Lecture, V4B5 - Real and Harmonic Analysis, SS 2013

Introduction

We will discuss aspects of Fourier analysis/Real analysis/Harmonic analysis in more than one dimension that have to do with the rotational symmetry of Euclidean space. This is in part model for more general curvature related phenomena. This area has seen multifaceted developments since approximately 1970, and we plan to follow some of these developments more or less in chronolgical order. This will lead us to a caleidoscope of different techniques: originally these problems were approached mainly with Fourier analytic methods (we discuss work by Fefferman on ball multilier and Bochner Riesz, and work by Stein et al on Restriction theorems), but over time geometric methods became more dominant (we discuss Cordoba, Bourgain, Wolff on Kakeya type problems). Further breakthroughs came through introduction of arithmetic combinatorial methods (work by Bourgain, also Katz, Tao etc) and finally algebraic methods (Dvir, Guth). These topics are fundamental in mathematics and play into many other areas, very prominently into PDE of dispersive equations (consider for example the wave equationin Euclidean space, which has rotational symmetries and can be solved with the aid of the Fourier transform.)
Preparation: All students entering or already in the Master program at Bonn should be well prepared for this course, other students with similar preparation are welcome. We assume a solid understanding of basic Analysis topics from the Bachelor Program (at Bonn for example), in particular basic knowledge about the Fourier transform, Lp spaces. Students unsure about their preparation are welcome to contact me with questions.

Course credit

If you have achieved at least half of the points of the homework assignments in timely fashion, you will be allowed to register for an oral exam on the course. Upon passing the exam you will obtain credit for the course (module).

Books

A survey of the material in lecture series form can be found for example in the bock by Thomas Wolff "Lectures on harmonic analysis" or in recent lecture notes by Michael Bateman, https://www.dpmms.cam.ac.uk/~mdb59/. Obviously the original articles mentioned above are a good source of the material, and we will provide references to these as the course proceeds.

Papers discussed so far

  1. Fefferman, Charles: The multiplier problem for the ball. Ann. of Math. (2) 94 (1971), 330-336.
  2. Fefferman, Charles: A note on spherical summation multipliers. Israel J. Math. 15 (1973), 44-52.
  3. Cordoba, Antonio: The Kakeya maximal function and the spherical summation multipliers. Amer. J. Math. 99 (1977), no. 1, 1-22.
  4. Wolff, Thomas. An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoamericana 11 (1995), no. 3, 651-674.
  5. Bourgain, J. On the dimension of Kakeya sets and related maximal inequalities. Geom. Funct. Anal. 9 (1999), no. 2, 256-282.
  6. Katz, Nets Hawk; Tao, Terence Bounds on arithmetic projections, and applications to the Kakeya conjecture. Math. Res. Lett. 6 (1999), no. 5-6, 625-630.
  7. Dvir, Zeev; On the size of Kakeya sets in finite fields. J. Amer. Math. Soc. 22 (2009), no. 4, 1093-1097.
  8. Bennett, Jonathan; Carbery, Anthony; Tao, Terence; On the multilinear restriction and Kakeya conjectures. Acta Math. 196 (2006), no. 2, 261-302.
  9. Tomas, Peter A.; A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc. 81 (1975), 477-478.
  10. (Not Required for exam: Carbery, Anthony; Valdimarsson, Stefán Ingi: The endpoint multilinear Kakeya theorem via the Borsuk-Ulam theorem. J. Funct. Anal. 264 (2013), no. 7, 1643-1663.

Homework Assignments

  1. 1. Assigment due April 17. 2013
  2. 2. Assigment due April 24. 2013
  3. 3. Assigment due May 1. 2013
  4. 4. Assigment due May 8. 2013
  5. 5. Assigment due May 15. 2013
  6. 6. Assigment due June 5. 2013
  7. 7. Assigment due June 12. 2013
  8. 8. Assigment due June 19. 2013
  9. 9. Assigment due June 26. 2013
  10. 10. Assigment due July 3. 2013
  11. 11. Assigment due July 10. 2013
  12. 12. Assigment due July 17. 2013


Letzte Änderung: 1.7.2013

News


29./30.05.2020, 15 - 1 Uhr: Virtuelle Nacht der Mathematik

SWR2 WISSEN: Felix Hausdorff und das Wesen der Räume (mit Prof. Catharina Stroppel und Prof. Walter Purkert)

Corona-Virus: Maßnahmen im Mathematik-Zentrum

Corona-Virus: Fachbibliothek Mathematik ab 16.3. geschlossen, Prüfungen abgesagt,...

Prof. Georg Oberdieck erhält Heinz Maier-Leibnitz-Preise 2020

Hausdorff-Preis und Bachelorpreise der BMG für das akademische Jahr 2018/19 verliehen

Das Mathematische Institut trauert um Dr. Thorsten Wörmann

Prof. Daniel Huybrechts erhält gemeinsam mit Debarre, Macri und Voisin ERC Synergy Grant

Prof. Peter Scholze erhält Verdienstorden der Bundesrepublik Deutschland

Prof. Dr. Valentin Blomer wurde zum Mitglied der Academia Europaea gewählt

Prof. Jan Schröer erhält Lehrpreis der Fakultät 2018; Sonderpreis für Dr. Antje Kiesel

Prof. Peter Scholze erhält Fields-Medaille 2018

Prof. Stefan Schwede zum Fellow of the AMS gewählt

Bonner Mathematik im Shanghai-Ranking auf Platz 36 und bundesweit führend

Prof. Catharina Stroppel wurde zum Mitglied der Nationalen Akademie der Wissenschaften Leopoldina gewählt

Prof. Peter Scholze neuer Direktor am MPIM

Bonner Mathematik beim CHE-Ranking wieder in Spitzengruppe

Bonner Mathematik beim QS World University Ranking 2018 weltweit unter den TOP 50 platziert und bundesweit führend

Prof. Peter Scholze wurde zum Mitglied der Nationale Akademie der Wissenschaften Leopoldina und der Berlin-Brandenburgische Akademie der Wissenschaften gewählt.

Prof. Peter Scholze erhält den Gottfried Wilhelm Leibniz-Preis 2016

[de] [en]