V5B4 Selected Topics in PDE and Mathematical Models - Dispersive Equations
Wintersemester 2017/2018
Instructor: Dr. Xian Liao
Lectures:
Topics: We will focus on the mathematical theory of nonlinear Schrödinger equations (NLS)
- Well-posedness issue of (NLS)
- - Local & Global well-posedness in L2 / H1, by use of Strichartz estimates & Sobolev embedding & conservation laws
- Long time behaviour of the solutions of (NLS)
- - Blowup & Scattering, by use of Virial & Morawetz idenities
- Solitary waves of (NLS)
- - Orbital stability, by use of variational description & concentration-compactness
- Conserved energies for one dimensional cubic (NLS)
- - Conserved energies, by use of invariant transmission coefficient
Prerequisites:
References:
- T. Cazenave: Semilinear Schrödinger equations.
- F. Linares, G. Ponce: Introduction to nonlinear dispersive equations.
- T. Tao: Nonlinear dispersive equations - local and global analysis.
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T.Tao: The theory of nonlinear Schödinger equations.
- H. Koch, D. Tataru: Conserved energies for the cubic NLS in 1-d.
Oral Exams: 31.01.2018 & 21.03.2018
Aktuelles
Abel in Bonn: Abel Symposium 2025
Wolfgang Lück erhält den von Staudt-Preis
Gerd Faltings in den Orden pour le mérite aufgenommen
Geordie Williamson erhält den Max-Planck-Humboldt Forschungspreis 2024
ERC Starting Grant für Markus Hausmann
EMS-Preis 2024 für Jessica Fintzen
Bonner Mathematik schneidet bei QS-Ranking wieder hervorragend ab
Stefan Schwede eingeladener Sprecher auf dem ECM 2024 in Sevilla
Cole Prize für Jessica Fintzen
Catharina Stroppel erhält Gottfried Wilhelm Leibniz-Preis 2023
Jessica Fintzen erhält einen Whitehead Prize der London Mathematical Society