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Strange divisibility in groups and rings
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Abstract. We prove a general divisibility theorem that implies, e.g., that,
in any group, the number of generating pairs (as well as triples, etc.) is
a multiple of the order of the commutator subgroup. Another corollary
says that, in any associative ring, the number of Pythagorean triples (as
well as four-tuples, etc.) of invertible elements is a multiple of the order
of the multiplicative group.
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1. Introduction. The starting point of our investigation is the following fact
generalising an old theorem of Solomon [8].

Gordon–Rodriguez–Villegas Theorem [5]. Let F be a finitely generated group
whose commutator subgroup is of infinite index and let G be an arbitrary group.
Then the number of homomorphisms F → G is divisible by the order of G.

This theorem is essentially about the number of solutions to systems of
coefficient-free equations in a group. In [6], this result was extended to
equations with coefficients and even to arbitrary first-order formulae in group
language (with constants).

The main theorem of this paper has a claim to the title of “the maximal”
generalisation of the Gordon–Rodriguez–Villegas Theorem (although such a
maximality can never be proven). The statement of the Main Theorem can
be found in the Section 2; a (quite elementary) proof is in the last section.
Roughly speaking, the Main Theorem asserts that the divisibility is retained
when we take into account only some set of homomorphisms provided the set
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is invariant with respect to some natural operations on homomorphisms. One
of the corollaries of the Main Theorem is the unexpected fact mentioned in
the abstract:

in any group G, the number of generating tuples
(g1, . . . , g2017) ∈ G2017

(i.e. such tuples that G = 〈g1, . . . , g2017〉) is a mul-
tiple of the order of the commutator subgroup of G.

(Here, the number 2017 can be replaced by any integer; see Section 3 for a
more general fact and other group-theoretic applications.) Surprisingly, this
result seems to be new, although many related facts on the divisibility of the
Möbius function (which is related to the number of generating tuples via the
Hall formula [3]) are known, see, e.g., [1,4,7], and references therein. We refer
to [2] for yet other not widely known but beautiful results about generating
tuples.

The Main Theorem is an assertion about groups, but it has nontrivial
ring-theoretic corollaries. In Section 4, we derive a ring-theoretic analogue of
the Gordon–Rodriguez-Villegas theorem (to be more precise, an analogue of
the generalisation of this theorem from [6], which is about equations with
coefficients). A particular case of this theorem on equations over rings is the
fact mentioned in the abstract, or, e.g., the following higher-order assertion:

in any associative ring R with unity, the number of tuples of invertible
elements (a, b, . . . , z) ∈ (R∗)26 such that a2017 +b2017 + · · ·+z2017 = 0 is
divisible by the order of the multiplicative group of this ring, i.e. by |R∗|.

(Here, the number 2017 can be replaced by any integer; see Section 4 for a
more general fact.)
Our notation is mainly standard. Note only that if k ∈ Z and x and y are ele-
ments of a group, then xy, xky, and x−y denote y−1xy, y−1xky1, and y−1x−1y,
respectively. The commutator subgroup of a group G is denoted by G′. If X is a
subset of a group, then |X|, 〈X〉, 〈〈X〉〉, and C(X) are the cardinality of X, the
subgroup generated by X, the normal closure of X, and the centraliser of X,
respectively. The index of a subgroup H of a group G is denoted by |G : H|.
The symbol N(H) denotes the normaliser of a subgroup H (in a group G).
The free product of groups A and B is denoted by A ∗ B and F (x1, . . . , xn)
is the free group with basis x1, . . . , xn. If R is an associative ring with unity,
then R∗ denotes the group of invertible elements of this ring.

Note also that, in almost all assertions about the divisibility (e.g., in the
Gordon–Rodriguez-Villegas Theorem), one need not assume that the corre-
sponding group is finite. The divisibility can be understood in the sense of
cardinal arithmetics: an infinite cardinal is divisible by all nonzero smaller
(and equal) cardinals. We really need finiteness assumptions only in the The-
orem on Monomorphisms and Subgroups in Section 3 (see the corresponding
remark there).
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2. Main theorem. A group F equipped with an epimorphism F → Z is called
indexed. This epimorphism F → Z is called degree and denoted by deg; thus,
an integer deg f is assigned to each element f of an indexed group F in such
a way that F contains elements of all integer degrees and

deg(fg) = deg f + deg g for any f, g ∈ F .

Suppose that ϕ : F → G is a homomorphism from an indexed group F to
a group G and H is a subgroup of G. We say that the subgroup

Hϕ =
⋂

f∈F

Hϕ(f) ∩ C({ϕ(f) | deg f = 0})

is the ϕ-core of H. In other words, the ϕ-core Hϕ of H consists of such elements
h that hϕ(f) ∈ H for all f and, moreover, hϕ(f) = h if deg f = 0.

Main Theorem. Let H be a subgroup of a group G and let Φ be a set of homo-
morphisms from an indexed group F to G with the following two properties.

I. Φ is invariant with respect to conjugation by elements of H:

if h ∈ H and ϕ ∈ Φ , then the homomorphism ψ : f �→ ϕ(f)h lies in Φ.

II. For any ϕ ∈ Φ and any h from the ϕ-core Hϕ of H, the homomorphism
ψ defined by

ψ(f) =

⎧
⎨

⎩

ϕ(f) for all f ∈ F of degree zero;
ϕ(f)h for some element f ∈ F of degree one

(and, hence, for all degree-one elements)

belongs to Φ too.
Then |Φ| is divisible by |H|.

Note that the mapping ψ from Condition I is a homomorphism for any h ∈
G; and the formula for ψ from Condition II defines a homomorphism for any
h ∈ C(ϕ(ker deg)) (see Lemma 0). Conditions I and II only require these
homomorphisms to belong to Φ (under some additional restrictions on h).

Lemma 0. Suppose that ϕ : F → G is a homomorphism from an indexed group
F to a group G, f1 is a degree-one element of F , and g ∈ G. Then
(1) if (and only if) g ∈ C(ϕ(ker deg)), then there exists a (unique) homo-

morphism ψ : F → G such that ψ(f) = ϕ(f) for all f of degree zero
and ψ(f1) = ϕ(f1)g;

(2) if H is a subgroup of G and g ∈ Hϕ, then ψ(f)H = ϕ(f)H for all f ∈ F .

Proof. Note that F is a semidirect product F = 〈f1〉∞ � ker deg. This means
that a mapping α : ker deg ∪{f1} → G extends to a homomorphism if and
only if its restriction to ker deg is a homomorphism and α(ff1) = α(f)α(f1)

for all f ∈ ker deg.
For all f ∈ ker deg, we have

ψ(ff1) = ϕ(ff1) = ϕ(f)ϕ(f1) and ψ(f)ψ(f1) = ϕ(f)ϕ(f1)g.

This implies that

ψ(ff1) = ψ(f)ψ(f1) for all f ∈ ker deg
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if and only if

ϕ(x)g = ϕ(x) for all x ∈ ker deg.

This proves the first assertion.
To prove (2) note that any f ∈ F has the form f = fk

1 x, where x ∈ ker deg
and k ∈ Z. So,

ψ(f)H = ψ(f1)kψ(x)H = ψ(f1)kϕ(x)H =

(ϕ(f1)g)kϕ(x)H === ϕ(f1)kϕ(x)H = ϕ(fk
1 x)H = ϕ(f)H,

where the equality === is valid because

ϕ(F ) normalises Hϕ and g ∈ Hϕ ⊆ H.

This proves assertion (2). �

3. Applications: groups. First, note that the conditions of the Main Theorem
are obviously satisfied if Φ is the set of all homomorphisms F → G (and
H is any subgroup of G, e.g., the entire group G). Therefore, the Gordon–
Rodriguez–Villegas theorem is the simplest special case of the Main Theorem.

Theorem on equations over groups [6]. The number of solutions to a system
of equations {vi(x1, . . . , xn) = 1} over a group G
(where vi(x1, . . . , xn) ∈ G ∗ F (x1, . . . , xn) ) is divisible by the order of the
centraliser of the set of coefficients if the rank of the matrix consisting of the
exponent-sums of the i-th unknown in the j-th equation is less than the number
of unknowns.

Proof. Let A ⊆ G be the subgroup generated by all coefficients of the equa-
tions. Let F be the quotient group F = (A ∗ F (x1, . . . , xn))/ 〈〈{vi}〉〉 of the
free product A ∗ F (x1, . . . , xn) of A and the free group by the normal sub-
group 〈〈{vi}〉〉 generated by the left-hand sides of the equations. Let Φ be the
set of homomorphisms F → G that are identity on A. (We assume that A em-
beds into F via the natural map A → F , because if this map is not injective,
then there are no solutions and we have nothing to prove.) Clearly, solutions
to the system of equations are in a natural one-to-one correspondence with the
elements of Φ.

The condition on the rank means that F admits an epimorphism onto Z

whose kernel contains A. Let H be the centraliser of A in G. Clearly, the condi-
tions of the Main Theorem are satisfied. Indeed, Condition I holds, because h
centralises A ⊆ G and, hence, ψ coincides with ϕ on A ⊂ F ; Condition II
holds, because elements of A ⊂ F are of degree zero and, hence, ψ coincides
with ϕ on A ⊂ F again. �

Theorem on roots of subgroups [KM14]. The number of elements g of a group
G such that gn ∈ H is divisible by |H| for any subgroup H of G and any integer
n.

The Theorem on Roots of Subgroups is the simplest special case of the
following fact.
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Theorem on homomorphisms and subgroups. [KM14]. Let H be a subgroup of
a group G and let W be a subgroup (or subset) of a finitely generated group F
whose commutator subgroup F ′ is of infinite index. Then the number of homo-
morphisms ϕ : F → G such that ϕ(W ) ⊆ H is divisible by |H|.

We shall prove a yet more general fact.

Theorem on homomorphisms and double cosets. Let H be a subgroup of a group
G, let W be a subset of a finitely generated group F whose commutator subgroup
F ′ is of infinite index, and let W � w �→ gw ∈ G be an arbitrary map W → G.
Then the number of homomorphisms ϕ : F → G such that ϕ(w) ∈ HgwH for
all w ∈ W is divisible by |H|.
Proof. Take some epimorphism deg : F → Z (which exists because F/F ′ is an
infinite finitely generated abelian group) and let Φ be the set of all homomor-
phisms ϕ : F → G such that ϕ(w) ∈ HgwH for all w ∈ W . The conditions
of the Main Theorem hold. For Condition I, this is quite obvious. As for
Condition II, it suffices to note that the formula for ψ implies the equality
ψ(f)H = ϕ(f)H for all f ∈ F by Lemma 0. �

The following theorem is an “epimorphism analogue” of the Gordon–Rodriguez-
Villegas theorem.

Theorem on epimorphisms. Let F be a finitely generated group whose commu-
tator subgroup is of infinite index and let G be an arbitrary group. Then the
number of surjective homomorphisms F → G is divisible by the order of the
commutator subgroup of G.

Proof. Take some epimorphism deg : F → Z, let Φ be the set of all epimor-
phisms F → G, and put H = G′. Let us verify that the conditions of the Main
Theorem are satisfied. For Condition I, this is obvious.

To verify Condition II, we have to show that, for any epimorphism ϕ : F →
G and any element h ∈ G′ centralising the subgroup ϕ(ker deg), the homo-
morphism ψ from Condition II is surjective. Clearly, it is surjective modulo G′

(i.e. ψ(F )G′ = G), because ψ equals ϕ modulo G′. It remains to show that
each element g ∈ G′ lies in ψ(F ). By the surjectivity of ϕ, we can find f ∈ F
such that ϕ(f) = g; moreover, the element f can be found in the commuta-
tor subgroup of F (because, for an epimorphism, the image of the commutator
subgroup equals the commutator subgroup of the image). But then f ∈ ker deg
and, therefore, ψ(f) = ϕ(f) = g as required. �

Remark 0.1. The number of surjective homomorphisms F → G is a multiple
of |Aut G|, because Aut G acts faithfully on the set of epimorphisms F → G.
However, the Theorem on Epimorphisms does not follow immediately from
this observation, because, as was noted by A. V. Vasil’ev,

there exists a group G such that |Aut G| is not divisible by |G′|.
Examples of such groups are the groups 3 · A6 and 3 · A7 (see, e.g., [9]) of orders
3
2 · 6! = 1080 and 3

2 · 7! = 7560; they coincide with their commutator subgroups
and have centres of order three; the central quotients are the alternating group
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A6 and A7 while |Aut(3 · A6)| = 2 · 6! and Aut(3 · A7) is the symmetric group
of order 7!. Actually, Savelii Skresanov, and Dmitrii Churikov showed (using
GAP) that the smallest group G such that |G′|
 | |Aut G| is of order 108.

Corollary on generating tuples in groups. For each group G and each positive
integer n, the number of tuples (g1, . . . , gn) ∈ Gn of elements of G generating
G (i.e. such that 〈g1, . . . , gn〉 = G) is divisible by |G′|.
Proof. The generating n-tuples of elements of G are in a natural one-to-one
correspondence with the epimorphisms from the free group of rank n to G.
Therefore, the assertion follows immediately from the Theorem on Epimor-
phisms. �

Clearly, in the Theorem on Epimorphisms and even in the above corol-
lary, the divisibility by |G′| cannot be strengthened to the divisibility by |G|,
because, in a prime-order group, the number of generating n-tuples is |G|n −1.

The following theorem generalises the Theorem on Epimorphisms and is
an analogue of the Theorem on Homomorphisms and Subgroups.

Theorem on epimorphisms and subgroups. Let A be a subgroup of a group G
and let W be a subgroup of a finitely generated group F whose commutator
subgroup F ′ is of infinite index. Then the number of homomorphisms ϕ : F →
G such that ϕ(W ) = A is divisible by |A′|.
Proof. Take some epimorphism deg : F → Z and put

Φ = {homomorphisms ϕ : F → G such that ϕ(W ) = A} and H = A′.

Let us verify that the conditions of the Main Theorem are satisfied. For Con-
dition I, it is obvious.

To verify Condition II, we have to show that, for any homomorphism
ϕ : F → G such that ϕ(W ) = A and any element h ∈ A′ centralising the sub-
group ϕ(ker deg), we have ψ(W ) = A for the homomorphism ψ from Condition
II. The inclusion ψ(W ) ⊆ A certainly holds. To prove the inverse inclusion,
note that ψ(W )A′ = A. It remains to show that each element a ∈ A′ lies in
ψ(W ). Since ϕ(W ) = A, we can find w ∈ W such that ϕ(w) = a; clearly,
such an element w can be found in the commutator subgroup of W . But then
w ∈ ker deg and, therefore, ψ(w) = ϕ(w) = a as required. �

A similar statement on injective homomorphisms also holds (for finite
groups G); moreover, the divisibility is much better in this case.

Theorem on monomorphisms and subgroups. Let A be a subgroup of a group G
and let W be a subgroup of a finitely generated group F such that WF ′ is of
infinite index in F . Then |N(A)| divides the following numbers:
(a) the number of homomorphisms ϕ : F → G such that the restriction of ϕ

to W is injective and ϕ(W ) ⊆ A;
(b) the number of homomorphisms ϕ : F → G such that the restriction of ϕ

to W is injective and ϕ(W ) = A.
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Proof. Let us prove a) (the proof of b) is quite similar). Take an epimorphism
deg : F → Z such that W ⊆ ker deg and put

Φ = {homomorphisms ϕ : F → G such that ϕ(W ) ⊆ A and ϕ|W is injective} and

H = N(A).

Condition I of the main theorem is obviously satisfied. Condition II is also sat-
isfied, because W ⊆ ker deg and, hence, ψ and ϕ (from Condition II) coincide
on W . �

Remark 3.2. The condition |F : F ′W | = ∞ cannot be replaced
by |F : F ′| = ∞ in the last theorem (even though we understand divisibility
in the sense of cardinal arithmetics). Indeed,

(a) if F = W = A = Z and G = R, then the number of injective homomor-
phisms F = W → A is ℵ0 which is not a multiple of |N(A)| = |R| = 2ℵ0 ;

(b) if F = W = G = A = Z, then the number of bijective homomorphisms
is two which is not a multiple of |N(A)| = |Z| = ℵ0.

4. Applications: rings. A generalised homogeneous equation over an associa-
tive ring R with the set of unknowns X is a finite equation of the form

∑

i

∏

j

cijx
kij

ij = 0,

where coefficients cij ∈ R, unknowns xij ∈ X, and exponents kij ∈ Z, such
that for some nonzero mapping deg : X → Z the value

∑
j

kij deg(xij) does not

depend on i (i.e. the “polynomial” in the left-hand side of the equation is ho-
mogeneous with respect to some nonzero assignment of degrees to variables1).
A system of equations is called generalised homogeneous if all its equation-
s are generalised homogeneous (possibly of different degrees) with respect to
the same function deg : X → Z.

To test generalised homogeneity, one can use the following simple algorithm.

Algorithm for testing generalized homogeneity of a system

1. For each equation v = 0, construct the matrix Av with integer entries aij

that are the degree of i-th monomial with respect to j-th unknown (i.e.
aij is the exponent-sum of j-th unknown in i-th monomial of v).

2. Subtract the first row of this matrix Av from each row of Av. Do it for
all matrices Av.

3. Combine the matrices A′
v thus obtained (with zero first rows) into one

matrix: A′ =

⎛

⎜⎝
A′

v

A′
w
...

⎞

⎟⎠ .

4. The system is generalised homogeneous if and only if the rank of A′ is
less than the number of unknowns.

1 A variable may have zero degree, but at least one variable must have a nonzero degree.
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For example, for the system of equations

{
(xdy)2 − yx2 + xy2cy−100x = 0
xy − yx = 0

(where c, d ∈ R are coefficients and x, y are unknowns), we obtain:

Au =

⎛

⎝
2 2
2 1
2 −98

⎞

⎠ , Av =
(

1 1
1 1

)
, A′

u =

⎛

⎝
0 0
0 −1
0 −100

⎞

⎠ , A′
v =

(
0 0
0 0

)
,

A′ =

⎛

⎜⎜⎜⎜⎝

0 0
0 −1
0 −100
0 0
0 0

⎞

⎟⎟⎟⎟⎠
, rankA′ = 1 and the system is generalised homogeneous.

Proposition. Any system of equations such that
∑

i

(
(the number of monomials in ith equation) − 1

)
< (the number of unknowns)

is generalised homogeneous.

Proof. The assertion follows immediately from the above algorithm, but we
leave the proof of correctness of this algorithm to readers as an exercise. (We
shall use neither this proposition nor this algorithm in this paper.) �

The notion of a solution to a system of equations is defined naturally (if
some exponents kij are negative, then the corresponding components of the
solution must be invertible elements of the ring).

Theorem on equations over rings. Let R be an associative ring with unity and
let G be a subgroup of the multiplicative group of this ring. Then, for each
generalised homogeneous system of equations over R with n unknowns, the
number of solutions lying in Gn is divisible by the order of the intersection of
G and the centraliser of the set of coefficients of the system.

Proof. Let us apply the Main Theorem by letting F be the free group F (x1, . . . ,
xn) and extending the mapping deg : {x1, . . . , xn} → Z (from the definition of
generalised homogeneous systems) to a homomorphism F → Z, which can be
assumed to be surjective, because it is nonzero. Let Φ be the set of homomor-
phisms ϕ : F → G such that (ϕ(x1), . . . , ϕ(xn)) is a solution to the system of
equations, and let H be the intersection of G and the centraliser of the set of
coefficients of the system.

Let us verify the conditions of the Main Theorem. Condition I holds ob-
viously. To verify Condition II, choose an element t ∈ F of degree one and
write each variable xi in the form xi = tdeg xiyi, where yi = t− deg xixi has zero
degree.

Consider an equation w(x1, . . . , xn) = 0 of the system and let us rewrite
it in the form v(t, y1, . . . , yn) = 0. By virtue of homogeneity, all monomials in
v(t, y1, . . . , yn) have the same degree k with respect to t.

We have to show that if v(ϕ(t), ϕ(y1), . . . , ϕ(yn)) = 0 and h ∈ Hϕ, then
v(ϕ(t)h, ϕ(y1), . . . , ϕ(yn)) = 0.
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And this is indeed so, because v(ϕ(t)h, ϕ(y1), . . . , ϕ(yn)) is a multiple of
v(ϕ(t), ϕ(y1), . . . , ϕ(yn)) by the following lemma (which should be applied to
each monomial of v). �

Lemma 1. Suppose that M is a monoid, bi, a, h ∈ M , elements a and h are
invertible, and a−shas, where s ∈ Z, commute with all bi. Then, for any ex-
pression of the form u(t) = b0t

n1b1 . . . tnlbl, where ni ∈ Z, we have

u(ah) =

⎧
⎪⎨

⎪⎩

ha−1
ha−2

. . . ha−k

u(a) if k =
∑

ni > 0
h−1h−a . . . h−a−1−k

u(a) if k =
∑

ni < 0
u(a) if k =

∑
ni = 0.

Proof. Using the commuting rules aihaj

= haj−i

ai and bih
aj

= haj

bi, we bring
all letters h (and haj

) to the left end of the word u(ah) and obtain the required
form. This completes the proofs of Lemma 1 and the Theorem on Equations
over Rings. �

Example 1. The number of Pythagorean triples of invertible elements of an
associative ring with unity, i.e. the number of invertible solutions to the equa-
tion x2 + y2 = z2 is always divisible by the order of the multiplicative group
of the ring.
Indeed, the equation is homogeneous and we can take G = R∗. Moreover,
the number of invertible solutions to the equation axk+byl+czm+dtn+· · · = 0
is divisible by |R∗| for any a, b, c, d, . . . , k, l,m, · · · ∈ Z, because this equation
is generalised homogeneous.

5. Proof of the main theorem. The argument is to some extent similar to
that near the end of Section 3 of [6]. To emphasise the similarity we use the
same terms as in [6] (albeit their meaning is different).

The tail of a homomorphism ϕ ∈ Φ is the pair (ϕ0, ϕH), where ϕ0 is the
restriction of ϕ to the subgroup ker deg ⊂ F and ϕH : F → {gH ; g ∈ G} is the
mapping from F to the set of left cosets of H in G that sends an element f ∈ F
to the coset ϕ(f)H.

We say that two homomorphisms ϕ,ψ ∈ Φ are similar and write ϕ ∼ ψ if
their tails are conjugate by an element of H, i.e.

ϕ ∼ ψ ⇐⇒ there exists h ∈ H such that

ψ(f) = hϕ(f)h−1 for all f ∈ F of degree zero and

ψ(f)H = hϕ(f)H for all f ∈ F .

Clearly, similarity is an equivalence relation on Φ. The Main Theorem is
an immediate corollary of the following proposition.

Proposition. In Φ, each class of similar homomorphisms consists of exactly
|H| elements. More precisely, for each ϕ ∈ Φ,
(1) the number of different tails of elements of Φ similar to ϕ is |H : Hϕ|;
(2) for each homomorphism ψ similar to ϕ, the number of elements of Φ with

the same tail as ψ is |Hϕ|.
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Proof. To prove (1), note that the group H acts by conjugation on the set of
tails of elements of Φ. Indeed, if we conjugate the tail of a homomorphism ψ ∈
Φ by an element h ∈ H, then we obtain the tail of the homomorphism f �→
ψ(f)h. This homomorphism lies in Φ by Condition I of the Main Theorem.
The tails of homomorphisms similar to ϕ form the orbit of the tail of ϕ under
this action. The cardinality of an orbit equals to the index of the stabiliser. It
remains to note that the subgroup Hϕ is the stabiliser of the tail of ϕ.

Let us prove the second assertion. Choose an element x ∈ F of degree
one. A homomorphism α : F → G is uniquely determined by its tail and the
value α(x). Moreover, for two homomorphisms α and β with the same tail,
the quotient h = (α(x))−1β(x) must stabilise this tail, i.e. h must lie in Hα.
Indeed, for all f ∈ F of degree zero, we have

α(fx)h = α(f)α(x)h = α(f)β(x) = β(f)β(x) = β(fx) = α(fx),

i.e. h centralises the subgroup α(ker deg); and, for any element f ∈ F , we have

α(x)α(f)H =α(xf)H =

β(xf)H = β(x)β(f)H = α(x)hβ(f)H = α(x)hα(f)H,

i.e. h ∈ α(f)Hα(f)−1. Thus, h = (α(x))−1β(x) ∈ Hα.
On the other hand, if h is an arbitrary element of Hα, then the formula

f �→
{

α(f) if deg f = 0
α(x)h if f = x

defines a homomorphism with the same tail as α (by Lemma 0). This homo-
morphism lies in Φ by Condition II of the Main Theorem.

Thus, for any α ∈ Φ, the set Φ contains precisely |Hα| homomorphisms with
the same tail as α. It remains to note that, for similar homomorphisms ψ and ϕ,
the subgroups Hϕ and Hψ have the same order, because they are conjugate.
This completes the proofs of assertion 2) and the Main Theorem. �
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