Young Women in Representation Theory
June 2325, 2016
Home Participants Talks Poster exhibition Directions
Schedule
Thursday  Friday  Saturday  
8.45  9.15  Registration 

9.15  10.15  Lecture Idun Reiten 
Lecture Vanessa Miemietz 
Lecture Idun Reiten 
10.15  10.45  Coffee 
Coffee 
Coffee 
10.45  11.15  Talk Magdalena Boos 
Talk Tânia Silva 
Talk Lara Bossinger 
11.30  12.00  Talk Rosanna Laking 
Talk Asilata Baptat 
Talk Sira Gratz 
12.00  13.30  Lunch 
Lunch 
Snacks 
13.30  14.30  Lecture Vanessa Miemietz 
Lecture Idun Reiten 

14.30  17.00  Poster Coffee 
Poster Coffee 

17.00  17.30  Talk Hannah Keese 
Talk Viviana Gubitosi 

17.45  18.15  Talk Emily Norton 

19.00   Dinner 
Lecture series
Idun Reiten will give a lecture series on tilting theory and Vanessa Miemietz will give a lecture series on Hecke algebras and categorification.
List of talk abstracts
Magdalena Boos,
Title: A finiteness criterion for parabolic conjugation,
Abstract:
Let P be a parabolic upperblock subgroup of GLn(C). We look at the conjugationaction of P on the variety of nilpotent matrices in Lie(P).
Our main question is motivated by the study of commuting varieties and reads as follows:
"Does the mentioned Paction only admit a finite number of orbits?" We answer this question by developing a complete classification of finite actions.
The proof makes use of methods from Representation Theory of finitedimensional algebras and we sketch the main ideas and techniques. (Joint work with M. Bulois)
Rosanna Laking,
Title: The KrullGabriel dimension of a category,
Abstract:
In this talk we will consider categories of finitely presented functors from a module category to the category of abelian groups.
Such categories turn out to be a natural setting in which we may study the morphisms between finitely presented modules
and the KrullGabriel dimension can be seen as a measure of the complexity of the morphism structure in the module category.
It is calculated via iterated localisation of the functor category and we will give lots of examples in the context of finitedimensional algebras
in order to demonstrate how the KrullGabriel dimension effectively reflects the structure of the module category.
In particular I will report on joint work with K. Arnesen, D. Pauksztello, and M. Prest as well as joint work with M. Prest and G. Puninski.
Hannah Keese,
Title: A current algebra action on annular Khovanov homology,
Abstract:
A wellknown example of categorification is Khovanov homology, a homological invariant of knots and links that categorifies the Jones polynomial.
Constructions such as this one introduce algebraic structure that can be very interesting from the perspective of representation theory.
We will consider a modified Khovanov invariant, first introduced by Asaeda, Przytycki and Sikora, by restricting knots and links to a thickened annulus in $\mathbb{R}^3$ and
equipping the resulting chain complex with a Lie algebra action. The homology theory that this produces is an annular link invariant that not only tracks the usual $q$grading
of regular Khovanov homology but also has the structure of a truncated current algebra module. We will discuss the construction of annular Khovanov homology and the representation
theory of the associated current algebra. This is based on work by Grigsby, Licata and Wehrli.
Tânia Silva,
Title: Two different approaches to the representation theory of the symmetric group and the rook monoid,
Abstract:
There's a long history about the representation theory of the symmetric group and the rook monoid.
Since the 19th century many mathematicians contributed to this theories, where the Young diagrams always take an important role.
We'll try to resume the classic approach, which uses the Young symmetrizers and the Specht modules, and a more recent one which uses JucysMurphy elements and GelfandZetlin bases.
Asilata Bapat,
Title: GIT compactifications of CalogeroMoser spaces,
Abstract:
The CalogeroMoser space is a symplectic algebraic variety that deforms the Hilbert scheme of points on a plane.
It can be interpreted in many ways, for example as the parameter space of irreducible representations of a Cherednik algebra, or as a Nakajima quiver variety.
It has a partial compactification that can be described combinatorially using Schubert cells in a Grassmannian.
The aim of my talk is to introduce the CalogeroMoser space, and to describe some work in progress towards constructing another partial compactification using Geometric Invariant Theory (GIT).
Viviana Gubitosi,
Title: Derived class of $m$cluster tilted algebras of type A tilde,
Abstract:
In this talk we characterize all the finite dimensional algebras that are derived equivalent to an $m$−cluster tilted algebras of type A tilde.
Emily Norton,
Title: BGG resolutions for Cherednik algebras,
Abstract:
The existence of closed character formulas for certain simple modules in Category $O$ of a Cherednik algebra motivated us to look for resolutions of these simple modules by standard modules ("BGG resolutions").
We prove a general criterion for when every simple module in a block of a highest weight category has a BGG resolution.
Then we identify a class of examples satisfying our criterion in the Categories $O$ of rational Cherednik algebras of cyclotomic type. This is joint work with Stephen Griffeth.
Lara Bossinger,
Title: Toric degenerations in representation theory and beyond,
Abstract:
Toric degenerations can be applied to different objects with representation theoretic relevance such as Schubert varieties,
flag varieties and Grassmannains using a variety of approaches from combinatorics, Lie theory and cluster theory.
As an example I will give a classification of the toric degenerations for Gr(2,n) using combinatoric methods and explain a translation into cluster theory.
This is particularly interesting as it connects further to mirror symmetry and cluster duality.
Sira Gratz,
Title: Torsion pairs in discrete cluster categories of Dynkin type A,
Abstract:
Igusa and Todorov introduced discrete cluster categories of Dynkin type A, which generally are of infinite rank.
That is, their clusters contain infinitely many pairwise nonisomorphic indecomposable objects. In joint work with Holm and Joergensen we study torsion pairs in these categories and provide a combinatorial classification.
Cluster tilting subcategories, tstructures, and co tstructures are all particular instances of torsion pairs and from our classification we are able to describe each of these classes.
In particular, there are no nontrivial co tstructures but, contrary to the finite case, there are a number of interesting tstructures.
Last update: 19.07.2016
News
Das Mathematische Institut trauert um Dr. Thorsten Wörmann
Prof. Daniel Huybrechts erhält gemeinsam mit Debarre, Macri und Voisin ERC Synergy Grant
HausdorffKolloquium im WS 2019/20
Toeplitz Kolloquium zur "Didaktik und Geschichte der Mathematik" im WS 2019/20
Berufspraktisches Kolloquium im WS 2019/20
Prof. Peter Scholze erhält Verdienstorden der Bundesrepublik Deutschland
Prof. Dr. Valentin Blomer wurde zum Mitglied der Academia Europaea gewählt
Prof. Jan Schröer erhält Lehrpreis der Fakultät 2018; Sonderpreis für Dr. Antje Kiesel
Prof. Peter Scholze erhält FieldsMedaille 2018
Prof. Stefan Schwede zum Fellow of the AMS gewählt
Bonner Mathematik im ShanghaiRanking auf Platz 36 und bundesweit führend
Prof. Peter Scholze neuer Direktor am MPIM
Bonner Mathematik beim CHERanking wieder in Spitzengruppe
Prof. Peter Scholze erhält den Gottfried Wilhelm LeibnizPreis 2016