Ln 〈2〉 [2]

as the ±-isomorphism of the partcomplexes Ln−1 of Ln and Ln−1 〈2〉 [2] of Ln 〈2〉 [2].
It is not null-homotopic, since it contains ± id : T(0) 〈2〉 → T(0) 〈2〉 which does not
factorise. Now (fx)r : Ln → Ln 〈2r〉 [2r] is 0 except for a ±-isomorphism between the
partcomplex Ln−r of Ln and L(n−r) 〈2r〉 [2r] of Ln 〈2r〉 [2r] which by the same reasoning
is not null-homotopic.

Note that End(Ln) is hence isomorphic to the cohomology ring of CPn−1 with complex
coefficients.
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Example 10.4.13. For n = 4 the chain map fx looks like this:

q6 T(0) q5 T(1) q4 T(2) q3 T(3)

q4 T(0) q3 T(1) q2 T(2)

q2 T(0) qT(1)

T(0),

q8 T(0) q7 T(1) q6 T(2) q5 T(3)

q6 T(0) q6 T(1) q6 T(2)

q6 T(0) q3 T(1)

q2 T(0) ,

id

−H1

− id

−H2

H1

id

−H3

H2 H3

− id

H1

id

H1

H2

H2

id

−H1

H1

−H1 −H2

H1

−H3

H2 H3

H1

H1

H2

H2

−H1

H1

10.5 Linear complexes revisited

We come back to the heart of the linear t-structure (cf. Section 8.4) to find out what
kind of object L(λ0) is in there. But before we can use the abelian structure of the
heart, we have to show that L(λ0) is contained in it. Also, we need some knowledge
about maps from linear complexes to a homologically shifted L(λ0) in order to calculate
Ext-groups.

Lemma 10.5.1. For λ ∈ Λ(n, k) and m 6= 0 we have

HomK

(
T(λ) 〈j〉 [j], L(λ0)[m]

)
= 0.

Proof. We have HomK

(
T(λ) 〈j〉 [j], L(λ0)[m]

)
= HomK

(
T(λ) 〈j〉 [j −m], L(λ0)

)
and

j −m 6= j. Thus, the assertion follows directly form Corollary 10.4.1 and Proposition
10.4.2.

Corollary 10.5.2. Let X be a linear complex and m 6= 0. Then

HomK

(
X,L(λ0)[m]

)
= 0

Proof. This follows inductively from Lemma 10.5.1 using Lemma 6.3.7 analogously as
for Proposition 6.3.8.

In the heart of the linear t-structure, L(λ0) is a special object:

Proposition 10.5.3. L(λ0) is contained in the heart Cl of the linear t-structure and
there it is the injective hull of T(λ0) via the canonical inclusion T(λ0) → L(λ0) given
by id : T(λ0)→ L(λ0)0.
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Proof. Since the V∗(λ)’s are homotopic to linear complexes by Theorem 8.1.5, by the
construction of L(λ0) and Lemma 5.1.5 the same holds for L(λ0).

By Proposition 8.4.4, T(λ0) is simple and id : T(λ0)→ L(λ0) is a monomorphism.

We have Ext1
Cl
(
X,L(λ0)

) ∼= HomK

(
X,L(λ0)[1]

)
= 0 by Lemma 8.2.3 and Corol-

lary 10.5.2 for all linear complexes X, thus L(λ0) is injective.

Since End(L(λ0)) is local by Lemma 10.4.6, id : T(λ0) → L(λ0) is an injective hull by
the dual statement of [Kra12, Lemma 2.2.3].

For the next chapter we need some more facts about maps into L.

Lemma 10.5.4. Let M be a complex in Kb
(
Ĉup(n, k)

)
where no summand of an entry

contains a circle. Assume f : M → L is a chain map such that f0 contains no degree
0 maps, i.e. when we write f0 : M0 → L0 as matrix then no entry is a degree 0 map.
Then f ' 0.

Proof. Consider f0 : M0 → L0 = T(λ0). If T(λ0) is a summand of M0, then by
assumption f0|T(λ0) = 0, since by Lemma 3.4.15 the only map from T(λ0) to itself is of
degree 0. For summands X ofM0 which are not equal to T(λ0) we know HomK(X,L) =

0 by Corollary 10.4.1 and Proposition 10.4.2. Thus by Lemma 6.3.7 f ' f ′ with f ′0 = 0.
Now we can apply Proposition 6.3.8 for r = 1 and Γ maximal and obtain f ′ ' 0.

Definition 10.5.5. We call a complex M a shifted linear complex, if there is some m
such that M [m] is a linear complex.

Lemma 10.5.6. Let M be a shifted linear complex and assume there is a non-
nullhomotopic chain map f : M → L 〈a〉 [b]. Then f consists of degree 0 maps.

Proof. Since f is non-nullhomotopic if and only if f ′ := f 〈−a〉 [−b] : M 〈−a〉 [−b]→ L

is nullhomotopic, we can apply Lemma 10.5.4 to f ′ and obtain that f ′0 contains a non-
zero degree 0 map. But this means that M 〈−a〉 [−b] is linear and f ′ consists of degree
0 maps. Thus, the same holds for f .



Chapter 11

Categorified Jones-Wenzl projectors
as a composition

In this chapter, we define two functors that satisfy the properties of the projection
and inclusion factorising the Jones-Wenzl projector on a higher level. Therefore, their
composition categorifies the Jones-Wenzl projector. Then, we recall Cooper-Krushkal’s
definition of the universal projector and start to relate the action of the universal pro-
jector to our composition of functors. We recall Rozansky’s construction of the universal
projector and use this to calculate the action of the universal projector for k = 1 and
general n.

11.1 The categorification of projection and inclusion

The following theorem will motivate the definition of a functor F below which leads to
the categorification of the projection πn that is part of the factorisation of the Jones-
Wenzl projector pn.

Define πn on K0

(
Kb
(
Ĉup(n, k)

))
via the isomorphism Φ of Theorem 7.2.9, that means

πn([M ]) := πn
(
Φ(1⊗ [M ])

)
, where πn is the projection from Definition 2.2.1.

Theorem 11.1.1. We have

πn
(
[M ]

)
=
∑
i,j

(−1)i dim HomK

(
M,L(λ0) 〈j〉 [i]

)
qjvk,

where vk is as in Definition 2.2.1.

Proof. By Corollary 10.4.1 and Proposition 10.4.2 we have

HomK

(
T(λ), L(λ0) 〈j〉 [l]

) ∼= {C if λ = λ0 and j = l = 0,

0 otherwise.

Thus, for M = T(λ) the right hand side reduces to vk if λ = λ0 and 0 otherwise. By
Theorem 7.2.9 we have πn([T(λ)]) = πn(v♥λ), thus, comparing with Corollary 2.2.5, we

145
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see that the assertion is true for all T(λ). Of course, both sides are compatible with
internal and homological shifts. When the assertion is true for complexes A and B, then
putting Cone(A→ B) into the right hand side, by Lemma 7.3.4 we get πn([B])−πn([A])

which is equal to πn
(
[Cone(A → B)]

)
. Therefore, the assertion follows inductively by

Lemma 7.2.5.

Definition 11.1.2. Given a collection of vector spaces V(a,b), a, b ∈ Z, we denote by

V =
⊕
(a,b)

V(a,b) 〈a〉 [b]

the bigraded vector space with graded components V(a,b).

Denote again L := L(λ0).

In particular, for X ∈ Kb
(
Ĉup(n, k)

)
we have the bigraded C-vector space

F (X) =
⊕
i,j

HomK

(
X,L 〈i〉 [j]

)
〈i〉 [j].

We can view the differential of X as a chain map d : X → X[1]. This map induces a
map d̂ via

F (X)[1] =
⊕
i,j

HomK

(
X,L 〈i〉 [j]

)
〈i〉 [j + 1]

=
⊕
i,j

HomK

(
X[1], L 〈i〉 [j]

)
〈i〉 [j]→

⊕
i,j

HomK

(
X,L 〈i〉 [j]

)
〈i〉 [j] = F (X)

ϕ 7→ ϕ ◦ d

Therefore, we obtain a degree (0,−1) map d̂ on the bigraded vector space F (X) with
d̂2 = 0. Thus, F (X) can be viewed as a cocomplex of graded vector spaces. F sends
homotopy equivalent chain complexes to isomorphic cocomplexes since maps between
chain complexes are mapped to precomposition with them, and if f ◦ g ' id, then
α ◦ f ◦ g = α inside HomK .

For an additive category A let Kco(A) and Dco(A) be the homotopy or derived category
of cocomplexes, resp; similar for other variants of complexes.

We now have a functor

F : Kb
(
Ĉup(n, k)

)
→ Dco,b(C-gfmod),

where C-gfmod denotes finite dimensional graded C-vector spaces.

Lemma 11.1.3. The differential d̂ is always zero.

Proof. Let Y = L 〈i〉 [j]. We know that the differential d̂ sends f ∈ HomK(X[1], Y ) to
f ◦ d ∈ HomK(X,Y ). We define a homotopy h : X[1]→ Y via ht = (−t)ft, then

dY hi + hi−1dX = (−i)fidX[1] − (i− 1)fidX = ifidX − (i− 1)fidX = fidX .

Thus, fdX is 0 in HomK(X,Y ).
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We want to show that when applying F only the shifted T(λ0)-summands are important.
As a first step we see that it is enough to consider complexes of a certain form.

Remark 11.1.4. As before, every complex in K
(
Ĉup(n, k)

)
is isomorphic to a com-

plex of sums of shifted T(λ) by delooping (Lemma 3.3.5). Furthermore, it is homotopy
equivalent to a complex where additionally there are no degree 0 maps part of the differ-
ential, since those can be homotoped away using Gaussian elimination (Lemma 5.1.2).
In particular, in these representatives, there are no maps between different (shifted)
T(λ0).

We now fix a notation for the T(λ0) inside a given complex.

Definition 11.1.5. Let K− = K−
(
Ĉup(n, k)

)
the subcategory of bounded to the right

complexes of K
(
Ĉup(n, k)

)
. Given a complex M in K− we say

mj⊕
s=1

T(λ0)〈asj〉 is the

T(λ0)-part of Mj if Mj
∼=

mj⊕
s=1

T(λ0)〈asj〉 ⊕R, where no summand of R is isomorphic to

some T(λ0) 〈l〉 with l ∈ Z.

We call
∞⊕

j=−∞

mj⊕
s=1

T(λ0)〈asj〉[bj ] the T(λ0)-part of M . Note that by definition of K− the

sum is finite in every homological degree. Also, we use [bj ] and not [j] since there may
be homological degrees without any T(λ0).

Proposition 11.1.6. Let M be a complex in K without circles and not containing

degree 0 maps in the differential. Let
∞⊕

j=−∞

mj⊕
s=1

T(λ0)〈asj〉[bj ] be the T(λ0)-part of M .

Then

F (M) ∼=
⊕
j,s

C〈asj〉[bj ].

as a bigraded vector space.

Proof. Again, we work with complexes bounded to the right and can assume that M =

(· · · →M2 →M1 →M0 → 0), because otherwise the same argument works with shifts.

We want to apply Corollary 5.2.5 e) for C = M and D = L 〈l〉. By Corollary 10.4.1
and Proposition 10.4.2 we have HomK(Mi, L 〈l〉 [j]) = 0 for j 6= 0. Furthermore, by the
same results we know

HomK(Mi, L 〈l〉) = HomK

( ⊕
s:asi=l

T(λ0) 〈l〉 , L 〈l〉
)
∼=
⊕
s:asi=l

C.

But in dM there are no maps of degree 0 and in particular no maps between different
copies of T(λ0) 〈l〉, thus the map between HomK(Mi, L 〈l〉) and HomK(Mi+1, L 〈l〉)
induced by precomposition with dM is zero. Therefore, Corollary 5.2.5 e) yields

HomK

(
M,L 〈l〉 [j]

)
〈l〉 [j] ∼= HomK

(
Mj , L 〈l〉

)
〈l〉 [j] ∼=

⊕
s:asj=l

C 〈l〉 [j]

and altogether we get the desired result.
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Recall from Definition 10.4.5 the ring End(L) =
⊕

i,j HomK(L,L 〈i〉 [j]).

We want to see F (X) is a End(L)-module via postcomposing with elements from
End(L). But the End(L)-action does not preserve the internal grading, forcing us
to change it.

Definition 11.1.7. By Theorem 10.4.4 we know HomK(L,L 〈i〉 [j]) = 0 if i 6= j or
i < 0. Thus we can define a non-negative grading on End(L) by setting End(L) =⊕

m≥0 End(L)m =
⊕

m≥0 HomK(L,L 〈m〉 [m]). To distinguish from F (L), we denote
this ring with its grading by R =

⊕
m≥0Rm.

We define a new bigrading on F (X) by setting F (X)(a,b) = HomK(X,L 〈a〉 [a+ b]), i.e.
HomK(X,L 〈a〉 [b]) = F (X)(a,b−a).

With this new grading
⊕

a F (X)(a,b) for fixed b is a graded R-module: For ϕ ∈ Rm =

HomK(L,L 〈m〉 [m]) and f ∈ F (X)(a,b) = HomK(X,L 〈a〉 [a + b]) we have ϕ ◦ f ∈
HomK(X,L 〈a+m〉 [a+ b+m]) = F(a+m,b).

F (X) is even a complex of R-modules, since the differential is zero and thus compatible
with the R-module structure. Furthermore, the morphisms are R-module homomorph-
isms in every homological degree, since for α : X → Y and f ∈ F (Y )(a,b) we have
f ◦ α ∈ F (X)(a,b). Moreover, if ϕ ∈ Rm, then this obviously commutes with the maps,
since ϕ ◦ (f ◦ α) = (ϕ ◦ f) ◦ α.

Therefore, F is a functor

F : Kb
(
Ĉup(n, k)

)
→ Dco,b(R-gfmod),

where the category R-gfmod consists of graded R-modules that are finite dimensional
over C.

Before we can define G we need to extend the functor F to some unbounded complexes.
We cannot enlarge to all of K−

(
Ĉup(n, k)

)
since the result of our functor might not

be a cocomplex in R-gfmod otherwise. The following condition is build to guarantee
that when applying F we obtain cocomplexes bounded in the right direction with finite
dimensional entries in every homological degree.

Definition 11.1.8. LetK−C
(
Ĉup(n, k)

)
be the full subcategory ofK−

(
Ĉup(n, k)

)
given

by objects X satisfying the condition C: There is an s = s(X) ∈ Z so that

Xi
∼=

⊕
λ∈Λ(n,k),ji∈Z

(T(λ) 〈ji〉)⊕aλ,ji ,

where the multiplicity aλ,ji is almost always zero and aλ,ji 6= 0 implies i − ji ≤ s.
Furthermore, the equation i− ji = t is only allowed to have finitely many solutions for
any fixed t.

Since X is in K−
(
Ĉup(n, k)

)
there is also an u = u(X) such that Xi 6= 0 only if i ≥ u.

Note that Kb
(
Ĉup(n, k)

)
is a full subcategory of K−C

(
Ĉup(n, k)

)
since for X in

Kb
(
Ĉup(n, k)

)
there are only finitely many Xi 6= 0 and every Xi is a finite sum of

shifted T(λ)’s. Thus, we can take s = imax − jmin, the difference of the the maximal
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i with Xi 6= 0 and the minimal internal shift. Of course, the finiteness condition for
solutions of i− j = t is satisfied.

Similarly we enlarge the category Dco,b(R-gfmod). Here the condition will guarantee
that we obtain finite sums and complexes bounded in one direction when we later apply
the functor G defined below.

Definition 11.1.9. Let Dco,+
C′ (R-gfmod) be the full subcategory of Dco,+(R-gfmod) of

complexes X satisfying the condition C ′: There is a u = u(X) ∈ Z such that Xi is
supported only in degrees ji with i+ ji ≥ u and the equation i+ ji = t has only finitely
many solutions for every t.

Since X is in Dco,+(R-gfmod) there is also an s = s(X) ∈ Z such that Xi 6= 0 only for
i ≤ s.

Lemma 11.1.10. F extends to functor F : K−C
(
Ĉup(n, k)

)
→ Dco,+

C′ (R-gfmod).

Proof. We extend F by setting F (M)(a,b) = HomK−(M,L 〈a〉 [a + b]), where K− =

K−
(
Ĉup(n, k)

)
. We have to check that for M in K−C

(
Ĉup(n, k)

)
this yields a complex

in Dco,+
C′ (R − gfmod). By Remark 11.1.4 we can assume that there are no circles and

degree 0 maps in M . Let X :=
∞⊕

j=−∞

mj⊕
r=1

T(λ0)〈arj〉[bj ] be the T(λ0)-part of M . Since

M is in K−C (Ĉup(n, k)), X also is in K−C (Ĉup(n, k)), so there are s, u ∈ Z such that
bj ≥ u, bj − arj ≤ s and the equation bj − arj = t has only finitely many solutions for
every t. Since Proposition 11.1.6 holds completely analogously also for K− we know

F (M) ∼=
⊕
j,r

C〈arj〉old[bj ]old =
⊕
j,r

C〈arj〉[bj − asj ].

Since there are only finitely many solutions for bj − arj = t, the sum is finite in every
homological degree. The inequality bj ≥ u yields bj − arj + arj ≥ u and bj − arj ≤ s

bounds the cocomplex. Hence, F (M) is an object of Dco,+
C′ (R-gfmod).

Remark 11.1.11. Having Theorem 11.1.1 in mind we want to view the functor F as a
categorification of πn. For every complex X we have F (X.U i) = 0 since by Lemma 6.2.3
and Theorem 10.3.1

HomK−
(
X.U i, L 〈l〉 [j]

) ∼= HomK−
(
X,L.U i 〈l〉 [j]

) ∼= HomK−(X, 0) = 0.

Note that F (X.U i) = 0 is a categorified version of Lemma 2.2.4 c) when we recall that
Ci,n is just the action of Ui. To make a precise statement on the level of Grothendieck
groups one has to carefully deal with the Grothendieck group of categories of unbounded
complexes (namely K−C

(
Ĉup(n, k)

)
and Dco,+

C′ (R-gfmod)). This extra difficulty was
addressed in the context of derived categories of graded abelian categories in [AS13].

Lemma 11.1.12. We have F (L 〈a〉 [b]) ∼= R 〈a〉 [b− a] as a graded R-module.



150 CHAPTER 11. CATEGORIFIED JONES-WENZL PROJECTORS

Proof. Using Theorem 10.4.4 we have

F (L 〈a〉 [b]) =
⊕
i,j

HomK−
(
L 〈a〉 [b], L 〈i〉 [j]

)
〈i〉 [j − i]

=
⊕
i,j

HomK−
(
L,L 〈i− a〉 [j − b]

)
〈i〉 [j − i]

=
⊕
i

HomK−
(
L,L 〈i− a〉 [i− a]

)
〈i〉 [b− a]

=
(⊕

m

HomK−
(
L,L 〈m〉 [m]

)
〈m〉

)
〈a〉 [b− a],

where in the last step we substitute i − a by m. As R-module we get that the term⊕
m HomK−(L,L 〈m〉 [m]) 〈m〉 is R itself.

The definition of the functor G below is motivated by the fact that in the Grothendieck
group of Kb

(
Ĉup(n, k)

)
we have [L(λ0)] =

q
n
k

y
vλ0 .Pn, cf. Remark 10.1.13. Therefore,

if G ◦ F wants to categorify the action of Pn, then G should contain copies of L.

Definition 11.1.13 (Definition of G). We define the map G : Dco,+
C′ (R-gfmod) ⊂

Dco,+(R-gfmod)→ K−
(
Ĉup(n, k)

)
as the following composition:

Dco,+(R-gfmod)
(1)∼= Kco,+

(
P(R-gfmod)

) (2)
= K−

(
F(R-gfmod)

)
(3)→ K+

(
Chb(Ĉup(n, k))

)
Tot−−→ K−

(
Ĉup(n, k)

)
Here, (1) is just the usual equivalence between the derived category of bounded to the
right cocomplexes to the homotopy category of bounded to the right projectives for
cocomplexes.

By Lemma 10.4.6 R is local, thus the projective modules P(R-gfmod) are just the free
modules F(R-gfmod) which yields (2).

The functor (3) is induced by the additive contravariant functor F(R-gfmod) →
Chb

(
Ĉup(n, k)

)
given by sending the object R 〈j〉 to L 〈j〉 [j] and a morphism ϕ :

R 〈j〉 → R 〈m〉 to ϕ̂ : L 〈m〉 [m] → L 〈j〉 [j] constructed as follows: Note that ϕ
is given by multiplication with some element ϕ̃ ∈ Rj−m. Under the identification
R =

⊕
i,j HomK(L,L 〈i〉 [j]) this gives a map in Rj−m = HomK(L 〈m〉 [m], L 〈j〉 [j]).

Finally, Tot : K+
(
Chb(Ĉup(n, k))

)
→ K−

(
Ĉup(n, k)

)
makes a complex of complexes

into a double complex by adding signs and then sends it to the total complex.

Apriori it is not clear that taking the total complex in the last step results in a complex
in K−

(
Ĉup(n, k)

)
. The next proposition shows that when starting with an element in

Dco,+
C′ (R-gfmod) we not only land in K−

(
Ĉup(n, k)

)
but in K−C

(
Ĉup(n, k)

)
. Before we

state the proposition we want to consider an example.

Example 11.1.14. Let n = 2 and k = 1. Consider C in Dco,+
C′ (R-gfmod), then by (1)
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and (2) it is send to its free resolution

1 0 −1 −2 −3 −4

0 R
·x←− R 〈2〉 ·x←− R 〈4〉 ·x←− R 〈6〉 ·x←− . . . ,

after that to

1 0 −1 −2 −3 −4

0 L
fx−→ L 〈2〉 [2]

fx−→ L 〈4〉 [4]
fx−→ L 〈6〉 [6]

fx−→ . . . ,

which as double complex looks like

1 0 −1 −2 −3 −4

0 L0

1 L1

2 L2 q2L0

3 q2L1

4 q2L2 q4L0

5 q4L1

6 q4L2 q6L0

7 q6L1

8 q6L2 . . .

and finally by Tot to

5 4 3 2 1 0

L2 L1 L0

q2L2 q2L1 q2L0

q4L2 q4L1 q4L0

q6L2 q6L1 q6L0

. . .

⊕ ⊕

⊕ ⊕

⊕ ⊕

⊕

Proposition 11.1.15. The functor G from Definition 11.1.13 is well-defined and has
image in K−C

(
Ĉup(n, k)

)
.
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Proof. Let X be a complex in Dco,+
C′ (R-gfmod). The equivalence (1) can be defined

explicitly by sending X to the total complex of the Cartan-Eilenberg resolution. Recall
that in the Cartan-Eilenberg resolution P∗,∗ every column Pp,∗ is a projective resolu-
tion of Xp [Wei94, Exercise 5.7.1]. We can resolve every indecomposable summand M
separately. Assume M is in homological and internal degree 0 and consider its project-
ive resolution. Since the differentials play no role in whether condition C ′ is satisfied,
we denote the projective resolution as if they were all zero. By Theorem 10.4.4, R is
not only positively graded but is only non-zero in even degrees. Hence, the projective
resolution of M is of the form ⊕

b≤0

⊕
tb≥s≥1
asb+2b≥0

R〈asb〉[b].

Because of asb +2b ≥ 0, the equation asb + b = t can only have finitely many solutions for
every t, since t+ b = asb + 2b ≥ 0 can only hold for finitely many b ≤ 0. Also, asb + b ≥ 0

holds, since asb + b = asb + 2b− b ≥ 0. When we now resolve the complex

X =
⊕
i≤s

⊕
zi≥v≥1
jiv+i≥u

jiv+i=t fin.

Mj,v,i〈jiv〉[i],

where we again disregard the differentials, and then take the total complex, we obtain⊕
i≤s

⊕
zi≥v≥1
jiv+i≥u

⊕
b≤0

⊕
tb≥s≥1
asb+2b≥0

R〈asb + jiv〉[b+ i].

Now b + i ≤ s + 0 ≤ s and asb + jiv + b + i ≥ 0 + u = u. Furthermore, the equation
asb + jiv + b + i = t implies u ≤ jiv + i ≤ t − (asb + b) ≤ t, thus they are finitely many
solutions for i and jiv. Also, for every such solution, the equation asb + b = t − jiv − i
has finitely many solutions, thus we obtain finitely many solutions in total. Therefore,
condition C ′ is preserved under (1) and (2).

Thus, we need to consider a complex Y in K−
(
F(R-gfmod)

)
with

Yi =

ri⊕
a=1

R
〈
jia
〉

such that i+ jia ≥ u for some fixed u ∈ Z, Yi 6= 0 only for i ≤ s for some s ∈ Z and the
equation i + jia = t has only finitely many solutions for every t. Again, for satisfying
condition C ′ it is not important what the differentials of Y look like, so we will assume
they are all zero. Then

Y =
⊕
i≤s,a

R
〈
jia
〉

[i]

with i+jia ≥ u. Now applying (3) sends R 〈a〉 [b] to L 〈a〉 [a, b], where seen as complex of
complexes b denotes the outer and a the inner homological degree. By Proposition 10.5.2
L is a bounded linear complex and thus L =

⊕
l,some λ∈Λ(n,k) T(λ) 〈l〉 [l] with r ≥ l ≥ 0
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when we again disregard the differentials. Thus,

Y
(4)7→
⊕
i≤s,a

L
〈
jia
〉

[jia, i]

=
⊕
i≤s
a

⊕
some λ∈Λ(n,k)

l≥0

T(λ)
〈
l + jia

〉
[l + jia, i].

Now taking the total complex yields a complex Z with

Zm =
⊕

l+jia+i=m

⊕
i≤s
a

⊕
some λ∈Λ(n,k)

l≥0

T(λ)
〈
l + jia

〉
[l + jia + i].

Now m = l + jia + i ≥ 0 + u = u, thus Z is bounded to the right. Furthermore, the
equation l+ jia+ i = m is equivalent to jia+ i = m− l. We have m ≥ m− l ≥ m− r, i.e.
the right hand side can only take finitely many values. Since a+ b = t has only finitely
many solutions, the same is true for l+jia+ i = m. Finally, (l+jia+ i)−(l+jia) = i ≤ s,
so all the conditions are satisfied.

Lemma 11.1.16. G(−).U i ' 0

Proof. By construction G(M) for some M ∈ Dco,+
C′ (R-gfmod) is a total complex of a

double complex containing direct sums of shifted L’s in every row. By Theorem 10.3.1 we
know L.U i ' 0, thus G(M).U i is the total complex of a double complex with collapsing
rows. Therefore, by [CK12, Lemma 2.12] or alternatively [Hog12, Proposition 7.5] we
obtain G(M).U i ' 0.

Remark 11.1.17. Lemma 11.1.16 is the categorified version of Ci,n ◦ ιn = 0 from
Lemma 2.2.4. To make a precise statement on the level of Grothendieck groups one has
the same problem with unbounded complexes as addressed in Remark 11.1.11.

Lemma 11.1.18. We have G
(
R 〈a〉 [b]

)
= L 〈a〉 [a+ b] and G ◦ F

(
L 〈a〉 [b]

)
= L 〈a〉 [b].

Proof. The functor G sends R 〈a〉 [b] to Tot(L 〈a〉 [a][b]) = L 〈a〉 [a + b]. Together with
Lemma 11.1.12 this yields the assertion.

Remark 11.1.19. Note that we have G
(
M 〈a〉 [b]

)
= (GM) 〈a〉 [a + b]. Indeed, let

P• = P0 ← P1 ← P2 ← . . . be a projective resolution ofM . Then P• 〈a〉 [b] = (P0 〈a〉 ←
P1 〈a〉 ← P2 〈a〉 ← . . . )[b] is a projective resolution of M 〈a〉 [b]. When P• is send to
Tot(Y 0 → Y 1 → Y 2 → . . . ), then P• 〈a〉 [b] is sent to Tot(Y 0 〈a〉 [a] → Y 1 〈a〉 [a] →
Y 2 〈a〉 [a] → . . . )[b] = Tot(Y 0 → Y 1 → Y 2 → . . . ) 〈a〉 [a + b]. In particular, G ◦ F is
compatible with shifts since F (X 〈a〉 [b]) = F (X) 〈a〉 [b − a] by definition. Also, F ◦ G
is compatible with shifts.

In analogy to Lemma 2.2.4 a) we now want to show the following:

Theorem 11.1.20. For every M ∈ Dco,+
C′,0 (R-gfmod) we have F ◦ G(M) ∼= M , where

here we denote by ∼= the isomorphism in the derived category and Dco,+
C′,0 (R-gfmod) is the

full subcategory of complexes in Dco,+
C′ (R-gfmod) with zero differential.
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Note that we do not show this for all of the source of G but only for the subcategory
that contains the image of F . But this is still enough to get P ◦ P (M) ' P (M) for
P := G ◦ F and M ∈ K−C

(
Ĉup(n, k)

)
which is the analogy to the property p2

n = pn of
the Jones-Wenzl projector.

We start the proof by constructing a map as follows:

Construction 11.1.21. Let (P•, d•) be in Kco,+
C′

(
F(R-gfmod)

)
. Then every f ∈

ker di ⊂ Pi defines an element f̃ ∈ F
(
G(P )

)
.

Proof. By definition G(P•) is the total complex Z• of a double complexX•,• with entries
direct sums of L 〈a〉 [a] in every row. (Note that we switch rows and columns compared
to Example 11.1.14 to better see how the copies of L appear in the total complex.)

...
...

...
...

. . . X0,3 X0,2 X0,1 X0,0 . . .

. . . X−1,3 X−1,2 X−1,1 X−1,0 . . .

. . . X−2,3 X−2,2 X−2,1 X−2,0 . . .

. . . X−3,3 X−3,2 X−3,1 X−3,0 . . .

...
...

...
...

This double complex is bounded to the top since we start in Kco,+. Moreover, condition
C ′ ensures that there are only finitely many nonzero entries on each diagonal, so that
Zr =

⊕
i+j=rXi,j is finite for every r. The horizontal differentials, which come from

the differentials in each copy of L, are denoted by ∂.

The vertical maps δ are induced from the differentials in P•. More precisely if Pi =⊕
iR 〈ti〉, Pi+1 =

⊕
iR 〈t′i〉 and di : Pi → Pi+1, then Xi+1,• =

⊕
i L 〈t′i〉 [t′i], Xi,• =

L
⊕

i 〈t′i〉 [t′i] and δ : Xi+1,• → Xi,• is given by the elements of the matrix di. Now
assume f ∈ ker di. Then f =

⊕
i fi with fi ∈ R 〈ti〉. Since R = HomK

(
L,
⊕

a L 〈a〉 [a]
)
,

every fi defines a chain map f̂i : L 〈ti〉 [ti] →
⊕

a L 〈a〉 [a] and f̂ =
⊕

i f̂i : Xi,• =⊕
i L 〈ti〉 [ti]→

⊕
a L 〈a〉 [a]. Furthermore, f ∈ ker di means that f̂ ◦ δ = 0.

The signs in the double complex are chosen such that the differentials in Xi,• are given
the sign (−1)i. (Note that by Remark 10.2.1 different sign choices lead to isomorphic
complexes.) This means, when going to the total complex, Xi,•[i] is a partcomplex of
Tot(X) = G(P•).
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Xi+1,•

Xi,•

Xi−1,•

;

Xi+1,•

Xi,•

Xi−1,•

Hence, f̂ yields a map f̃ : Tot(X) →
⊕

a L 〈a〉 [a][i] by defining it as f̂ on the part-
complex Xi,•[i] and 0 elsewhere. Now f̃ is a chain map since f̃ ◦ δ = 0. Thus,
f̃ ∈ F

(
G(P )

)
=
⊕

i,j HomK−
(

Tot(X), L 〈i〉 [j]
)
〈i〉 [j].

Lemma 11.1.22. In the situation of the construction above, the map

Ψ :
⊕
i

ker di → F
(
G(P )

)
⊕
i

fi 7→
⊕

f̃i

is surjective.

Proof. We use again the notations from the previous lemma. We fix a, b and set Y• :=

L 〈a〉 [a + b]. Let f : Z• → Y• be a chain map. Let fi,j be the restriction of f to the
summand Xi,j in Zi+j . By condition C ′ we know that for smaller i the internal degree
of elements in Pi gets bigger. This transfers to X•,•, where also the internal degree rises
when i gets smaller. From Theorem 3.4.12 we know that the maximal degree of maps
in Cup(n, k) and thus in Ĉup(n, k) is bounded. Since Y• is bounded and thus has a
bounded maximal internal degree, for i � 0 we have fi,j = 0. We choose i0 minimal
such that fi0,j 6= 0 for some j.

We can also assume fi0,• is not nullhomotopic, since if it were nullhomotopic we could
define a homotopy f ' g by Lemma 5.1.1, that might change the fj,• for j > 0, but
satisfies gj,• = fj,• for j < i0 and gi0,• = 0. By construction, the source of fi0,• is some⊕

m L 〈tm〉 [tm][i0], i.e. a shifted linear complex. Thus, by Lemma 10.5.6 fi0,• is a degree
0 chain map.

By the definition of chain maps, f has to satisfy

d′f = f(∂ + δ),

where d′ is the differential in Y• and ∂ + δ the differential of the total complex. In
particular, d′fi0,• = fi0,•∂ by minimality of i0. Therefore, f restricts to an ordinary
chain map fi0,• : Xi0,•[i0]→ Y•.

We now have for all j that

d′fi0+1,j = fi0+1,j−1∂ + fi0,jδ.
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which is equivalent to fi0,jδ = d′fi0+1,j − fi0+1,j−1∂. Here δ is a degree 0 map since
it comes from a map between linear complexes. On the other hand, d′ and ∂ are
differentials in linear complexes, i.e. degree 1 maps. Hence, f0,jδ = 0 is the only
possibility, i.e. f0,• ◦ δ = 0. Now we iterate and obtain that every fi,• : Xi,•[i] → Y• is
a chain maps with fi,• ◦ δ = 0. Therefore, it comes as an Ψ(f ′) for f ′ ∈

⊕
i ker di.

Lemma 11.1.23. In the situation of the previous lemma, the map Ψ :
⊕

i ker di →
F (G(P )) satisfies Ψ(

⊕
i im di−1) = 0.

Proof. Again we use the notations from the previous lemmas. Assume f ∈ ker di is of the
form f = di−1ϕ. Then f̃ = Ψ(f) is of the form f̃ = ϕ̃δi−1 : Xi,•[i]→

⊕
a,b L 〈a〉 [b] =: L̃

with ϕ̃ : Xi−1,•[i− 1]→ L̃[−1]. Now the homotopy h : Tot(X)[1]→ L̃ defined by

h|Xl,j =

{
ϕ̃j if l = i− 1,

0 otherwise,

is a nullhomotopy for f̃ : For maps starting atXi,j we have d′h+h(∂+δ) = 0+0+ϕ̃δi−1 =

f̃ . For maps starting at Xi−1,j we have d′h+ h(∂ + δ) = d′ϕ̃+ ϕ̃∂ + 0 = d′ϕ̃− d′ϕ̃ = 0,
since ϕ̃∂ = d′[−1]ϕ̃ = −d′ϕ̃. For all other Xl,j we have d′h+ h(∂ + δ) = 0.

Putting all of this together we can prove our desired theorem.

Proof of Theorem 11.1.20. Since the projective resolution works separately for every
direct summand and every R-module splits into a sum of indecomposable ones [Lan02,
Theorem 7.5, Example 7.1], we can assume M is indecomposable. Furthermore, we
know that F and G commute with homological shifts, so we can assume that M is in
homological degree 0.

First, we consider the case whereM = C 〈a〉 for some a and (P•, d•) is the free resolution
of M . Since we know how F and G commute with shifts by Remark 11.1.19 we can
assume a = 0. By Lemma 11.1.22 and Lemma 11.1.23 we have that

Ψ :
⊕
i

H i(P•) =
⊕
i

ker di/ im di−1 → F
(
G(P•)

)
.

is surjective. Since P• is a resolution all H i except for i = 0 vanish and H•(P•) is
quasi-isomorphic to C. Thus, to show that Ψ is injective it suffices to show it on the
degree 0 part. The only cohomology is 1-dimensional spanned by 1 ∈ R = P0. But we
have X0,• = L and 1̃|X0,•

= id. id is not homotopic to zero, since for degree reasons
there can be no homotopy.

For the other indecomposable modules M we do induction over the dimension d =

dimC(M). The case d = 1 has already been treated above. Now assume d > 1 and
let a be the minimal non-zero degree of M . Then there is a surjective R-linear map
τ : M → C 〈a〉. Let M ′ := ker(τ), then there is a short exact sequence 0 → M ′ →
M → C 〈a〉 → 0 with dimCM = dimCM

′ + 1 and M ′ is isomorphic to a sum of
indecomposables of smaller dimension. In particular, we know F

(
G(M ′)

) ∼= M ′ in the
derived category. Setting N = M 〈−a〉, N ′ = M ′ 〈−a〉, we still have F

(
G(N ′)

) ∼= N ′
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by Remark 11.1.19, and the sequence 0 → N ′ → N → C → 0 is also exact. It is sent
to a distinguished triangle G(N ′)→ G(N)→ G(C)→ G(N ′)[1] by G. Thus, for every
b ∈ Z we obtain a long exact sequence

...−→HomK−
(
G(C),L〈b〉[−1]

)
−→HomK−

(
G(N),L〈b〉[−1]

)
−→HomK−

(
G(N ′),L〈b〉[−1]

)
−→HomK−

(
G(C),L〈b〉

)
−→HomK−

(
G(N),L〈b〉

)
−→HomK−

(
G(N ′),L〈b〉

)
−→HomK−

(
G(C),L〈b〉[1]

)
−→HomK−

(
G(N),L〈b〉[1]

)
−→HomK−

(
G(N ′),L〈b〉[1]

)
−→...

From the calculations for C we already know HomK−(G(C), L 〈b〉 [j]) = 0 for b 6= 0

or j 6= 0. Thus, for b 6= 0 or j 6= −1, 0 we obtain dimC HomK−
(
G(N), L 〈b〉 [j]

)
=

dimC HomK−
(
G(N ′), L 〈b〉 [j]

)
.

By induction we know that F
(
G(N ′)

)
is isomorphic toN ′. In addition to this, F

(
G(N ′)

)
is a cocomplex with differential 0 and thus, its cohomology is the same as F

(
G(N ′)

)
itself. By assumption, N ′ and also its cohomology is concentrated in homological degree
0. If HomK−

(
G(N ′), L[−1]

)
is non-zero, then F

(
G(N ′)

)
(0,−1)

is non-zero by definition,
i.e. it has a non-zero entry in homological degree −1. Thus, HomK−

(
G(N ′), L[−1]

)
has

to be zero. Therefore, we obtain

dimC HomK−
(
G(N), L 〈b〉 [j]

)
= dimC HomK−

(
G(N ′), L 〈b〉 [j]

)
= 0

for b = 0 and j = −1 and for j = b = 0 we obtain

dimC HomK−
(
G(N), L

)
= dimC HomK−

(
G(C), L

)
+ dimC HomK−

(
G(N ′), L

)
.

In total, we have

dimC F
(
G(N)

)
= dimC F

(
G(N ′)

)
+ dimC F

(
G(C)

)
= dimCN

′ + dimCC = dimCN.

Of course, we also have dimC F
(
G(M)

)
= dimC F

(
G(N)

)
= dimCM . Thus, the map

Ψ is also injective in this case and this yields our desired isomorphism F
(
G(M)

) ∼= M

in the derived category.

Altogether we have shown that for P := G ◦ F , analogously to the way Lemma 2.2.4
yields the equalities of Proposition 2.2.3, we have

P ◦ P (X) ' P (X) and P (X).U i ' 0 ' P (X.Ui).

for every object X in K−C
(
Ĉup(n, k)

)
. These equalities are the categorified version of

the properties of the Jones-Wenzel projector. They are also satisfied by the universal
projector defined by Cooper and Krushkal [CK12] which we recall in the next section.
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11.2 Universal projectors

We recall Cooper-Krushkal’s definition of universal projectors and start to relate it to
the composition of the functors G and F defined in the last section. Before continuing
this comparison in the next section, we recall Rozansky’s construction of the universal
projectors.

11.2.1 Cooper-Krushkal’s definition

Recall that for A an additive category we denote by Ch−(A) and K−(A) bounded to
the right chain complexes in Ch(A) and K(A), resp.

Following [CK12] in the normalisation of [Hog12] we define:

Definition 11.2.1. A chain complex P ∈ Ch−
(
Ĉob(n)

)
is a universal projector if:

(1) The complex is concentrated in non-negative homological degrees, is isomorphic to
the identity in degree 0 and Idn only appears at homological degree 0, i.e.

• P0
∼= Idn

• Pj � Idn⊕D for any D ∈ Ĉob(n) for k > 0

• Pj = 0 for j < 0.

(2) P is contractible under turnbacks, i.e. P ⊗ U i ' 0 ' U i⊗P for all i.

Here, the tensor product is the usual tensor product of complexes where U i is in homo-
logical degree 0.

Theorem 11.2.2 (Cooper-Krushkal). Universal projectors exist and are unique up to
homotopy equivalence for every n. They satisfy P ⊗ P ' P .

A proof can be found in [CK12, Section 3].

Definition 11.2.3. We denote by P(n) the unique universal projector in K−
(
Ĉob(n)

)
.

The universal projector P(n) satisfies the properties P 2
n = Pn and PnUi = 0 = UiPn of

the Jones-Wenzl projector on a higher level. For a description on how to impose tech-
nical conditions on the Grothendieck groups to make the statement that the universal
projector categorifies the Jones-Wenzl projector more precise see [CK12, Sections 2 and
3].

Example 11.2.4. The smallest universal projector, i.e. the one for n = 2, looks as
follows:

P(2) = . . .
−

−−−−−−−→ q5
+

−−−−−−−→ q3
−

−−−−−−−→ q −−−→

More precisely, P(2)i = q2i−1 for i > 0 and for i ≥ 2 the differential di : P(2)i →
P(2)i−1 is defined as + for i odd and as - for i even. Using the rela-
tions of Cob(n), one can easily calculate that the differential squares to zero, cf. [CK12,
Proposition 4.1]. The calculation for P(2) ⊗ U1 ' 0 is more involved and uses de-
looping (Lemma 3.2.4) and iterated Gaussian elimination (Lemma 5.1.2), cf. [CK12,
Theorem 4.1].
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Now we want to compare P(n) with G ◦ F .

Lemma 11.2.5. We have T(λ).P(n) ' 0 = G ◦ F
(

T(λ)
)
for all λ 6= λ0 in Λ(n, k).

Proof. Since λ 6= λ0, by Lemma 4.1.8 there is some i and some λ′ such that T(λ) ∼=
T(λ′).U i. Therefore, by definition we have T(λ).P(n) ∼= T(λ′).

(
U i⊗P(n)

)
' 0 and

P
(

T(λ)
)

= P
(

T(λ′).U i
)

= 0 holds by Remark 11.1.11.

Proposition 11.2.6. We have L.P(n) ' L = G
(
F (L)

)
.

Proof. We already know G
(
F (L)

)
= L from Lemma 11.1.18. Furthermore, L.P(n) is

the total complex of the double complex having L.P(n)i in the rows. By definition
of a universal projector we know that P(n)0

∼= Idn and P(n)j ∼=
⊕s

r=1 U ir ⊗Dr for
some Dr ∈ Ĉob(n), hence by Theorem 10.3.1 we have L.P(n)i ' 0 for i 6= 0 and
L.P(n)0

∼= L. Id ∼= L. Thus, by [Hog12, Proposition 7.5], we obtain L.P(n) ' L.

We now consider the functor .P(n) given by application of P(n).

Corollary 11.2.7. If T(λ0).P(n) ' G ◦ F
(

T(λ0)
)
, then the functors .P(n) and G ◦ F

are isomorphic as functors from Ĉup(n, k) to K−
(
Ĉup(n, k)

)
.

Proof. By Lemma 11.2.5 and the assumption, for every object X in Ĉup(n, k) we have
a morphism ηX : X.P(n)→ G ◦F (X) which is an isomorphism, since both functors are
additive and compatible with shifts. Now we consider f : X → Y first for X ∼= qr T(λ)

and Y ∼= qs T(µ). If µ 6= λ0 we haveG◦F (Y ) = 0 and thus ηY ◦G◦F (f) = f.P(n)◦ηX . If
λ 6= λ0, then X.P(n) is isomorphic to zero and we also have ηY ◦G◦F (f) = f.P(n)◦ηX .
For the case λ = µ = λ0 by Lemma 3.4.15 the only possible morphisms f are c · id for
c ∈ C and r = s. Since id .P(n) = idT(λ0).P(n) and G ◦ F (id) = idG◦F (T(λ0)) we have
ηY ◦ G ◦ F (id) = id .P(n) ◦ ηX . The same holds for c · id, since everything is C-linear.
Again by additivity and compatibility with shifts we obtain ηY ◦G◦F (f) = f.P(n)◦ηX
for general objects X,Y of Ĉup(n, k).

To obtain the homotopy equivalence when applying to T(λ0) that is a condition in the
corollary above, we need a construction of the universal projectors.

11.2.2 Rozansky’s construction

Before going on, we need to recall some terminology from [Roz10, Section 2.2.2], adapted
to the fact that we denote complexes homologically instead of cohomologically.

We are now back in the general setting that A is an additive category and we consider
complexes in K(A).

Definition 11.2.8. The homological order |C|~ ∈ Z ∪ {∞} of a complex C is defined
as

|C|~ = sup
{
m | ∃B = (· · · → Bm+1 → Bm → 0) s.t. C ' B

}
.
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For example, for C = 0→M → N
id−→ N → 0 with the right 0 in homological degree 0

we have |C|~ = 3 since C ' 0→M → 0→ 0→ 0.

A direct system A in K(A) is a sequence of complexes Ai ∈ K(A), i ∈ N, connected by
chain morphisms:

A = (A0 f0

−→ A1 f1

−→ . . . ).

A direct system A is Cauchy, if lim
i→∞

∣∣Cone(f i)
∣∣
~ =∞.

A direct system A has a limit A, where A is a chain complex, if there exist chain

morphisms Ai f̃ i−→ A such that f̃ i ' f̃ i+1f i and lim
i→∞

∣∣Cone(f̃ i)
∣∣
~ =∞.

Example 11.2.9. Let A = (· · · → C2 → C1 → C0 → 0) a complex, unbounded to the
left. Let Ai = (Ci → Ci−1 → · · · → C1 → C0) and define f i : Ai → Ai+1 by f ij = idCj

for 0 ≤ j ≤ i. Then the direct system A = (A0 f0

−→ A1 f1

−→ . . . ) is a Cauchy since (for
example by Gaussian elimination (Lemma 5.1.2)) we have Cone(f i) ' (Ci+1 → 0 →
· · · → 0), i.e. |Cone(f i)|~ = i+ 1.

We even have that A is a limit of A. Indeed, if we define f̃ ij = idCj for 0 ≤ j ≤ i we
have f̃ i = f̃ i+1f i. Furthermore, Cone(f̃ i) ' (· · · → Ci+2 → Ci+1 → 0 → · · · → 0) by
Gaussian elimination, so |Cone(f i)|~ = i+ 1.

Proposition 11.2.10 ([Roz10, Theorems 2.5, 2.6]). A direct system A has a limit if
and only if it is Cauchy. The limit is unique up to homotopy equivalence. We denote it
by lim

→
A.

For the application in Corollary 11.3.13 below, we need the following.

Proposition 11.2.11. Let A be an additive category with an action of an additive
monoidal category D, i.e. the functor . : A×D → A from Definition 4.1.1 is compatible

with the additive structures. Let D = (D0 f0

−→ D1 f1

−→ . . . ) be a Cauchy system in K(D),
lim
→

D its limit and A ∈ K(A). Then

A.D =

(
A.D0 id .f0

−−−→ A.D1 id .f1

−−−→ . . .

)
defines a Cauchy system in K(A) and lim

→
(A.D) ' A. lim

→
D. (Here the action of K(D)

on K(A) is as defined in Section 5.1.)

Proof. By Proposition 11.2.10 it is enough to show that A.D has limit A. lim
→

D. Since
by assumption D is Cauchy, it has by Proposition 11.2.10 a unique limit lim

→
D in K(D)

with associated maps

Di f̃i−→ lim
→

D (11.1)

satisfying f̃i ' f̃i+1fi and lim
i→∞
|Cone(f̃i)|~ =∞. The action of (11.1) on A gives chain

maps A.Di id f̃i−−→ A. lim
→

D satisfying id .f̃i ' id .f̃i+1 id .fi. Since
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Cone(id .f̃i) = A.Cone(f̃i) and lim
i→∞
|Cone(f̃i)|~ =∞

we obtain lim
i→∞
|Cone(id .f̃i)|~ =∞. Thus, lim

→
(A.D) ' A. lim

→
D.

Now we can recall Rozansky’s definition of the categorified Jones-Wenzl projector.

Definition 11.2.12. Following [Roz10] we consider the following braid diagrams with

n strands. Let βcyl,n = and βrot,n := (βcyl,n)n = =: 1 the 1-fold full

twist (by 360◦) and ωm = m= (βrot,n)m the m-fold full twist. For Id the trivial

braid let C (Id) = Id as a complex in K(Ĉob(n)) concentrated in degree 0. For σi :=

i
we define the complex

C (σi) = (q U i
Hi−→ Id)

in K
(
Ĉob(n)

)
and for 1 ≤ i1, . . . , ir ≤ n− 1 let

C (σi1 . . . σir) = C (σi1)⊗ . . .⊗ C (σir),

i.e. vertical composition of braids corresponds to tensor product of complexes.

For example, for n = 2

C (ω1) = C (σ2
1) = C (σ1)⊗ C (σ1) =

q2 U1 U1 q U1 Id

q IdU1 Id Id

− id H1

H1 id

H1 id

id H1

⊕

More generally, C (βcyl,n) = C (σ1)⊗ . . .⊗ C (σn−1) and C (ωm+1) ∼= C (ωm)⊗ C (ω1).

Let B(n) be the direct system

C (Id)
f0

−→ C (w1)
f1

−→ C (w2)
f2

−→ . . . ,

where f0 is given by id : C (Id)→ C (w1)0 and for higher m we have

fm = idC (ωm)⊗f0 : C (ωm) ∼= C (ωm)⊗ C (Id)→ C (ωm)⊗ C (ω1) ∼= C (ωm+1).

By [Roz10, Theorem 4.4] we have |Cone(fm)|~ ≥ 2m(n− 1) + 1. In particular, B(n) is
Cauchy and hence has a limit which we denote by P(n) = lim

→
B(n).

Theorem 11.2.13 ([Roz10, Theorem 2.7 and (2.27)]). P(n) is a universal projector.1

Recall the cube-complexes Rk from Definition 6.1.3. We now define a complex
R′(i1, . . . , ir) in Ch

(
Ĉob(n)

)
similar to the definition there but with U i and Id switched

and the signs adjusted.
1To translate into Rozansky’s setting we have to rotate the braids by 90 degrees and collapse the

triple grading to a double grading.
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Definition 11.2.14. Let 1 ≤ i1, . . . , ir ≤ n− 1. For w = (w1, . . . , wr) with wj ∈ {0, 1}
let

w(i1, . . . , ir) = q
∑
i wiBi1 . . . Bir ,

where Bil =

{
U il , if wl = 0

Id, if wl = 1.

For ξ = (ξ1, . . . , ξr) an edge-label with ξj = ? let

ξ(i1, . . . , ir) = (−1)
∑
i<j ξi id . . . id Hij id . . . id,

where Hij : U ij → Id is the saddle cobordism.

Finally, let R′(i1, . . . , ir) = Rr(i1, . . . , ir), i.e.

R′(i1, . . . , ir)l =
⊕

w:
∑
wi=l

w(i1, . . . , ir)

with the differential given by the outgoing edges.

Proposition 11.2.15. C (βcyl,n) = R′(1, . . . , n− 1).

Proof. We show inductively that C (σ1)⊗ . . .⊗C (σi) = R′(1, . . . , i). It is obviously true
for i = 1. Furthermore R′(1, . . . , i)⊗ C (σi+1) = R′(1, . . . , i+ 1) is clear on objects and
the morphisms up to sign. By the definition of tensor product we need to add a sign
(−1)j to maps R′(1, . . . , i)j⊗C (σi+1)1 → R′(1, . . . , i)j⊗C (σi+1)0. But for a summand
w(1, . . . , i) of R′(1, . . . , i)j this new edge is (w1, . . . , wi, ?).(1, . . . , i + 1) and thus has
sign (−1)

∑i
l=1 wl = (−1)j . The signs of other maps are not changed.

Example 11.2.16. For n = 4 we have

C (βcyl,4) =

q2 U1 U2 Id q U1 Id Id

q3 U1 U2 U3 q2 U1 IdU3 q IdU2 Id Id Id Id

q2 IdU2 U3 q Id IdU3

id H2 id

H3 id id H3 id idid id H4

id H2 id

H3 id id

⊕
− id id H4

H3 id id

⊕

− id H2 id

⊕
− id id H4

− id H2 id

⊕
id id H4

.

Directly from the Proposition 11.2.15 and the definitions we obtain

Corollary 11.2.17. C (ωm) ∼= R′(1, . . . , n− 1)⊗nm.

11.3 The action of the universal projector in special cases

The goal of this section is to show P
(

T(λ0)
)
' T(λ0).P(n) for P := G◦F and F and G

as defined in Section 11.1 in the special cases k = 0 and k = 1. We conjecture that this
also holds for general k, but we only have enough explicit information about End(L)

and L for k = 0, 1.
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We start with k = 0. First note that this case is very simple: T(λ0).P(n) ∼= T(λ0) since
T(λ0).U i = 0 for all i and P(n)j does not contain Id as a summand for j 6= 0. Even
more, P(n) acts as the identity on all the complexes in K−(Ĉup(n, k)) since all objects
are isomorphic to complexes with entries shifted T(λ0)’s.

Proposition 11.3.1. Let k = 0, then P and .P(n) are isomorphic as functors from
Ĉup(n, k) to K−

(
Ĉup(n, k)

)
.

Proof. Since T(λ0).P(n) ∼= T(λ0), by Corollary 11.2.7 and Proposition 10.4.2 we only
have to show G(C) ' T(λ0). But since R ∼= C the first part of the functors that G is
composed of just send C to C and the last two send it to L = T(λ0).

Now we investigate the special case k = 1 and again use the notation of Section 10.2.

As a first step we compute P
(

T(0)
)
.

Lemma 11.3.2. Let fx : L → L 〈2〉 [2] be the element of End(L) associated to x ∈
C[x]/(xn) under the isomorphism of Proposition 10.4.12. Then

Cone(fx) '(
q2n T(0)→ q2n−1 T(1)→ · · · → qn+1 T(n− 1)

f−→ qn−1 T(n− 1)→ · · · → qT(1)→ T(0)
)
,

where all the maps are saddles except of f = Hn−1 ◦Hn−1 which is the identity with a
dot on the only black cup.

Proof. Recall the subcomplexes Lr of L = Ln from Definition 10.4.8. We have

Ln = Cone(V∗(n− 1) 〈n− 1〉 [n− 2]
fn−2,n−1−−−−−−→ Ln−1).

Thus, by Proposition 10.4.7 and Corollary 10.4.11, we obtain

Ln ∼= Cone(Ln−1[−1] −→ V∗(n− 1)∗ 〈n− 1〉 [n− 1]).

Recall from the proof of Proposition 10.4.12 that the map fx is given by the ±-
isomorphism of the partcomplexes Ln−1 of Ln and Ln−1 〈2〉 [2] of Ln 〈2〉 [2]. When we
apply iterated Gaussian elimination (Lemma 5.1.2) to the ±-isomorphisms in Cone(fx),
we see that there are no new maps except the composition of T(n− 1)→ T(n− 2)

id−→
T(n− 2)→ T(n− 1). This is true because this is the only possible map between what
remains. But the composition is just f .

Proposition 11.3.3. We have P (T(0)) ' Q̃ where Q̃ :=

. . .
•−→ q4n−1 T(1)→ q4n−2 T(2)→ · · · → q3n+1 T(n− 1)
•−→ q3n−1 T(n− 1)→ · · · → q2n+2 T(2)→ q2n+1 T(1)
•−→ q2n−1 T(1)→ q2n−1 T(2)→ · · · → qn+1 T(n− 1)

•−→ qn−1 T(n− 1)→ qn−2 T(n− 2) · · · → qT(1)→ T(0),

where the unlabelled → are saddles and the •−→ are Hi ◦Hi for i = 0 or i = n− 1.
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Before the proof we look at an example of Q̃.

Example 11.3.4. For n = 4 we have Q̃ =

· · · → q18 T(2)→ q17 T(1)
•−→ q15 T(1)→ q14 T(2)→ q13 T(3)

•−→ q11 T(3)→ q10 T(2)→

q9 T(1)
•−→ q7 T(1)→ q6 T(2)→ q5 T(3)

•−→ q3 T(3)→ q2 T(2)→ qT(1)→ T(0).

Proof. By Proposition 10.4.2 we already know F (T(λ0)) = C. By Proposition 10.4.12
we have End(L) ∼= C[x]/(xn). A projective (and free) resolution of C in comodules of
C[x]/(xn)-gfmod is given by

C pr←− C[x]/(xn)
·x←− C[x]/(xn) 〈2〉 ·x

n−1

←−−− C[x]/(xn) 〈2n〉 ·x←−

C[x]/(xn) 〈2n+ 2〉 ·x
n−1

←−−− C[x]/(xn) 〈4n〉 ·x←− C[x]/(xn) 〈4n+ 2〉 ·x
n−1

←−−− . . . ,

where pr is the projection. Thus, G first sends C to

C[x]/(xn)
·x←− C[x]/(xn) 〈2〉 ·x

n−1

←−−− C[x]/(xn) 〈2n〉 ·x←−

C[x]/(xn) 〈2n+ 2〉 ·x
n−1

←−−− C[x]/(xn) 〈4n〉 ·x←− C[x]/(xn) 〈4n+ 2〉 ·x
n−1

←−−− . . . ,

then to WL :=

L
fx−→ L 〈2〉 [2]

fxn−1−−−−→ L 〈2n〉 [2n]
fx−→ L 〈2n+ 2〉 [2n+ 2]

fxn−1−−−−→ . . . ,

where fx : L→ L 〈2〉 [2] is the element of End(L) associated to x ∈ C[x]/(xn) under the
isomorphism of Proposition 10.4.12 and fxn−1 the one corresponding to xn−1. Finally,
G(C) = Tot(WL), so we have to see that this is homotopic to Q̃.

First note that fxn−1 is just the map id between the leftmost T(0) of L and the rightmost
T(0) of L 〈2n− 2〉 [2n− 2]. Furthermore, the total complex consists of several copies of
shifted Cone(fx). Thus, using Lemma 11.3.2, it is homotopic to the total complex of
the double complex associated to

Cone(fx)→ Cone(fx) 〈2n〉 [2n]→ Cone(fx) 〈4n〉 [4n]→ . . . ,

where the maps are id between the outermost T(0). Applying Gaussian elimination
(Lemma 5.1.2) to these id’s, we get the desired result.

Remark 11.3.5. Let P(2) be the complex from Example 11.2.4. Then for n = 2

T(0).P(2) = . . .
•−→ q5 T(1)

•−→ q3 T(1)
•−→ qT(1) −→ T(0).

This is just Q̃ in the case n = 2, hence by Proposition 11.3.3 this is homotopic to G(C).
Thus we know P (T(0)) ' T(0).P(n) in the case n = 2.

Our next goal is to describe T(0).C (ωm) as an intermediate step to understand
T(0).P(n), since P(n) is defined via the C (ωm). For this we study how certain parts of
the cube complex R′(1, . . . , n− 1) act on T(0).

Lemma 11.3.6. Let λ0 ∈ Λ(n, 1) and 1 ≤ i1 < i2 < · · · < ir < n.



11.3. THE ACTION OF THE UNIVERSAL PROJECTOR 165

a) We have T(0).U i1 . . .U ir 6= 0 if and only if i1 = 1, i2 = 2, . . . , ir = r. Furthermore,
T(0).U1 U2 . . .Ur ∼= T(r).

b) We have T(j).U i1 . . .U ir 6= 0 if and only if i1, . . . , ir are consecutive numbers starting
with j or j ± 1.

We write U [i,j] for U i U i+1 . . .U j, 1 ≤ i ≤ j ≤ n− 1.

c) For i ≤ j, (i, j) 6= (n− 1, n− 1) we have

(qn−1 T(n− 1)→ qn−2 T(n− 2)→ · · · → qT(1)→ T(0)).U [i,j]

∼= (0→ · · · → 0→ qi+1 T(j)→ qi T(j) t#→ qi−1 T(j)→ 0→ · · · → 0)

' 0

d) (qn−1 T(n− 1)→ qn−2 T(n− 2)→ · · · → qT(1)→ T(0)).Un−1

∼= (qn−1 T(n− 1) t#→ qn−2 T(n− 1)→ 0→ · · · → 0)

Proof. a) is clear and b) follows from a) keeping in mind that U i U i±1 U i ∼= U i and
U i U i ∼= U i t#. For c) and d) note that by b) T(l).U [i,j] 6= 0 only if l = i−1, i, i+1. The
homotopy equivalence of c) follows directly from Gaussian elimination (Lemma 5.1.2),
since the differentials are saddles adjacent to the #.

Lemma 11.3.7. Let R = R′(1, . . . , n− 1) be the cube complex from Definition 11.2.14.
Then

a) T(0).R ∼=
(
qn−1 T(n− 1)→ qn−2 T(n− 2)→ · · · → qT(1)→ T(0)

)
b) T(0).(R⊗R) '(

qn+1 T(n− 1)
•−→ qn−1 T(n− 1)→ qn−2 T(n− 2)→ · · · → qT(1)→ T(0)

)
Proof. a) This follows directly from Lemma 11.3.6 a).

b) Let

Q = T(0).R =
(
qn−1 T(n− 1)→ qn−2 T(n− 2)→ · · · → qT(1)→ T(0)

)
.

We have T(0).(R ⊗ R) =
(

T(0).R
)
.R = Q.R. But Q.R is the total complex of the

double complex with rows Wk =
⊕
|w|=kQ.

(
w(1, . . . , n − 1)

)
. As such it can be

written as iterated cone

Q.R = Cone
(
. . .Cone

(
Cone(Wn−1 →Wn−2)→Wn−3

)
→ · · · →W0

)
By Lemma 11.3.6 we know Q.(w(1, . . . , n − 1)) is 0 or homotopic to 0 except for
w = (0, . . . , 0) or (0, . . . , 0, 1). Thus, by Lemma 5.1.5 and 11.3.6 we obtain

Q.R ' Cone(W1 →W0) ' Cone(qQ.Un−1 → Q)
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' qn T(n− 1) t# qn−1 T(n− 1)

qn−1 T(n− 1) qn−2 T(n− 2) . . . T(0)

,

which in turn is homotopic to

qn+1 T(n− 1)
•−→ qn−1 T(n− 1)→ qn−2 T(n− 2)→ · · · → qT(1)→ T(0).

(Here and in the following by writing qri T(i) and qrj T(j) in the same column of
a complex we mean that the complex has the direct sum of those as entry at that
homological degree. So we will leave out all ⊕ when writing down a complex.) To
see this consider the left part of the complex and observe

qn T(n− 1) t# qn−1 T(n− 1)

qn−1 T(n− 1)

h1

h2

∼=
qn−1 T(n− 1) qn−1 T(n− 1)

qn+1 T(n− 1) qn−1 T(n− 1).

id

id

•

0

(For this isomorphism note that h1 connects the # to a green cup while h2 connects
it to a black one, hence we get 0 and • when we resolve.) Then we apply Gaussian
elimination (Lemma 5.1.2) with respect to the upper identity in the last diagram to
obtain the desired result.

In the previous lemma we saw that applying R and R⊗R to T(0) results in subcomplexes
of Q̃. More general, we will see that by applying R := R′(1, . . . , n) to T(0) repeatedly,
we obtain complexes of the following form.

Definition 11.3.8. For m ∈ N0 and 0 ≤ r ≤ 2(n− 1)− 1, let Qm,r be the subcomplex
of the complex Q̃ from Proposition 11.3.3 given by the first 1+m · (2(n−1))+r entries,
i.e. for r ≤ n− 1 we have (where we leave out the q-shifts for better readability)

Qm,r = T(r)→ · · · → T(1)→ T(1)→ · · · → T(1)︸ ︷︷ ︸→ · · · → T(1)→ · · · → T(1)︸ ︷︷ ︸︸ ︷︷ ︸
m

→ T(0)

and for n ≤ r = n− 1 + r′ ≤ 2(n− 1)− 1 we have

Qm,r = T(n− r′)→ · · · → T(n− 1)→ T(n− 1)→ · · · → T(1)→
T(1)→ · · · → T(1)︸ ︷︷ ︸→ · · · → T(1)→ · · · → T(1)︸ ︷︷ ︸︸ ︷︷ ︸

m

→ T(0).

Example 11.3.9. For n = 4 we have Q2,2 =

q18 T(2)→ q17 T(1)
•−→ q15 T(1)→ q14 T(2)→ q13 T(3)

•−→ q11 T(3)→ q10 T(2)→

q9 T(1)
•−→ q7 T(1)→ q6 T(2)→ q5 T(3)

•−→ q3 T(3)→ q2 T(2)→ qT(1)→ T(0)
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and Q1,5 =

q14 T(2)→ q13 T(3)
•−→ q11 T(3)→ q10 T(2)→

q9 T(1)
•−→ q7 T(1)→ q6 T(2)→ q5 T(3)

•−→ q3 T(3)→ q2 T(2)→ qT(1)→ T(0).

Lemma 11.3.10.

a) Let n ≤ r = n− 1 + r′ < 2(n− 1), then for i ≤ j ≤ n− 1 we have Qm,r.U [i,j] ' 0 if
i 6= n− r′, n− r′ − 1. Let r = 0, then Qm,r.U [i,j] ' 0 if i 6= 1.

b) For n ≤ r < 2(n− 1) let t = 2n− r − 1 ≥ 2 and t ≤ j ≤ n− 1

Qm,r.(q U [t−1,j]
Hr−−→ U [t,j]) ' 0.

Proof. a) If i 6= n − 1, 1, this follows analogously to Lemma 11.3.6 c), only that we
might have multiple copies of the form

qs+2 T(j)→ qs+1 T(j) t#→ qs T(j), (11.2)

which are homotopic to zero. For i = 1 or n− 1 we get summands of the form

qs+4 T(j)→ qs+3 T(j) t# •−→ qs+1 T(j) t#→ qs T(j). (11.3)

Since the saddles and the • are adjacent to the circle, by delooping (Lemma 3.3.5)
we get the isomorphic complex

q4 T(j) q2 T(j)

q4 T(j) T(j)

q2 T(j) q0 T(j)

id

id

id

,

which is homotopic to zero by applying Gaussian elimination (Lemma 5.1.2) to the
id’s. The condition i 6= n−r′, n−r′−1 guarantees that we have no truncated copies
of (11.2) and (11.3). If r = 0, then the only truncated copy can appear for i = 1

since i = 0 is not possible.

b) As in part a) we can eliminate (using homotopies) all copies of (11.2) and (11.3)
inside Qm,r.q U [r−1,j] and Qm,r.U [r,j]. Thus we only have to consider the truncated
parts of (11.2) and (11.3) that remain. On the left, the complex Qm,r looks like

qs T(t)→ qs−1 T(t+ 1)→ · · · → qs−t+1 T(n− 1)
•−→ qs−t−1 T(n− 1)→

for some s. If t 6= n− 2, n− 1, then Qm,r.(q U [t−1,j]
Hr−−→ U [t,j]) '
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qs+1 T(j) 0 . . .

qs T(j) t# qs−1 T(j) 0 . . .

which is a summand of type (11.2) and thus homotopic to zero. For t = n − 2 the
left side of Qm,r looks like

qs T(n− 2)→ qs−1 T(n− 1)→ qs−3 T(n− 1)→ qs−4 T(n− 2)

→ qs−5 T(n− 3)→ qs−6 T(n− 4) . . .

and we obtain Qm,r.(q U [t−1,j]
Hr−−→ U [t,j]) '

qs+1 T(j) 0 . . .

qs T(j) t# qs−1 T(j) qs−3 T(j) qs−4 T(j) t# qs−5 T(j) 0

The first three non-zero components and the last three non-zero components form a
configuration as in (11.2) and thus are homotopic to zero. For t = n− 1 the left side
of Qm,r looks like

qs T(n− 1)→ qs−2 T(n− 1)→ qs−3 T(n− 2)→ qs−3 T(n− 3)→ qs−4 T(n− 4)→ . . .

and we have Qm,r.(q U [t−1,j]
Hr−−→ U [t,j]) '

qs+1 T(j) qs−1 T(j) qs−2 T(j) t# qs−3 T(j) 0 . . .

qs T(j) t# qs−2 T(j) t# qs−3 T(j) 0 . . .

.

After deleting the type (11.2) part of the first row, a summand of the type (11.3)
remains which again is homotopic to zero.

Corollary 11.3.11. a) Qm,n−1.R ' Qm,n.

b) For n ≤ r < 2(n− 1) we have Qm,r.R ' Qm,r+1, where we set Qm,2(n−1) := Qm+1,0.

c) Qm,0.R ' Qm,n−1.

Proof. a) This follows analogously to Lemma 11.3.7 b) which is the special case m = 0:
By Lemma 11.3.10, we have Qm,n−1.

(
w(1, . . . , n − 1)

)
' 0 for w 6= (0, . . . , 0) or

(0, . . . , 0, 1) by Gaussian elimination (Lemma 5.1.2). Therefore,

Qm,n−1.R ' Cone(qQm,n−1.Un−1 → Qm,n−1).

Analogously to Lemma 11.3.7 b), this is now homotopic to Qm,n after possibly
eliminating copies of shifted (11.3) by Gaussian elimination.
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b) By Lemma 11.3.10 the only w for which we need to consider Qm,r.w(1, . . . , n − 1)

are w = (0, . . . , 0) and w = (0, . . . , 0, 1, 0, . . . , 0)
r − 1

. Thus, by applying repeated

Gaussian elimination to the complex Qm,r.R we get Cone(qQm,r.Ur−1 → Qm,r).
After deleting the shifted summands of the form (11.2) inside qQm,r.Ur−1 only a
shifted T(r).Ur−1

∼= T(r − 1) remains at the far left. Together with the cone-map
to Qm,r we obtain Qm,r+1.

c) By Lemma 11.3.10 a), we have that Qm,0.
(
w(1, . . . , n − 1)

)
' 0 for w 6=

(1, . . . , 1, 0, . . . 0) by Gaussian elimination. For w = (1, . . . , 1︸ ︷︷ ︸
j

, 0, . . . , 0), we can elim-

inate all pieces of type (11.3), until only qs T(j)t#→ qs−1 T(j) remain on the left.
Thus, we have

qs+n−1 T(n− 1) t# qs+n−2 T(n− 1)

. . . . . .

qs+1 T(1) t# qs T(1)

qs T(1) qs−1 T(2)

Now resolving the circles and using Gaussian elimination to eliminate the higher
diagonal using half of the lower diagonal gives the desired result.

Theorem 11.3.12. Let m ∈ N0, r < n and Qm,r as in Definition 11.3.8. Then we
have

T(0).R⊗mn+r ' Qm,r

and in particular T(0).C (ωm) ' Qm,0.

Proof. The first part follows inductively from Lemma 11.3.7 a) and Corollary 11.3.11.
Using Corollary 11.2.17, we obtain the second assertion.

We know that P(n) is the limit of the direct system of the C (ωm)’s and the Qm,0 are
parts of the complex Q̃. Now we want to put this together to obtain:

Corollary 11.3.13. T(0).P(n) ' Q̃ with the notation from Proposition 11.3.3.

Proof. Since P(n) = lim
→

B(n) (cf. Definition 11.2.12), by Proposition 11.2.11, we have

to compute that Q̃ is a limit of(
T(0)

id .f0

−−−→ T(0).C (ω1)
id .f1

−−−→ T(0).C (ω2)
id .f2

−−−→ . . .
)
.

For i ≥ 0 we define f̃ i : T(0).C (ωi) → Q̃ via T(0).C (ωi)
gi−→ Qi,0

ιi
↪−→ Q̃, where gi is
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given by the homotopy equivalence T(0).C (ωi) ' Qi,0 from the previous theorem. Now

Cone(f̃i) ' Cone(Qi,0
ιi−→ Q̃)

' · · · → Q̃2i(n−1)+2 → Q̃2i(n−1)+1 → 0→ · · · → 0,

where the last homotopy follows for example by Gaussian elimination. Therefore,∣∣∣Cone(f̃i)
∣∣∣
~
≥ i · 2(n− 1), hence lim

i→∞

∣∣∣Cone(f̃i)
∣∣∣
~

=∞. It remains to show that

ιi ◦ gi ' ιi+1 ◦ gi+1 ◦ id .f i.

But this holds since f i and gi are both inductively defined via tensoring with Rn:

(T(0).C (wi)). Id T(0).C (wi) Qi,0

(T(0).C (wi)).C (w1) T(0).C (wi+1) Qi,0.C (w1) Qi+1,0

∼=

id .f0

gi

id .f0

∼= ḡi+1 '
s

The square commutes obviously, the triangle commutes by construction and gi+1 =

s ◦ ḡi+1.

Finally, we have altogether:

Theorem 11.3.14. Let k = 1, then P and .P(n) are isomorphic as functors from
Ĉup(n, k) to K−

(
Ĉup(n, k)

)
.

Proof. By Corollary 11.2.7 we only have to check P (T(0)) ' T(0).P(n). But this follows
directly from Corollary 11.3.13 and Proposition 11.3.3.

Thus, we see that at least for small k our construction agrees with the action of the
universal projector.



Appendix A

Coloured cobordisms and diagram
categories

A.1 Coloured 2-dimensional TQFT

In this section we recall a generalisation of a construction of Khovanov [Kho00] in a
way motivated by Stroppel in [Str09]. For more details see [Scha10] and [Scha12].

Let Cob be the category of two-dimensional cobordisms up to boundary-preserving
diffeomorphisms. By [Koc04] this monoidal category is generated under composition
and disjoint union by the cobordisms

.

Furthermore, these generators are subject to an explicit list of relations (see. e.g.
[Koc04]) saying that the image of the circle under a symmetric monoidal functor to
the monoidal category of finite dimensional vector spaces is a commutative Frobenius
algebra and every such commutative Frobenius algebra defines such a functor.

When we fix the commutative Frobenius algebra C[x]/(x2), then this gives us a 2-
dimensional topological quantum field theory F , i.e. a symmetric monoidal functor
from Cob to the category of vector spaces. F sends n circles to

(
C[x]/(x2)

)⊗n and the
generators of the morphisms to linear maps as described in the following table:

171
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1⊗ 1 7→ 1

x⊗ 1 7→ x

1⊗ x 7→ x

x⊗ x 7→ 0

1 7→ x⊗ 1 + 1⊗ x
x 7→ x⊗ x
1 7→ 1

x 7→ x

1 7→ 1

1 7→ 0

x 7→ 1

a⊗ b 7→ b⊗ a

Now we consider coloured cobordisms, i.e. the objects of the monoidal category are
circles coloured black, green or red and the morphisms are cobordisms with boundaries
coloured accordingly.

Definition A.1.1. Let ColCob be the monoidal category generated under composition
and disjoint union by

subject to the relations for ColCob. The relations of ColCob are exactly the lifts of
the relations from Cob, i.e. we replace all generating morphisms by coloured generating
morphisms in all possible compatible ways. For an explicit list of the relations see
[Scha10, A.2].

Note that the cobordisms and do not appear in all possible colourings of the
boundaries as generators. Our restriction of possibilities is motivated by the application
of CobCob in [Scha12], where other colourings cannot appear.

Example A.1.2. An example for an object in ColCob:

An example for a morphism in ColCob:

Let Vect be the monoidal category of vector spaces with ordinary tensor product.
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Theorem A.1.3 ([Scha12, Lemma 10.3, Theorem 10.4]). ColCob is a symmetric mon-
oidal category and a symmetric monoidal functor

FCol : ColCob→ Vect

can be defined as follows:
Let B be the black circle in ColCob, R the red one and G the green one.

FCol(B) = C[x]/(x2), FCol(G) = C, FCol(R) = 0.

The values of FCol on generating morphisms can be found in the table below.

1⊗ 1 7→ 1

x⊗ 1 7→ x

1⊗ x 7→ x

x⊗ x 7→ 0

1⊗ 1 7→ 1

x⊗ 1 7→ 0

1⊗ 0 7→ 0

x⊗ 0 7→ 0

1⊗ 1 7→ 1

1⊗ x 7→ 0

1⊗ 1 7→ 1

1⊗ 1 7→ 0

1⊗ 0 7→ 0

0⊗ 1 7→ 0

0⊗ x 7→ 0

0⊗ 1 7→ 0

0⊗ 0 7→ 0

1 7→ x⊗ 1 + 1⊗ x
x 7→ x⊗ x
1 7→ x⊗ 1

0 7→ 0⊗ 0

1 7→ 1⊗ x

1 7→ 0⊗ 0

0 7→ 0⊗ 0

0 7→ 0⊗ 0

0 7→ 0⊗ 0

0 7→ 0⊗ 0

0 7→ 0⊗ 0

1 7→ 1

x 7→ x

1 7→ 1

0 7→ 0

1 7→ 1

1 7→ 0

x 7→ 1

Twists a⊗ b 7→ b⊗ a

Forgetting the colours defines a monoidal functor I : ColCob→ Cob.
For A an object in ColCob we define iA : FCol(A)→ F

(
I(A)

)
by

iB : C[x]/(x2)
id→ C[x]/(x2)

iG : C ↪→ C[x]/(x2)

1 7→ 1

iR : {0} ↪→ C[x]/(x2)

and iX⊗Y = iX ⊗ iY
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for B, G, R black, green, red circles, respectively, and X,Y arbitrary objects in ColCob.

For A an object in ColCob we define πA : F
(
I(A)

)
→ FCol(A) by

πB : C[x]/(x2)
id→ C[x]/(x2)

πG : C[x]/(x2)→ C
1 7→ 1

x 7→ 0

πR : C[x]/(x2)
0→ {0}

and πX⊗Y = πX ⊗ πY

for B,G,R,X, Y as above.

For objects we obviously have FCol(A) = πA
(
F(I(A))

)
.

Lemma A.1.4. For f : A→ A′ in ColCob the following diagram commutes:

FCol(A) F
(
I(A)

)
FCol(A′) F

(
I(A′)

)
iA

FCol(f) F(I(f))

πA′

Proof. The equation FCol(f) = iA ◦F
(
I(f)

)
◦πA′ is true for the generating cobordisms,

see tables above. Thus, it extends to all cobordisms and the lemma follows.

A.2 Equivalence to a category of diagrams

To obtain a connection to representation theory and diagram algebras, we want to
compare the category Cup(n, k) to the following, more algebraically defined category.

Definition A.2.1. LetMn,k be the category with:
Objects: λ ∈ Λ(n, k)

Morphisms: Hom(λ, µ) = Fcol
(

C(µ)C(λ)
)
, where Fcol is the functor defined in Sec-

tion A.1
The composition of morphisms is defined as follows: Consider f ∈ Hom(µ, λ) and
g ∈ Hom(ν, µ). There is a cobordism from C(λ)C(µ) C(µ)C(ν) to C(λ)C(ν) contracting
C(µ) C(µ) given by (possibly nested) saddle cobordisms. This induces a homomorphism
of vector spaces

Fcol
(

C(λ)C(µ)
)
⊗Fcol

(
C(µ)C(ν)

)
→ Fcol

(
C(λ)C(ν)

)
(A.1)

and thus a composition

Hom(µ, λ)⊗Hom(ν, µ)→ Hom(ν, λ).

Here, the homomorphism spaces are C-vector spaces and the composition is C-linear.
The grading is defined as follows: Let f = x1⊗ . . .⊗xr be a basis element of Hom(λ, µ),
i.e. xi ∈ {1, x}. Define deg(1) = 0, deg(x) = 2 and deg(f) = n− r +

∑r
i=1 deg(xi).
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Example A.2.2. Let n = 2 and k = 1. Then Mn,k has the two objects ∧∨ and ∨∧.
The composition

Hom
(
(∧∨), (∨∧)

)
⊗Hom

(
(∨∧), (∧∨)

)
→ Hom

(
(∨∧), (∨∧)

)
is defined via the contracting cobordism

−−−−−→ −−−−→ .

Thus, it equals

Fcol
(

◦
)

= Fcol
( )

◦ Fcol
( )

: Fcol
( )

⊗Fcol
( )

→ Fcol
( )

,

which is explicitly

C⊗ C→ C[x]/(x2)⊗ C
1⊗ 1 7→ x⊗ 1

with both 1 ∈ C of degree 1 and x⊗ 1 of degree 2.

Remark A.2.3. The vector space ⊕λ,µ∈Λ(n,k) Hom(λ, µ) together with the multiplica-
tion given by (A.1) defines an algebra. It agrees with the so-called generalised Khovanov
algebra ([Str09, 5.4], [BS11a]) which plays an important role in Lie theory and repres-
entation theory.

We want to connect now the topological picture with the more algebraic picture. In The-
orem A.2.7 we will establish an equivalence of categories between M̂n,k = Mat

(
MZ

n,k

)
and Ĉup(n, k) = Mat

(
Cup(n, k)Z

)
.

An important step is to show that Mn,k and Cup T(n, k) are equivalent. By Corol-
lary 3.4.12 we already know

HomCup T(n,k)

(
T(λ),T(µ)

)
= HomCup(n,k)

(
T(λ),T(µ)

)
Φ′∼= Fcol

(
C(µ)C(λ)

)
= HomMn,k

(λ, µ).

For the equivalence, we want to define a functor from Cup T(n, k) toMn,k on morphisms
via this isomorphism. For that we have to check, that the isomorphism is compatible
with composition.

Proposition A.2.4. Let C,D,E objects of Cob(2n, 0) without circles. Then the fol-
lowing diagram commutes
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HomCob(2n,0)(D,E)⊗HomCob(2n,0)(C,D) HomCob(2n,0)(C,E)

F(ED)⊗F(DC) F(EC),

Φ⊗ Φ

◦

Φ

◦̄

where Φ is the isomorphism from Theorem 3.4.11 and ◦̄ is defined similar to the com-
position (A.1) in Mn,k, only without colours, i.e. it is the functor F applied to the
cobordism αC,D,E that comes from putting DC on top of ED and contracting DD.

Proof. We show that the two squares of the following diagram commute:

HomCob(2n,0)(D,E)⊗HomCob(2n,0)(C,D) HomCob(2n,0)(C,E)

qn HomCob(0,0)(∅, ED)⊗ qn HomCob(0,0)(∅, DC) qn HomCob(0,0)(∅, EC)

F(ED)⊗F(DC) F(EC),

Φ̂⊗ Φ̂

◦

Φ̂

Φ̄⊗ Φ̄

◦̂

Φ̄

◦̄

where ◦̂ is defined as f ⊗ g ◦̂7→ αC,D,E ◦ (f ⊗ g).

From the definition of ◦̂ and ◦̄, the lower square commutes by Lemma 3.4.10 and [BN05,
Section 9.1]. The commutativity of the upper square becomes clear when we consider
it on schematically pictured elements:

E
D ⊗ D

C D
C

E

qn
E

D ⊗ qn
D

C qn

E

D

E

C

D

C

◦

◦̂

Furthermore,

Φ̂−1


E
D

E

C
D
C

 =

C
C

D

D
E

E

≈
id C

C

D
id D

E
id E

≈ D
C

E

Corollary A.2.5. Let C,D,E objects of Cup(n, k) without circles. Then the following
diagram commutes

HomCup(n,k)(D,E)⊗HomCup(n,k)(C,D) HomCup(n,k)(C,E)

Fcol(ED)⊗Fcol(DC) Fcol(EC),

Φ′ ⊗ Φ′

◦

Φ′

◦̄
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where Φ′ is the isomorphism from Theorem 3.4.12 and ◦̄ is the composition from Defin-
ition A.2.1.

Proof. For I the colouring forgetting map from Definition 3.4.6, the isomorphism Φ′ is
given by

HomCup(n,k)(C,D) ↪→ HomCob(2n,0)

(
I(C), I(D)

) Φ−→ F
(
I(D)I(C)

) π−→ Fcol(DC)

with inverse

Fcol(DC)
i
↪−→ F(I(D)I(C))

Φ−1

−−→ HomCob(2n,0)(I(C), I(D))
Π−→ HomCup(n,k)(C,D)

Let αCDE be again the contracting cobordism. Consider the following diagram:

Fcol(ED)⊗Fcol(DC) Fcol(EC)

F
(
I(E)I(D)

)
⊗F

(
I(D)I(C)

)
F
(
I(E)I(C)

)
HomCob(2n,0)

(
I(D), I(E)

)
⊗HomCob(2n,0)

(
I(C), I(D)

)
HomCob(2n,0)(I(C), I(E))

HomCup(n,k)(D,E)⊗HomCup(n,k)(C,D) HomCup(n,k)(C,E)

i⊗ i

Fcol(αCDE)

Φ⊗ Φ

F(αCDE)

π

Π⊗Π

◦
Φ−1

◦

The upper square commutes by Lemma A.1.4 and the fact that Fcol(ED)⊗Fcol(DC) =

Fcol(ED ⊗ DC) and F
(
I(E)I(D)

)
⊗ F

(
I(D)I(C)

)
= F

(
I(ED ⊗ DC)

)
. The middle

square commutes by the proposition above. The lower square commutes except if the
additional relations of Cup(n, k) are used. Thus, if they are not used, the outer square
commutes, too.

It remains to check the commutativity of the outer square when an additional relation
is used. Assume first, the additional relations of Cup(n, k) are used when projecting
by Π⊗Π. But then, because Π ◦ Φ ◦ i is an isomorphism, this corresponds to the zero
element in Fcol(ED)⊗Fcol(DC) and the outer square commutes for this element since
everything is zero. Now assume for basis elements x⊗ x′ ∈ Fcol(ED)⊗ Fcol(DC) that
Φ′(x)⊗Φ′(x′) 6= 0 but Φ′(x)◦Φ′(x′) = 0 because of the additional relations. This means
Π(Φ(i(x)) ◦ Φ(i(x′))) = 0 but Φ(i(x)) ◦ Φ(i(x′)) 6= 0. But since Π(y) = 0 is equivalent
to π(Φ−1(y)) = 0, we are done in this case, too.

Corollary A.2.6. The categories CupT(n, k) and Mn,k are equivalent as graded pre-
additive categories.

Proof. By Corollary A.2.5 we know that Φ′ is compatible with composition. By con-
struction Φ′(id) = id = 1⊗. . .⊗1. Thus, we can define a functorG : CupT(n, k)→Mn,k

on objects via C(λ) 7→ λ and on morphisms via f 7→ Φ′(f). G is obviously fully faithful
and essentially surjective, hence yields an equivalence of categories. Furthermore, G is
compatible with the pre-additive structure and the grading.
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From Remark 3.5.2 and Corollary A.2.6 the main result of this section follows:

Theorem A.2.7. For any n, k ∈ Z≥0 with k ≤ n there is an equivalence of categories

M̂n,k
∼= Ĉup(n, k).
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Zusammenfassung

Diese Dissertation beschäftigt sich mit der Kategorifizierung von darstellungstheore-
tischen Objekten mit Hilfe von Methoden aus der Topologie und der homologischen
Algebra.

In seiner Arbeit über eine alternative Beschreibung der Khovanov-Homologie katego-
rifizierte Bar-Natan die Temperley-Lieb-Algebra in einer Kobordismus-Sprache. Wir
benutzen Bar-Natans Herangehensweise um den Uq(sl2)-Modul V ⊗n zu kategorifizie-
ren. Hierbei ist die Algebra Uq(sl2) die Quanten-Version der universellen einhüllenden
Algebra der komplexen Lie-Algebra sl2 und der Modul V ist die Quanten-Version der
natürlichen Darstellung.

Der Uq(sl2)-Modul V ⊗n zerfällt in Gewichtsräume (V ⊗n)2k−n. Indem wir jeden der
Gewichtsräume kategorifizieren, erhalten wir eine Kategorifizierung von V ⊗n. Die Ge-
wichtsräume haben eine besondere Basis, die kanonische Basis, welche durch sogenannte
Cup-Diagramme beschrieben werden kann. Cup-Diagramme sind kombinatorische Ob-
jekte, genauer gesagt planare Diagramme welche aus Halbkreisen bestehen. In unserem
Aufbau ist die kanonische Basis am einfachsten zu kategorifizieren. Wir tun dies analog
zu der Bar-Natan Kategorifizierung der Temperley-Lieb-Algebra, indem wir eine Kate-
gorie Cup(n, k) definieren, deren Objekten durch Cup-Diagramme gegeben sind. In der
Kategorifizierung entsprechen Objekte T(λ), für λ ein Element der partiell geordneten
Menge Λ(n, k), den Elementen der kanonischen Basis.

Die Standard-Basis von V ⊗n ist schwieriger zu kategorifizieren. Um dies zu tun, müs-
sen wir zur Homotopiekategorie Kb

(
Ĉup(k, n)

)
von beschränkten Kettenkomplexen mit

Einträgen in Ĉup(k, n) übergehen, wobei Ĉup(k, n) eine Art additive Vervollständigung
von Cup(n, k) mit Grad-Einschränkungen ist. Für λ in Λ(n, k) definieren wir induktiv
eine graduierte exzeptionelle Folge V∗(λ) in Kb

(
Ĉup(k, n)

)
. Mittels Dualität erhalten

wir die Kettenkomplexe V(λ), welche schließlich zu einer Kategorifizierung der Stan-
dardbasis führen. Dafür beschreiben wir die Objekte T(λ) als iterierte Kegel von V∗(µ)s,
wobei wir die vorkommenden V∗(µ) kombinatorisch bestimmen. Insgesamt erhalten wir,
dassKb

(
Ĉup(k, n)

)
den (2k−n)-Gewichtsraum von V ⊗n kategorifiziert. Genauer gesagt

gibt es einen Isomorphismus von C(q)-Moduln

C(q)⊗Z[q,q−1] K0

(
Kb
(
Ĉup(k, n)

)) ∼−→ (
V ⊗n

)
2k−n

unter dem die Klassen der V(λ) auf die Standardbasis, die der T(λ) auf die kanonische
Basis und die der V∗(λ) auf die duale Standardbasis geschickt werden.

Wir betrachten zwei T-Strukturen, welche die Objekte V∗(λ) und T(λ) im Herz ent-
halten und zeigen, dass die T(λ) Tilting-Objekte in dem Herz der einen und einfache
Objekte in dem der anderen sind.

Der Jones-Wenzl-Projektor ist eine spezielle Uq(sl2)-lineare Abbildung pn : V ⊗n → V ⊗n,
die faktorisiert werden kann als pn = ιn ◦ πn. Hierbei ist πn : V ⊗n → Vn die Projek-
tion auf den größten unzerlegbaren Summanden und ιn : Vn → V ⊗n die Inklusion von
diesem. Um den Jones-Wenzl Projektor mitsamt der Faktorisierung zu kategorifizieren,
betrachten wir einen speziellen Kettenkomplex L(λ0) in Kb

(
Ĉup(k, n)

)
, welcher alle



exzeptionellen Objekte V∗(λ) auf nicht-triviale Weise enthält. Für die Konstruktion
von L(λ0) betrachten wir die (bis auf ein Skalar eindeutigen) Grad-1-Morphismen zwi-
schen den V∗(λ)s und untersuchen die daraus entstehenden Grad-2-Morphismen. Eine
wichtige Eigenschaft des Komplexes L(λ0) ist, dass die Kategorie, welche die Temperley-
Lieb-Algebra kategorifiziert, trivial auf ihm wirkt. Des Weiteren ist er die injektive Hülle
von T(λ0) im Herz der zweiten T-Struktur.

Mit Hilfe dieses Komplexes L(λ0) und seines Endomorphismenrings End
(
L(λ0)

)
kon-

struieren wir zwei Funktoren, welche die Eigenschaften der Projektions- und Inklusi-
onsabbildung auf einer höheren Ebene erfüllen. Zuletzt vergleichen wir die Wirkung
des universellen Projektors, einem von Cooper und Krushkal definiertem Komplex, der
auch den Jones-Wenzl-Projektor kategorifiziert, mit der Komposition der Funktoren für
kleine Werte von k.
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