Bonn Topology Group - Abstracts
General Information - Members - Activities - Topology Seminar
Talk
November 27th 2018
Lukas Lewark (Universität Bern, Switzerland): Linking pairings and unknotting numbers
Abstract
The unknotting number of a knot is the minimum number of crossing changes necessary to transform the knot into a trivial knot. It's a classical and rather intractable knot invariant. We'll discuss a variation thereof: the minimum number n such that the knot can be transformed into a knot with trivial Alexander polynomial by n positive and n negative crossing changes. We'll see that this knot invariant can equivalently be characterized in terms of the Blanchfield form, and also as minimal genus of certain surfaces in the 4-ball that co-bound the knot. Finally, we'll discuss lower bounds for this invariant coming from the linking pairings of cyclic branched coverings. The talk is based on work in progress with Peter Feller.
Back to seminar page
News
The Mathematical Institute mourns Günter Harder
Floris van Doorn and coauthors receive the Skolem Award
Hausdorff Center for Mathematics receives 7 additional years of funding
Markus Hausmann receives Minkwoski medal of the DMV
Rajula Srivastava receives Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory receives Breakthrough Prize in Mathematics 2025
Daniel Huybrechts elected as member of Leopoldina
Catharina Stroppel appointed Honorary Doctor at Uppsala University
Angkana Rüland receives Gottfried Wilhelm Leibniz Prize 2025
Wolfgang Lück receives the von Staudt Prize
Gerd Faltings elected member of the Order Pour le Mérite
Geordie Williamson receives the Max Planck-Humboldt Research Award 2024