Introduction Program Talks & posters Participants Practical Info
Young Women in Harmonic Analysis and PDE
December 2-4, 2016
Jasmina Veta Buralieva (University Goce Delcev, Stip)
Abelian results for the directional short-time Fourier transform
(joint work with K. Hadzi-Velkova Saneva and S. Atanasova)
We study the directional short-time Fourier transform (DSTFT) of Lizorkin distributions. DSTFT on the space $L^{1}(\mathbb R^{n}) $ was introduced and investigated by Giv in [4]. Saneva and Atanasova extended this transform on the space of tempered distributions [5]. Here, we analyze the continuity of the DSTFT on the closed subspace of $ \mathcal S(\mathbb R^{n}) $, i.e. on the space $ \mathcal S_{0}(\mathbb R^{n}) $ of highly time-frequency localized functions over $ \mathbb R^{n} $. We also prove the countinuity of the directional synthesis operator on the space $ \mathcal S(\mathbb Y^{2n}) $. Using the obtained continuity results, we will define the DSTFT on space $ \mathcal S'_{0}(\mathbb R^{n}) $ of Lizorkin distributions, and prove an Abelian type result for this transform.
Keywords: (Directional short-time Fourier transform, distributions, quasiasymptotic behavior, Abelian theorems.)
References:
[1] F. Treves: Topological vector spaces, distributions and kernels, Academic press, New York-London, 1967.
[2] L. Schwartz: Theorie des distributions a valeurs vectorielles. I, Ann.Inst. Fourier Grenpble 7 (1957), 1-141.
[3] J. Sebastiao e Silva: Sur la definition et la structure des distributions vectorielles, Portugal. Math 19 (1960), 1-80.
[4] H.H. Giv: Directional short-time Fourier transform, J. Math. Anal. Appl. 399 (2013), 100-107.
[5] K. Hadzi-Velkova Saneva, S. Atanasova: Directional short-time Fourier transform of distributions, J. of Inequaility and Appl. Vol. 124, no.1, 2016, 1-10.
[6] S. Kostadinova, S. Pilipović, K. Hadzi-Velkova Saneva and J. Vindas: The ridglet transform of distribution., Integral transforms Spec. Func. Vol. 25, No. 5, 2014, 344-358.
[7] S. Kostadinova, S. Pilipović, K. Hadzi-Velkova Saneva and J. Vindas: The ridglet transform of distribution and quasiasymptotic behaviour of distributions., Operator Theory: Advances and Applications, Vol. 245, 2015, 183-195.
[8] S. Pilipović, J. Vindas: Multideimensional Tauberian theorems for vector-valued distributions, Publ. Inst. Math. (Beograd), Publications de l'institut mathematique, Nouvelle serie, tome 95 (109) (2014), 1?28.
[9] S. Pilipović, B. Stanković and J. Vindas: Asymptotic behavior of generalized functions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
[10] K. Saneva, R. Aceska, S. Kostadinova: Some Abelian and Tauberian results for the short-time Fourier transform, Novi Sad Journal of Math., Vol. 43, No. 2, 2013, 81-89.
News
Rajula Srivastava receives Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory receives Breakthrough Prize in Mathematics 2025
Daniel Huybrechts elected as member of Leopoldina
Catharina Stroppel appointed Honorary Doctor at Uppsala University
Angkana Rüland receives Gottfried Wilhelm Leibniz Prize 2025
Wolfgang Lück receives the von Staudt Prize
Gerd Faltings elected member of the Order Pour le Mérite
Geordie Williamson receives the Max Planck-Humboldt Research Award 2024
ERC Starting Grant for Markus Hausmann
EMS Prize 2024 for Jessica Fintzen
Bonn mathematics performs excellently again in QS ranking
Stefan Schwede is invited speaker at the ECM 2024 in Sevilla
Jessica Fintzen wins Cole Prize
Catharina Stroppel receives Gottfried Wilhelm Leibniz Prize 2023