Introduction Program Talks & posters Participants Practical Info
Young Women in Harmonic Analysis and PDE
December 2-4, 2016
Kristina Ana Škreb (University of Zagreb)
Bellman functions and $L^p$ estimates for paraproducts
We regard dyadic paraproducts as trilinear forms. Even though they are well-known to satisfy $L^p$ estimates in the whole Banach range of exponents, one might want to give a direct proof or study the behavior of the constants. We find an explicit formula for one possible Bellman function associated with the $L^p$ boundedness of dyadic paraproducts in the spirit of the Bellman function by Nazarov, Treil, and Volberg. Then we apply the same Bellman function in various other settings, to give self-contained alternative proofs of the estimates for several classical operators. These include the martingale paraproducts of Bañuelos and Bennett and the paraproducts with respect to the heat flows. This is a joint work with Vjekoslav Kovač (University of Zagreb).
Aktuelles
Rajula Srivastava erhält den Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory erhält den Breakthrough Prize in Mathematics 2025
Daniel Huybrechts zum Mitglied der Leopoldina gewählt
Catharina Stroppel erhält Ehrendoktorwürde der Universität Uppsala
Angkana Rüland erhält Gottfried Wilhelm Leibniz-Preis 2025
Wolfgang Lück erhält den von Staudt-Preis
Gerd Faltings in den Orden pour le mérite aufgenommen
Geordie Williamson erhält den Max-Planck-Humboldt Forschungspreis 2024
ERC Starting Grant für Markus Hausmann
EMS-Preis 2024 für Jessica Fintzen
Bonner Mathematik schneidet bei QS-Ranking wieder hervorragend ab
Stefan Schwede eingeladener Sprecher auf dem ECM 2024 in Sevilla
Cole Prize für Jessica Fintzen
Catharina Stroppel erhält Gottfried Wilhelm Leibniz-Preis 2023