Introduction Program Talks & posters Participants Practical Info
Young Women in Harmonic Analysis and PDE
December 2-4, 2016
Kristina Ana Škreb (University of Zagreb)
Bellman functions and $L^p$ estimates for paraproducts
We regard dyadic paraproducts as trilinear forms. Even though they are well-known to satisfy $L^p$ estimates in the whole Banach range of exponents, one might want to give a direct proof or study the behavior of the constants. We find an explicit formula for one possible Bellman function associated with the $L^p$ boundedness of dyadic paraproducts in the spirit of the Bellman function by Nazarov, Treil, and Volberg. Then we apply the same Bellman function in various other settings, to give self-contained alternative proofs of the estimates for several classical operators. These include the martingale paraproducts of Bañuelos and Bennett and the paraproducts with respect to the heat flows. This is a joint work with Vjekoslav Kovač (University of Zagreb).
News
Rajula Srivastava receives Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory receives Breakthrough Prize in Mathematics 2025
Daniel Huybrechts elected as member of Leopoldina
Catharina Stroppel appointed Honorary Doctor at Uppsala University
Angkana Rüland receives Gottfried Wilhelm Leibniz Prize 2025
Wolfgang Lück receives the von Staudt Prize
Gerd Faltings elected member of the Order Pour le Mérite
Geordie Williamson receives the Max Planck-Humboldt Research Award 2024
ERC Starting Grant for Markus Hausmann
EMS Prize 2024 for Jessica Fintzen
Bonn mathematics performs excellently again in QS ranking
Stefan Schwede is invited speaker at the ECM 2024 in Sevilla
Jessica Fintzen wins Cole Prize
Catharina Stroppel receives Gottfried Wilhelm Leibniz Prize 2023