Bonn Topology Group - Abstracts
General Information - Members - Activities - Topology Seminar
Talk
April 26, 2022
Kent Orr (Indiana University): Knot invariants and metabelian groups
Abstract
Metabelian knot group quotients reveal more than expected concerning 3-manifolds, knot concordance, and homology cobordism of 3-manifolds. For instance, every closed 3-manifold is a 3-fold dihedral cover branched over a knot. Metabelian invariants of knot concordance, especially Casson-Gordon invariants, provide slicing obstructions via L2 and classical signatures. In this talk, I introduce and explore a new and easily computable invariant which provides necessary and sufficient conditions for a metabelian knot group quotient to extend over the group of an orientable, locally flat surface exterior in D4. These results hold both topologically and smoothly. I will establish numerous, perhaps surprising, equivalent characterizations of this invariant.
Back to seminar page
News
The Mathematical Institute mourns Günter Harder
Floris van Doorn and coauthors receive the Skolem Award
Hausdorff Center for Mathematics receives 7 additional years of funding
Markus Hausmann receives Minkwoski medal of the DMV
Rajula Srivastava receives Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory receives Breakthrough Prize in Mathematics 2025
Daniel Huybrechts elected as member of Leopoldina
Catharina Stroppel appointed Honorary Doctor at Uppsala University
Angkana Rüland receives Gottfried Wilhelm Leibniz Prize 2025
Wolfgang Lück receives the von Staudt Prize
Gerd Faltings elected member of the Order Pour le Mérite
Geordie Williamson receives the Max Planck-Humboldt Research Award 2024