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Abstract

We exhibit the simplex category ∆ as an ∞-categorical localization of the category Ωπ

of plane rooted trees introduced by Moerdijk and Weiss. As an application we obtain an
equivalence of ∞-categories between 2-Segal simplicial spaces as introduced by Dyckerhoff
and Kapranov and invertible non-symmetric ∞-operads. In addition, we prove analogous
results where ∆ is replaced by Connes’ cyclic category Λ, the category of finite pointed sets
or the category of non-empty finite sets; the corresponding categories of trees are given by
plane trees, rooted trees and abstract trees, respectively.
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1 Introduction

It is a well known fact that a simplicial set X : ∆op → Set is the nerve of a category if and only
if the canonical map

X[n] −→ X{0,1} ×X{1} . . .×X{n−1} X{n−1,n} (1.1)

is a bijection; a simplicial set satisfying this condition is said to be Segal. The category cor-
responding to X has X[0] as its set of objects and X[1] as its set of morphisms; composition of
morphisms is defined by the span

µ : X[1] ×X[0]
X[1]

∼=←−− X[2] −→ X[1]. (1.2)

The Segal condition readily generalizes to simplicial objects N(∆op) → C with values in any
∞-category C by replacing bijections of sets by equivalences and fiber products by their coherent
counterpart.
In the literature we encounter two generalizations of this phenomenon to a multi-valued or

operadic context:
• Dyckerhoff and Kapranov [DK] study the case where the first map in the span (1.2) is not an

equivalence anymore; in this case one can still interpret µ as a “multi-valued composition
law”. This multi-valued composition is associative and unital precisely if the simplicial
object X : ∆op → C satisfies the 2-Segal condition1). There is a rich supply2) of 2-Segal
simplicial objects and many of them carry additional structure in the form of a lift ∆op →
Dop → C, where D is one of ∆’s “big brothers” like Connes’ cyclic category Λ or the category
Finop

(?) opposite to finite (pointed) sets.
• Moerdijk and Weiss [MW07] replace the simplex category ∆ by an enlarged category Ωsym

of rooted trees3); every element of ∆ is seen as a linear tree in Ωsym. Simplicial ob-
jects are then generalized to symmetric dendroidal objects Ωop

sym → C. In analogy to the
case of categories, one can identify (colored) symmetric operads as those dendroidal sets
X : Ωop

sym → Set that satisfy a dendroidal analogue of the Segal condition above; one can
recover the set of n-ary operations as the value X (Cn) at the tree Cn consisting of a single
n-ary vertex. The category Ωsym has various siblings; one example is the category Ωπ of
plane rooted trees which describes non-symmetric operads.

The goal of this paper is to explain the relationship between these two theories. The key tool
in this comparison are certain localization functors L which to each tree T associate an object
that, roughly speaking, describes the boundary of T . In the case of a plane rooted tree, for
instance, the boundary is described by the linearly ordered set of “areas” between the branches;
this defines the functor Lπ : Ωπ → ∆ (see Section 2.2). The boundary of a non-plane rooted tree
has less structure; the correct object in this case is the set of external edges pointed at the root,
hence we obtain the functor Lsym : Ωsym → Finop

? to the opposite (!) category of finite pointed
sets (see Section 2.4). We also consider the category Ωcyc of cyclic trees which are plane but
unrooted; the corresponding boundary-functor Lcyc : Ωcyc → Λ maps to the cyclic category (see
Section 2.3).
By their very definition, the functors L send boundary preserving maps of trees to isomor-

phisms. The main result of this paper is that they are universal with this property in the
strongest possible sense:

Theorem 1.0.1. The functor Lπ exhibits ∆ as an ∞-categorical localization of Ωπ at the set of
boundary preserving maps. The same is true, mutatis mutandis, for each of the other functors
1) To be consistent with the original definition, we should say unital 2-Segal. However, we drop the word “unital”

since non-unital 2-Segal objects don’t play any role in this paper.
2)The main source of 2-Segal simplicial objects is Waldhausen’s S-construction [Wal85]. We refer to Dyckerhoff’s

lecture notes [Dyc] for a survey of its many variants.
3)The category Ωsym is usually just denoted by Ω; we add the subscript to clearly distinguish it from other

categories of trees appearing in this paper.
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L discussed in this paper. ♥

Theorem 1.0.1 implies that composition with Lπ induces an equivalence of ∞-categories be-
tween
• simplicial objects ∆op → C and
• so-called invertible dendroidal objects Ωop

π → C

with values in any given ∞-category C. It follows directly from the explicit description of this
equivalence that the dendroidal Segal condition corresponds precisely to the simplicial 2-Segal
condition (see Lemma 4.1.10).
Using the equivalence between Segal dendroidal sets and operads4), we recover the following

version of a result due to Dyckerhoff and Kapranov [DK, Thm. 3.6.8] proven with very different
techniques:

Corollary 1.0.2. The functor Lπ induces an equivalence of categories between 2-Segal simplicial
sets and so-called invertible (non-symmetric) operads. �

Cisinski and Moerdijk [CM] proved that complete Segal symmetric dendroidal spaces are a
model for symmetric ∞-operads. We expect the analogous result to hold in the non-symmetric
case so that we can model non-symmetric∞-operads as complete Segal planar dendroidal spaces.
It turns out that the completeness condition is redundant in the case of invertible dendroidal
spaces (see Lemma 4.3.10), hence our main result specializes to the following ∞-categorical
version of Corollary 1.0.2 (see Section 4.3 for more details).

Corollary 1.0.3. The functor Lπ induces an equivalence of ∞-categories between 2-Segal sim-
plicial spaces and invertible (non-symmetric) ∞-operads. �

The remaining localization functors yield similar results between structured 2-Segal spaces and
various flavors of invertible ∞-operads. For instance, the localization functor Lcyc establishes
an equivalence between the ∞-categories of cyclic 2-Segal spaces and invertible cyclic (non-
symmetric) ∞-operads.

1.1 Acknowledgements

I thank my supervisors Catharina Stroppel and Tobias Dyckerhoff for their ongoing guidance
on my Ph.D thesis of which this paper will comprise a part. My thanks also go to the Bonn
International Graduate School of Mathematics (BIGS) for supporting me with a Hausdorff-
Scholarship.

4)This fact was established by Cisinski and Moerdijk [CM, Corollary 2.6] in the symmetric case; the non-symmetric
case is analogous.
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2 The localization functors

2.1 The category Ωπ of plane rooted trees

We recall some basic facts about (colored, non-symmetric) operads and the category Ωπ of plane
rooted trees. See e.g. Weiss’s thesis [Wei07] for more details.

Definition 2.1.1. A (colored, non-symmetric) operad O = (O, O, ◦) consists of
• a collection O of objects (or colors),
• given colors x1, . . . , xn, y ∈ O, a setO(x1, . . . , xn; y) of n-ary operations from (x1, . . . , xn)

to y and
• for each k, n1, . . . , nk ∈ N and colors xiji , z ∈ O (for 0 ≤ ji ≤ ni, 0 ≤ i ≤ k), a composition
map ∐

y1,...,yk∈O

(
O(x1

1, . . . , x
1
n1

; y1)× · · · × O(xk1, . . . , x
k
nk

; yk)
)
×O(y1, . . . , yk; z)

◦−−→ O(x1
1, . . . , x

1
n1
, . . . , xk1, . . . , x

k
nk

; z)

• for each color x ∈ O, a unit map 1 : {x} −→ O(x, x).
such that the obvious associativity and unitality conditions are satisfied. There is an obvious
notion of a morphism of operads, we denote the resulting category of operads by Op. ♣

Remark 2.1.2. Each operad has an underlying category with objects x ∈ O and morphism sets
O(x, y). Conversely, each category can be viewed as an operad which has only 1-ary operations.
More precisely, we have an adjunction Cat −−⇀↽−− Op with fully faithful left adjoint. ♦
Remark 2.1.3. If the reader were to encounter an “operad” in the literature, it might or might not
be understood to be mono-colored, and it might or might not be understood to be symmetric.
Throughout this paper, we use the word “operad” to mean “non-symmetric colored operad”. ♦
An object of Ωπ is called a plane rooted tree and consist of a finite plane rooted trees in

the usual graph-theoretic sense together with a marking of some degree 1 vertices including the
root-vertex. An edge between unmarked vertices is called internal, the other edges are called
external. The unique external edge connected to the root-vertex is called the root (or output
edge); an external edge attached to a marked non-root vertex is called a leaf (or input edge).
The fact that a tree is plane means precisely that there is a designated linear order on the leaves.

Remark 2.1.4. From now on we completely ignore the marked vertices of a tree and never speak
of them again. Thus “vertex” always means “unmarked vertex”. When drawing trees, we omit
the marked vertices and instead draw the external edges “towards infinity” (see Example 2.1.5
below). ♦
The number of leaves of a tree is its arity. Each vertex of a tree has some number (the arity

of that vertex) of input edges and a unique output edge (which is the one that points in the
direction of the root). We denote by η or [0] the tree with only a single edge (which is both the
root and a leaf); we denote by C[n] or Cn the n-corolla, i.e. the unique n-ary tree with a single
vertex.
Each plane rooted tree T gives rise to a free operad (also denoted by T ); it has a color for

each edge of T and its operations are freely generated by the vertices of T (an n-ary vertex is
seen as an n-ary operation from its input edges to its output edge). A morphism in Ωπ between
two trees is defined to be a morphism of the corresponding operads.

Example 2.1.5. Consider the following two plane rooted trees where the root is always drawn
towards south. The operad associated to the left tree has colors {a′, a, c, d, e, f} and three non-
unit operations s : a′ → a and r : (e, f, c, d) → a′ and r ◦ s : (e, f, c, d) → a. The other one has
colors {a, b, c, d, e, f , g, h} and eleven non-unit operations (t, u, v, w and all their composites).
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The depicted morphism is described on colors by a′ 7→ a, a 7→ a, c 7→ c etc. and on generating
operations by s 7→ 1a and r 7→ (u, 1c, 1d) ◦ t. (The red numbers are for later reference.) ♦
A (planar) dendroidal object in an ∞ category C is functor N(Ωop

π ) → C. We denote
by dπSet := [Ωop

π ,Set] the category of (planar) dendroidal sets, i.e. dendroidal objects in Set.
Given a plane rooted tree T , we denote by Ωπ[T ] the dendroidal set represented by T . There is
a canonical fully faithful embedding ∆ ↪→ Ωπ of the simplex category ∆ by interpreting every
linearly ordered set as a linear tree. This embedding gives rise to an adjunction sSet −−⇀↽−− dπSet

with fully faithful left adjoint. The inclusion Ωπ ↪→ Op (which is full by construction) gives rise
to a realization/nerve-adjunction

dπSet −−⇀↽−− Op : Nd

which extends the usual adjunction sSet −−⇀↽−− Cat : N.

2.2 The functor Lπ : Ωπ −→ ∆

Let us introduce the main player in our game.

Construction 2.2.1. [Covariant description of Lπ] Each plane rooted tree T ∈ Ωπ (which we
visualize with its external edges going towards infinity) partitions the plane into a set LπT of
“areas” which is linearly ordered clockwise starting from the root. It is straightforward to extend
this assignment to a functor Lπ : Ωπ → ∆. ♣

Remark 2.2.2. We give an alternative, more formal, construction of the functor Lπ at the end of
this section, see Construction 2.2.12 below. ♦
Example 2.2.3. The functor Lπ sends the morphism depicted in Example 2.1.5 to the map
{0, 1, 2, 4, 4′} → {0, 1, 2, 3, 4} in ∆. ♦
Remark 2.2.4. Specifying two adjacent “areas” of a plane rooted tree T ∈ Ωπ uniquely determines
an external edge of T that separates them. If we write [n] := LπT (where n is the arity of T )
then
• each minimal edge {i− 1, i} ↪→ [n] (for 1 ≤ i ≤ n) corresponds precisely to a leaf of T and
• the maximal edge {0, n} ↪→ [n] corresponds to the root of T . ♦

Remark 2.2.5. Usually the category of trees is related to the simplex category by the inclusion
∆ ↪→ Ωπ of the linear trees. The composition ∆ ↪→ Ωπ

Lπ−−→ ∆ is constant with value [1] ∈ ∆. The
two occurrences of the category ∆ in relation to the category Ωπ are in some sense “orthogonal”:
the first is sensitive to the “depth” of a tree, the second measures the “width”. ♦

Definition 2.2.6. A map of plane rooted trees is called boundary preserving if it maps the
root to the root and each leaf to a leaf. ♣

Definition 2.2.7. A collapse map in Ωπ is a boundary preserving map C[n] → T out of a
corolla (where n is the arity of T ). A dendroidal object X : N(Ωop

π ) → C in some ∞-category C

is called invertible if X maps all collapse maps to equivalences in C. ♣



Tashi Walde 6/19

Remark 2.2.8. A boundary preserving map α : T → S of plane rooted trees induces a bijection
between the leaves of T and the leaves of S. Hence the functor Lπ maps boundary preserving
maps to isomorphisms. ♦
Remark 2.2.9. The motivation for the word “invertible” in Definition 2.2.7 will become apparent
in Section 4.2 when we discuss invertible operads (in the sense of Dyckehoff and Kapranov [DK])
and show that an operad is invertible if and only if its nerve is an invertible dendroidal set
(Lemma 4.2.4). ♦
Here is one version of our main result which we explain and prove in Section 3 below:

Theorem 2.2.10. The functor Lπ exhibits ∆ as an ∞-categorical localization of Ωπ at the set
of collapse maps. ♥

Before going forward, we give a “contravariant” description of the functor Lπ. This description
is useful because unlike the covariant one it can easily be adapted to the case of symmetric trees
(see Section 2.4).

Lemma 2.2.11. The category ∆op can be identified with the following category ∆bp : objects
are finite (possibly empty) linearly ordered sets; a morphism f : N → M consist of a monotone
tri-partition N = Nf

− ∪̇Nf ∪̇Nf
+ (monotone means that n− < n < n+ for all n∗ ∈ Nf

∗ ) together
with a weakly monotone map f : Nf →M . ♥

Proof. Equivalently (by adding a minimal and a maximal element to each object) ∆bp is the
category whose objects are finite linearly ordered sets with at least two elements and whose
morphisms preserve the boundary points. Using this description, the equivalence ∆op ' ∆bp is
given by the mutually inverse (contravariant) functors which send a linearly ordered set to its
set of cuts (resp. non-degenerate cuts); in formulas:

∆ 3 N 7−→ {N = L ∪̇R monotone} ∈ ∆bp

∆bp 3M 7−→ {M = L ∪̇R monotone | L 6= ∅ 6= R} ∈ ∆. �

Using the identification ∆op ' ∆bp we can give the following description of the functor Lπ,
which is easily seen to be equivalent to Construction 2.2.1.

Construction 2.2.12 (Contravariant description of Lπ). To each plane rooted tree T ∈ Ωπ we
associate the (possibly empty) linearly ordered set LπT ∈ ∆bp of its leaves. This association
extends to a functor Ωop

π → ∆bp in the following way: Given a map α : T ← S of trees, we can
(monotonely) partition the leaves of T as LπT = (LπT )α− ∪̇ (LπT )α ∪̇ (LπT )α+, where LπTα (resp.
LπTα−, resp. LπTα+) consist of those leaves of T which lie over (resp. to the left of, resp. to the
right of) the image under α of the root rS of S. Given a leaf l of T that lies over α(rS), there is
a unique leaf l′ of S such that α(l′) ≤ l; we define (Lπα)(l) := l′ to be this unique leaf. ♣

2.3 Variant: plane unrooted trees and the cyclic category Λ

We recall the definition of Connes’ cyclic category Λ.

Definition 2.3.1. [Con83] To each natural number n ∈ N corresponds an object [n] ∈ Λ which
we interpret as the unit circle S1 in the complex plane with n + 1 many equidistant marked
points. The morphisms are homotopy classes of weakly monotone maps S1 → S1 of degree 1
that send marked points to marked points. ♣

Remark 2.3.2. We fix the inclusion ∆ ↪→ Λ which arranges the n+ 1 many elements of an object
[n] ∈ ∆ as marked points on a circle. This inclusion is dense and faithful but not full. ♦
We define the category Ωcyc of plane unrooted trees. In analogy to how Ωπ is a full

subcategory of the category Op of operads, we define Ωcyc as a full subcategory of the category
of cyclic operads which we now define.
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Definition 2.3.3. A cyclic structure on an operad (O, O, ◦) consists of
• an involution (−)∨ : O → O on colors (called duality) and
• a system of rotation isomorphisms

O(x1, . . . , xn; y)
∼=−−→ O(y∨, x1, . . . , xn−1;x∨n)

which is compatible with the composition of operations;
such that for each n ∈ N the (n+ 1)-fold composition

O(x1, . . . , xn; y)
∼=−−→ O(y∨, x1, . . . , xn−1;x∨n)

∼=−−→ O(x∨n , y
∨, x1, . . . , xn−2;x∨n−1)

∼=−−→ · · · ∼=−−→ O(x2, . . . , xn, y
∨;x∨1 )

∼=−−→ O(x1, . . . , xn; y)

of rotation isomorphisms is equal to the identity.
A cyclic operad is an operad together with a cyclic structure. The cyclic operads are as-

sembled into a category cycOp where the morphisms are required to be compatible with the
additional structure in the obvious way. ♣

Remark 2.3.4. We have an adjunction Op −−⇀↽−− cycOp where the right adjoint forgets the cyclic
structure and the left adjoint adds a cyclic structure freely. ♦

Definition 2.3.5. A plane (unrooted) tree consists of vertices and (unoriented) edges ar-
ranged in the plane, where an edge can connect two vertices or go to infinity in one or (in the
case of the unique tree η with no vertices) both directions. We require our trees to have at least
one external edge. We think of each unoriented edge as a pair of anti-parallel arrows. ♣

Example 2.3.6. A typical example of a plane tree looks as follows:

•

• •

• • • •

• ♦

We call an arrow a leaf if comes from infinity and a root if it goes to infinity. An arrow a is
called a direct predecessor of an arrow b (and b is then a direct successor of a) if there is a
vertex which is both the target t(a) of a and the source s(b) of b. We say a is a predecessor of
b (or b is a successor of a), written a ≥ b, if a is an iterated direct predecessor of b (this includes
the case a = b). The arity of a tree (resp. a vertex) is n, where n + 1 is the number of arrows
leaving (or, equivalently, entering) the tree (resp. the vertex).

Remark 2.3.7. For every arrow b in a tree T , the set of predecessors of b in T forms a plane
rooted tree (the root is b itself). In particular there is a preferred linear order (clockwise along
the boundary) on the set of those leaves a of T which are predecessors of b. ♦

Construction 2.3.8. Each plane tree T gives rise to a cyclic operad (also denoted T ) as follows:
• Each arrow is a color.
• Each pair (v, a) consisting of an n-ary vertex v ∈ T and an arrow a starting in v gives rise

to an n-ary operation
va : (a1, . . . , an) −→ a

where the ai’s are the direct predecessors of a (hence t(ai) = v) in clockwise order. All
other operations are freely generated by these va’s.
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• The involution on the colors exchanges the two anti-parallel arrows associated to a single
edge.
• The rotation isomorphisms are given on generators by va 7→ va∨n . ♣

Definition 2.3.9. We define the category Ωcyc ⊂ cycOp of plane trees to be the full subcategory
spanned by the cyclic operads T constructed as above. ♣

Remark 2.3.10. Our category Ωcyc is very close to the category of plane unrooted trees introduced
by Joyal and Kock [JK]; the only difference is that we require our trees to have at least one
external edge. For instance, we do not allow the tree • which consists only of a single vertex,
since this tree can not be interpreted as a cyclic operad in a meaningful way. ♦
Remark 2.3.11. The free-cyclic-structure functor Op→ cycOp induces an inclusion Ωπ → Ωcyc

which replaces each edge with two anti-parallel arrows and forgets the root. ♦
Remark 2.3.12. The cyclic operad corresponding to the tree η (which has no vertices and exactly
two mutually anti-parallel arrows) consists of two colors which are dual to each other and no
non-identity operations. This cyclic operad η has an involution given by exchanging the two
colors, i.e. the two arrows. A morphism η → O to some cyclic operad O corresponds to a color
of O; the involution on the colors of O is induced by the involution on η. ♦
Remark 2.3.13. It is easy to check that an operation in the cyclic operad T ∈ Ωcyc is uniquely
determined by its input and output colors. Hence a map S → T between such operads is uniquely
determined by the value at each arrow. Such a map would not, however, be determined by its
values on unoriented edges; for instance, every unoriented edge e of a tree T gives rise to two
different maps η → T in Ωcyc corresponding to the two mutually dual colors described by e.
If one were only interested in mono-colored cyclic operads or, more generally, cyclic operads

with trivial duality (i.e. every color is self-dual), then it would be enough to consider unoriented
edges. This point of view is taken by Hackney, Robertson and Yau [HRY]. ♦

Definition 2.3.14. A map of plane trees is called boundary preserving if it maps leaves to
leaves and roots to roots. A collapse map in Ωπ is a boundary preserving map C → T out of
a corolla. A dendroidal object X : N(Ωop

π ) → C in some ∞-category C is called invertible if X
maps all collapse maps to equivalences in C. ♣

As the notation suggests, the category Ωcyc of plane trees has a close relationship to the cyclic
category: the latter is a localization of the former.

Construction 2.3.15 (Covariant description of Lcyc). Analogously to the case of rooted plane
trees, an unrooted plane tree partitions the plane into “areas” which are arranged clockwise
around a circle. This assignment is a functor Lcyc : Ωcyc → Λ which extends the functor
Lπ : Ωπ → ∆. ♣

Construction 2.3.16 (Contravariant description of Lcyc). Using the self-duality Λ ∼= Λop (which
interchanges marked points and intervals on a circle) we can define the functor L : Ωcyc → Λop

instead:
A tree T gets mapped to its set of leaves which are naturally arranged around a circle. The

image of a morphism α : S → T sends each leaf a of T to the unique leaf b of S such that α(b) is
a successor of a. This assignment does not yet uniquely determine Lα as a morphism in Λ; we
still need to specify a linear order on the pre-images (Lα)−1(b) (for every leaf b of S) but this is
taken care of by Remark 2.3.7. ♣

We will prove the following result in Section 3 below:

Theorem 2.3.17. The functor Lcyc : Ωcyc → Λ exhibits Λ as an ∞-categorical localization of
Ωcyc at the set of collapse maps. ♥
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2.4 Variant: symmetric (rooted) trees and finite (pointed) sets

Denote by Ωsym the category of symmetric rooted trees (i.e. trees without a plane embedding).
It is defined as a full subcategory of symOp, the category of symmetric operads. A symmetric
operad is an operad equipped with an action of the symmetric groups which interchanges the
input colors. All the notions from Section 2.1 have an obvious analogue which we shall not
describe here again.
We can also define a functor Lsym, which is analogous to Lπ : Ωπ → ∆ by adapting the

contravariant construction of the latter.

Construction 2.4.1 (The functor Lsym). We define the functor Lsym : Ωsym → Finop
? to the

(opposite) category of finite pointed sets as follows: To each tree T we assign the set of external
edges which is pointed at the root. Given a morphism α : S → T of rooted trees and a leaf e of
T there is at most one external edge d of S such that α(d) ≤ e. We define (Lsymα)(e) := d if
such a d exists and (Lsymα)(e) := ? otherwise. ♣

It is straightforward to show that Lsym : Ωsym → Finop
? is well defined and extends the functor

Lπ in the sense that the following diagram commutes:

Op Ωπ ∆ ∆op
bp

symOp Ωsym Finop
?

sym

Lπ '
cut

Lsym

where the leftmost arrow is the symmetrization functor and the rightmost diagonal arrow forgets
the linear ordering and adds a basepoint.

Remark 2.4.2. By combining the ideas from Section 2.3 and Section 2.4 we can construct a
category of abstract (i.e. non-plane and unrooted) trees as a full subcategory of cyclic symmetric
operads5). The corresponding functor Labs : Ωabs → Finop

6=∅ maps a tree to its nonempty set of
leaves (i.e. incoming arrows). Given a morphism α : S → T of rooted trees and a leaf a of T
we define (Lsymα)(a) to be the unique leaf b of S such that α(b) ≤ a (i.e. α(b) is a successor of
a). ♦
Remark 2.4.3. Unlike Lπ and Lcyc, which can be described concretely in terms of “areas” between
branches, it appears that the functors Lsym and Labs do not admit a nice covariant description.

♦
We have the following localization result (see Section 3):

Theorem 2.4.4. The functor Lsym : Ωsym → Finop
? (resp. Labs : Ωabs → Finop

6=∅) exhibits Fin
op
?

(resp. Finop
6=∅) as an ∞-categorical localization of Ωsym (resp. Ωabs) at the set of collapse maps.

♥

5)Such operads have both a cyclic and a symmetric structure which are compatible when regarding the symmetric
group Sn and the cyclic group Z / (n+ 1) as a subgroup of Sn+1.
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3 Proof of the localization theorems

We collect here the main results we want to prove.

Theorem 3.0.1. For every ∞-category C, the functor Lπ : Ωπ → ∆ induces a fully faithful
functor

L?π : Fun(N(∆),C) −→ Fun(N(Ωπ),C)

of∞-categories with essential image spanned by those functors N(Ωπ)→ C which map all collapse
maps C → T to equivalences. The analogous statement is true for the functors Lcyc : Ωcyc → Λ,
Lsym : Ωsym → Finop

? and Labs : Ωabs → Finop
6=∅. ♥

Remark 3.0.2. The notation Fun(C′,C) denotes the ∞-category of functors C → C′ [Lur09,
Notation 1.2.7.2]. ♦

3.1 The general situation

Our strategy to prove Theorem 3.0.1 is to apply the following general lemma which we will prove
separately in Section 3.2 below.

Lemma 3.1.1. Let L : W → D be a functor of (ordinary) categories and for each n ∈ D let
Bn ⊂Wn be a subcategory of the weak fiberWn of L such that (with the notation of Remark 3.1.2
below)
• Bn has an initial object cn and
• the inclusion N(Bn) ↪→ N(W )/n is cofinal.

Then for every ∞-category C, composition with L induces a fully faithful functor

L? : Fun(N(D),C) −→ Fun(N(W ),C)

of ∞-categories with the essential image spanned by those functors N(W ) → C which send all
the edges of the form cn → t in N(Bn) (for n ∈ D) to equivalences. ♥

Remark 3.1.2. Recall that the weak fiber Wn (also called 2-fiber) of L : W → D is the category
whose objects consist of an object t ∈ W and an isomorphism t

∼=−−→ n in D. The left fiber
W/n ⊃Wn has objects (t, f : t→ n) where f is not required to be an isomorphism. ♦
Let Ω be any one of the categories Ωπ, Ωcyc, Ωsym, Ωabs; let L be the corresponding functor

(among Lπ, Lcyc, Lsym, Labs) and denote its target (which is either ∆, Λ, Finop
? or Finop

6=∅)
by D. For every object [n] ∈ D we denote by Ω/[n] the left fiber, by Ω[n] the weak fiber and
by bp[n] ⊂ Ωn the subcategory of Ω[n] with the same objects but only boundary preserving
morphisms. We shall now show that the functors L satisfy the requirements for Lemma 3.1.1,
thus concluding the proof of Theorem 3.0.1.

Proposition 3.1.3. Fix an object [n] ∈ D.
(1) The n-corolla C[n] (together with any identification LC[n]

∼=−−→ [n]) is an initial object in
the category bp[n].

(2) The inclusion bp[n] ⊂ Ω[n] ↪→ Ω/[n] has a left adjoint.
♥

Corollary 3.1.4. The inclusion bp[n] ↪→ Ω/[n] is cofinal in the sense of Joyal [Joy08, 8.11] [Lur09,
Theorem 4.1.3.1]. �

Proof (of Proposition 3.1.3). The first statement is obvious.
The functor Ω/[n] → bp[n] is constructed as follows: Given an object (T, f : LT = [m]→ [n]) we
define the tree Tf by glueing some corollas to T along its outer edges (see also Figure 1). We
only describe this process explicitly for L = Lπ but the construction is essentially the same in
the other cases.
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T

0

1 2 · · · j − 1 j · · · m− 1

m

f(0)

f(0) + 1
. . .

f(1) f(j − 1)

f(j − 1) + 1
. . .

f(j) f(m− 1)

f(m− 1) + 1
. . .

f(m)

· · · · · ·

0

1

...
...

n

f(0) f(m)

Figure 1: The construction of the tree Tf in the case L = Lπ. The little arrows decorate the
roots of the various trees. Forgetting the root and/or the plane embedding describes
the analogous construction in the cases L = Lcyc,Lsym,Labs

• To a leaf of T corresponding to the minimal edge {j− 1, j} ↪→ [m] we glue a corolla Cf
j−1,j

(of arity f(j) − f(j − 1)) with leaves {i − 1, i} for f(j − 1) < i ≤ f(j) (this might be a
0-corolla if f(j − 1) = f(j)).
• To the root (corresponding to the maximal edge {0,m} ↪→ [m]) we glue a corolla Cf

max

with leaves

{0, 1}, {1, 2}, . . . , {f(0)− 1, f(0)}, {f(0), f(m)}, {f(m), f(m) + 1}, . . . , {n− 1, n}

along the special leaf {f(0), f(m)} of Cf
max.

The adjunction unit at (T, f) is the inclusion T ↪→ Tf which we denote by fT . We need to
prove that given a morphism of trees α : T → S over f : [m]→ [n] there is a unique factorization

T
fT−−→ Tf

αbp

−−→ S with αbp in bp[n]. We have no other choice than to define αbp as α on the
subtree T ↪→ Tf and to make it the identity on the boundary; hence uniqueness is clear. It is
straightforward to verify that this map of trees is indeed well defined. �

3.2 Proof of Lemma 3.1.1

LetM be defined as the Grothendieck construction of the functor ∆1 → Cat which parametrizes
the functor L : W → D. Explicitly, an object in M is either an object t ∈ W or an object
n ∈ D; for s, t ∈ W and m,n ∈ D we put M(t, s) = W (t, s) and M(n,m) = D(n,m) and

M(t, n) = D(Lt, n) and M(n, t) = ∅. We have a factorization L : W ↪→ M
L−−→ D where the

first arrow is the obvious fully faithful inclusion and the second arrow has a fully faithful right
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adjoint D ↪→M . We identify D with its image in M and we denote by η : idM → L the unit of
the adjunction L : M −−⇀↽−− D; it is an isomorphism (in fact the identity) at exactly those objects

in M that belong to D.6)

We deal with the two components of L : W ↪→M −−⇀↽−− D individually by using standard tech-
niques from Higher Topos Theory [Lur09]. Lemma 3.1.1 is a direct consequence of Corollary 3.2.4
and Corollary 3.2.9 below.

Remark 3.2.1. For each n ∈ D the forgetful functor Bn ⊂ Wn → W extends to a functor
Bn

. ↪→ M by sending the new vertex v to n and the new arrow (t, f) → v (for (t, f) ∈ Bn) to
the arrow f : t→ n of W . ♦
Fix an ∞-category C. We recall the following result:

Lemma 3.2.2. [Lur09, Proposition 5.2.7.12] Let L : M→D be a localization functor of∞-cate-
gories (i.e. L has a fully faithful right adjoint) and let C be another∞-category. Then composition
with L induces a fully faithful functor

Fun(D,C) −→ Fun(M,C)

with essential image consisting of those functors that map an edge f inM to an equivalence in
C provided that Lf is an equivalence in D. ♥

Lemma 3.2.3. Let F : N(M)→ C be a functor of ∞-categories. The following are equivalent:
(1) For every edge f in N(M), if Lf is an equivalence in D then Ff is an equivalence in C.
(2) For every n ∈ D, the functor F maps all edges in N(Bn). to equivalences in C.
(3) F sends every component ηt : t→ Lt of the unit to an equivalence in C.

We denote by K+ the full subcategory of Fun(N(M),C) spanned by such functors. ♥

Proof. Clearly (1) implies (2) (because L(f) is the identity for each edge f of N(Bn).) and (2)
trivially implies (3).
Observe that if f : t→ s is a morphism in M then we have a commutative naturality square

t Lt

s Ls

f

ηt

Lf

ηs

Hence (3) implies (1) by the two-out-of-three property for equivalences in C. �

Corollary 3.2.4. Composition with the functor L : M → D induces a fully faithful functor
Fun(N(D),C) ↪→ Fun(N(M),C) with essential image K+. �

Let us recall the following result:

Lemma 3.2.5. [Lur09, Proposition 4.3.1.12] Let C be an ∞-category and let F : B. → C be
a diagram where B is a weakly contractible simplicial set and F carries each edge of B to an
equivalence in C. Then F is a colimit diagram in C if and only if it carries every edge in B. to
an equivalence in C. ♥

Lemma 3.2.6. Let F : N(W )→ C be a functor. The following are equivalent:
(1) The functor F admits a left Kan extension along W ↪→ M and the resulting functor

N(M)→ C lies in K+.
(2) For every n ∈ D the functor F maps every edge of N(Bn) to an equivalence in C.
(3) For every n ∈ D and every t ∈ Bn the functor F maps the unique edge cn → t in N(Bn)

to an equivalence in C.
6) The components ηt : t → Lt of the adjunction are precisely the coCartesian morphisms of the coCartesian

fibration M → ∆1.
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We denote by K the full subcategory of Fun(N(W ),C) spanned by such functors. ♥

Proof. The equivalence between (2) and (3) is obvious because cn is an initial element in Bn.
Using description (2) of Lemma 3.2.3 it is clear that (1) implies (2).
Let us prove the converse: By the pointwise construction of Kan extensions [Lur09, Lemma

4.3.2.13], a left Kan extension of F along W ↪→M can be assembled from colimit cones for the
diagrams N(W )/n → N(W )

F−−→ C (for n ∈ D). Recall that Bn ↪→ W/n is cofinal, hence we can

reduce to finding colimits for the diagrams N(Bn) ↪→ N(W/n)→ N(W )
F−−→ C. All edges of these

diagrams are equivalences by condition (2) and N(Bn) is contractible (because Bn has an initial
element). Therefore by Lemma 3.2.5 these colimits exists and the corresponding colimit cones
N(Bn). → C map all edges to equivalences in C, thus verifying condition (2) of Lemma 3.2.3. �

Fix the following notation:
• Denote by H+ the full subcategory of Fun(N(M),C) spanned by those functors which are

the left Kan extension of their restriction to W ⊂M .
• Denote by H the full subcategory of Fun(N(W ),C) spanned by those functors which admit

a left Kan extension along W ↪→M .
Recall the following result:

Lemma 3.2.7. [Lur09, Proposition 4.3.2.15] The restriction functor along N(W ) ↪→ N(M) is a
trivial fibration H+ → H of simplicial sets. ♥

Lemma 3.2.8. We have inclusions K+ ⊂ H+ and K ⊂ H and a pullback square

K+ H+

K H

of simplicial sets with vertical arrows given by restriction along W ↪→M . ♥

Proof. This follows directly from Lemma 3.2.3 and Lemma 3.2.6 �

Since trivial fibrations of simplicial sets are stable under pullbacks we obtain:

Corollary 3.2.9. The restriction functor along the inclusion W ↪→ M is a trivial fibration
K+ → K of simplicial sets. �

This concludes the proof of Lemma 3.1.1 and therefore of Theorem 3.0.1.
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4 Applications

Consider the category sSet := [∆op,Set] of simplicial sets equipped with the classical (Kan-
Quillen) left proper combinatorial simplicial model structure. Denote by S := N∆(sSet◦) the
corresponding ∞-category of spaces obtained as the simplicial nerve of the subcategory of
fibrant-cofibrant objects. A dendroidal (resp. simplicial) object in S is called a dendroidal (resp.
simplicial) space.

4.1 2-Segal simplicial objects and Segal dendroidal objects

In this section we compare the dendroidal Segal condition due to Cisinski and Moerdijk [CM]
and the simplicial 2-Segal condition due to Dyckerhoff and Kapranov [DK].

Definition 4.1.1. [CM, Definition 2.2] The Segal core of a tree η 6= T ∈ Ωsym is the union

Sc[T ] :=
⋃
v

Ωsym[Cn(v)]

where v runs over all vertices of T and Cn(v) ↪→ T denotes the subtree with vertex v. We use
the convention Sc[η] := Ωsym[η] for the trivial tree.
A symmetric dendroidal space X : N(Ωop

sym)→ S is Segal if for any tree T ∈ Ωsym the map

XT = Hom(Ωsym(T ),X ) −→ Hom(Sc[T ],X )

is a trivial fibration. ♣

We adapt this definition as follows.

Definition 4.1.2. A dendroidal object X : N(Ωop
π )→ C in some ∞-category C is called Segal if

X sends the diagram
T T2

T1 e

(4.1)

to a coherent pullback square in C whenever the tree T ∈ Ωπ arises by grafting two trees T1 and
T2 along a common edge e. ♣

Remark 4.1.3. Clearly Definition 4.1.1 and Definition 4.1.2 make sense, mutatis mutandis, for
planar, symmetric, cyclic, and cyclic symmetric dendroidal objects. ♦
Remark 4.1.4. If a tree T arises by grafting two trees T1 and T2 along a common edge e then
clearly Sc[T ] = Sc[T1] te Sc[T2]. By successively decomposing a tree along its inner edges we
therefore see that Definition 4.1.1 and Definition 4.1.2 agree for dendroidal objects in the∞-cat-
egory S of spaces. ♦
The importance of the dendroidal Segal condition is highlighted by the following result:

Proposition 4.1.5. [CM, Corollary 2.6] The symmetric dendroidal nerve functor

Nd : symOp −→ dSet

is fully faithful and the essential image consists precisely of the Segal symmetric dendroidal
sets. ♥

Remark 4.1.6. Proposition 4.1.5 directly generalizes to all types of operads discussed in this
paper: non-symmetric operads, symmetric operads, cyclic operads, cyclic symmetric operads. ♦
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Definition 4.1.7. [DK, Proposition 2.3.2] A simplicial object X : N(∆op)→ C in some ∞-cat-
egory C is called (unital) 2-Segal if for each 0 ≤ i ≤ j ≤ m it maps the square

{0, . . . ,m} {i, . . . , j}

{0, . . . , i, j, . . .m} {i, j}

(4.2)

in ∆ to a coherent pullback square square in C. ♣

Remark 4.1.8. We always interpret the elements i and j in the lower row of Diagram 4.2 as
distinct; thus in the case i = j the vertical arrows are degeneracy maps. ♦
Remark 4.1.9. Since non-unital 2-Segal objects never make an appearance in this paper, we just
write “2-Segal” and leave the adjective “unital” implicit. ♦

Lemma 4.1.10. A simplicial object X : N(∆op) → C in some ∞-category C is 2-Segal if and
only if the composition L?πX : N(Ωop

π )
Lπ−−→ N(∆op)

X−−→ C is a Segal dendroidal object. ♥

Proof. Let T = T1 ∪e T2 be a grafting of trees where e is the root of T2 and a leaf of T1. Put
[m] := LπT . Applying Lπ to the inclusion e ↪→ T defines a map [1] = Lπe f−−→ [m], so we can
define i := f(0) and j := f(1). It is easy to see that with this notation Lπ sends Diagram (4.1)
to Diagram (4.2) and that every instance of Diagram (4.2) arises this way. �

Remark 4.1.11. The dendroidal Segal condition (which reduces to the simplicial 2-Segal condition
under the functor Lπ : Ωπ → ∆) is defined for all dendroidal spaces, not just invertible ones.
Hence one might wonder if we can put a reasonable condition on dendroidal objects (without
requiring invertibility) which reduces to the (ordinary) simplicial Segal condition. The naive way
certainly fails, since the commutative square

[2] {1, 2}

{0, 1} {1}

in ∆ (which describes an instance of the simplicial Segal condition) does not admit a lift to
Ωπ. ♦

4.2 Equivalence: 2-Segal simplicial sets and invertible operads

Definition 4.2.1. [DK, Def. 3.6.7] An operad O is called invertible if all the composition and
unit maps (as in Definition 2.1.1) are invertible. ♣

Remark 4.2.2. If an operad O is invertible then its underlying category is discrete. ♦

Proposition 4.2.3. [DK, Thm. 3.6.8] Fix a set B of colors. Then there is an equivalence of
categories between invertible B-colored operads and 2-Segal simplicial sets X : ∆op → Set with
X[1] = B. ♥

We can characterize invertibility of an operad in terms of its dendroidal nerve.

Lemma 4.2.4. Let O be an operad and let Nd(O) : Ωop
π → Set be its dendroidal nerve. The

following are equivalent:
(1) The dendroidal set Nd(O) maps all boundary preserving maps to isomorphisms.
(2) The dendroidal set Nd(O) is invertible, i.e. it inverts all collapse maps. ♥
(3) The operad O is invertible.
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Proof. If α : T → S is boundary preserving, then clearly the collapse map for S factors through
the collapse map for T as C → T

α−−→ S. Hence (1) and (2) are equivalent by the 2-out-of-3-
property for isomorphisms.
Taking the coproduct over all the unit maps in Definition 2.1.1 yields precisely the image

under N(O) of the collapse map C1 → η. Taking the coproduct over all the composition maps
for fixed k, n1, . . . , nk ∈ N yields (putting n :=

∑k
i=1 ni) precisely the image of the collapse

map Cn → Tn1,...,nk
k , where Tn1,...,nk

k is tree obtained by glueing (for all 0 ≤ i ≤ k) the corolla
Cni to the i-th leaf of the corolla Ck. Hence (2) implies (3). The converse holds because every
“generalized composition map” represented by a collapse map C → T can be written as the
composition of unit and composition maps as in Definition 2.1.1. �

Using
• the characterization of operads as Segal dendroidal sets (the non-symmetric analogue of

Proposition 4.1.5),
• the characterization of invertible operads (Lemma 4.2.4),
• our main result (Theorem 2.2.10) in the case C = Set and
• the corresponcence between Segal dendroidal objects and 2-Segal simplicial objects (Lemma 4.1.10)

we recover the following more elegant version of Proposition 4.2.3.

Corollary 4.2.5. The composition sSet
L?π−−→ dπSet −→ Op restricts to an equivalence of

categories between the full subcategories of 2-Segal simplicial sets on one side and invertible
operads on the other. �

4.3 Equivalence: 2-Segal simplicial spaces and invertible ∞-operads

As a direct consequence of Theorem 2.2.10 and Lemma 4.1.10 we obtain the following comparison
result:

Corollary 4.3.1. Composition with Lπ : Ωπ → ∆ induces an equivalence between the ∞-cate-
gory of 2-Segal simplicial spaces and the ∞-category of invertible Segal dendroidal spaces. �

The goal of this Section 4.3 is to give an interpretation of this result by identifying the∞-cat-
egory of invertible Segal dendroidal spaces as a full subcategory of the ∞-category of complete
Segal dendroidal spaces. We treat the latter as a model for (non-symmetric) ∞-operads (in
analogy to results due to Cisinski and Moerdijk [CM] in the symmetric case) so that we can
rephrase Corollary 4.3.2 as follows:

Corollary 4.3.2. Composition with Lπ : Ωπ → ∆ induces an equivalence between the ∞-cat-
egory of 2-Segal simplicial spaces and the ∞-category of invertible (non-symmetric) ∞-oper-
ads. �

The theory of complete Segal dendroidal spaces was developed by Cisinski and Moerdijk [CM]
for symmetric dendroidal spaces. They prove that complete Segal symmetric dendroidal spaces
are a model for symmetric ∞-operads (see Theorem 4.3.4 below). We briefly retrace their main
definitions in the world of non-symmetric operads but we do not re-prove their theorem in this
setting. We will use the resulting model category of complete Segal planar dendroidal spaces
(or rather, its underlying ∞-category) as a model for (non-symmetric) ∞-operads even though,
strictly speaking, this is not motivated by the current state of the literature.

Construction 4.3.3. [CM, Sections 5. and 6.] We build the simplicial model category [Ωop
π , sSet]cS

of complete Segal dendroidal spaces (also called dendroidal Rezk model category) as
constructed by Cisinski and Moerdijk in the symmetric case:
Take the Reedy model structure7) on the functor category dsSet := [Ωop

π , sSet] and then
Bousfield-localize [Lur09, Proposition A.3.7.3] two times:
7)Cisinski and Moerdijk actually use a generalized version of the Reedy model structure since the category Ωsym

of symmetric rooted trees is not a Reedy category (unlike Ωπ, which is).
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(1) by the Segal core inclusions Sc[T ] −→ Ωπ[T ] and

(2) by the maps Ωπ[T ]⊗Jd −→ Ωπ[T ], where Jd is the dendroidal nerve of the category •
∼=−−→ •

with two objects and a single isomorphism between them. ♣

The Reedy model category [Ωop
π , sSet]Reedy has a canonical simplicial enrichment [RV14, Theo-

rem 10.3] which is maintained by the Bousfield localization processes [Lur09, Proposition A.3.7.3].
Therefore we can construct what we call the∞-category of ∞-operads as the simplicial nerve
of the fibrant-cofibrant objects:

Op := N∆([Ωop
π , sSet]

◦
cS)

The name is justified by the following result:

Theorem 4.3.4. [CM, Corollary 6.8] The inclusion dSet ↪→ [Ωsym, sSet]cS is a left Quillen
equivalence between the model category of symmetric∞-operads as defined by Cisinski, Moerdijk
and Weiss [MW07,CM11] and the model category of complete Segal symmetric dendroidal spaces.

♥

Definition 4.3.5. We denote by [Ωop
π , sSet]iS the Bousfield localization of [Ωop

π , sSet]cS by the
collapse maps

Ωπ[Cn] −→ Ωπ[T ]

for each n-ary tree T ; we call it the model category of invertible Segal dendroidal spaces.
We denote the corresponding ∞-category of invertible ∞-operads by

iOp := N∆([Ωop
π , sSet]

◦
iS). ♣

Remark 4.3.6. It is immediate from the characterization of Bousfield localization that [Ωop
π , sSet]◦iS

is a full simplicial subcategory of [Ωop
π , sSet]◦cS. Hence the ∞-category iOp of invertible ∞-oper-

ads is a full subcategory of the ∞-category Op of (all) ∞-operads. ♦

Lemma 4.3.7. The∞-category iOp of invertible∞-operads is equivalent to the full subcategory
of Fun(N(Ωop

π ), S) consisting of those dendroidal spaces X : N(Ωop
π )→ S which are invertible Segal

and satisfy the following completeness condition:
• For each tree T , the maps Ωπ[T ]⊗Jd → Ωπ[T ] from Construction 4.3.3 induce equivalences

Hom(Ωπ[T ]⊗ Jd,X )
'−−→ XT . (4.3)

♥

To prove Lemma 4.3.7 we use the following result:

Proposition 4.3.8. [Lur09, Proposition 4.2.4.4.] Let A be a combinatorial simplicial model
category, C a small simplicial category and S a simplicial set equipped with an equivalence
C[S]

'−−→ C. Then the induced map

N∆([C,A]◦) −→ Fun(S,N∆(A◦))

is a categorical equivalence of simplicial sets. ♥

Remark 4.3.9. In Proposition 4.3.8 it does not matter whether we equip [C,A] with the injective,
projective or (if C is a Reedy category) with the Reedy model structure, since they are all Quillen
equivalent [Lur09, Remark A.2.9.23]. ♦

Proof (of Lemma 4.3.7). We specialize Proposition 4.3.8 to A := sSet and C := Ωop
π (seen as

a discrete simplicial category); we put S := N(Ωop
π ) = N∆(Ωop

π ) equipped with the adjunction
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counit C[N∆(Ωop
π )]

'−−→ Ωπ. We obtain an equivalence

N∆([Ωop
π , sSet]

◦
Reedy)

'−−→ Fun(N(Ωop
π ), S) (4.4)

of∞-categories. Passing to Bousfield localizations replaces the simplicial category [Ωop
π , sSet]◦Reedy

by the full subcategory of the new fibrant-cofibrant objects. Therefore the equivalence (4.4)
restricts to an equivalence between iOp := N∆([Ωop

π , sSet]◦iS) and some full subcategory of
Fun(N(Ωop

π ), S) whose objects are determined by the fibrancy conditions in the three localization
steps. Each of these steps corresponds precisely to one of the three conditions (invertibility,
Segal, completeness) in Lemma 4.3.7. �

We will now see that the completeness condition in Lemma 4.3.7 is redundant.

Lemma 4.3.10. An invertible Segal dendroidal space is automatically complete. ♥

Proof. Let X : N(Ωop
π ) → S be an invertible Segal space. We need to show that for each plane

rooted tree T ∈ Ωπ the map XT → Hom(Ωπ[T ] ⊗ Jd,X ) is a week equivalence. By invoking
the Segal condition and decomposing T along its interior edges we can reduce to the case where
T = C[n] is a corolla. The dendroidal set Ωπ[C[n]] ⊗ Jd is the dendroidal nerve of the operad

C[n]⊗BV

(
• ∼=−−→ •

)
(where ⊗BV denotes the tensor product of operads introduced by Boardman-

Vogt [BV73]), which admits the following explicit construction:
First, take two copies of the operad T = C[n], join them by (n + 1 many) new arrows (a.k.a.

1-ary operations) between the respective colors and require the resulting “square” to commute;
this constructs T ⊗BV [1]. Second, adjoin inverses to the new connecting arrows.
We can express this construction as the colimit of the following diagram:

η {0, 2} T+ T+
∐{0, 2} ∐

η

[3] {1, 2} C[n]

∐{1, 2} ∐
[3]

η {1, 3} ∐{1, 3} ∐
η

(4.5)

where T+ (resp. T+) are trees that arise from T by glueing an 1-corolla to the root (resp. an
1-corolla to each leaf); the maps {1, 2} ↪→ T+ and

∐{1, 2} ↪→ T+ are the inclusions of the new
vertices and the diagonal maps are the unique boundary preserving maps. Indeed, the triangle
in the middle describes8) the operad T ⊗ ∆1; the pieces on the outside add a left and a right
inverse to each of the new arrows.
Since X : N(Ωop

π ) → S is invertible, it maps almost all of the arrows in Diagram (4.5) to
equivalences; the only exceptions are the inclusions {1, 2} ↪→ T+ and

∐{1, 2} ↪→ T+. The map
T ⊗ Jd → T is described by the degeneracy maps T+ → T and T+ → T which contract the new
1-corollas; these are also sent to equivalences by X . Hence the map XT → Hom(Ωπ[T ]⊗ Jd,X )
is equivalent to the map XT → Hom(colim(η ↪→ T ←↩∐ η), X) which is an equivalence. �

Lemma 4.3.10 motivates the name “invertible Segal” (rather than “invertible complete Segal”)
in Definition 4.3.5 and completes the transition from Corollary 4.3.1 to Corollary 4.3.2.

8)This is analogous to the description of ∆1 ×∆1 as the pushout of ∆2 ←↩ ∆{0,2} ↪→ ∆2.
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