Introduction Program Talks & posters Participants Practical Info
Young Women in Harmonic Analysis and PDE
December 2-4, 2016
María Guadalupe Morales Macías (Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán)
An extension of some properties for the Fourier Transform operator on $L^{p}(\mathbb{R})$ spaces
In this work the Fourier Transform is studied using the Henstock-Kurzweil integral on $\mathbb{R}$. We obtain that the classical Fourier Transform $\mathcal{F}_{p}: L^{p}(\mathbb{R})\rightarrow L^{q}(\mathbb{R})$, $1/p+1/q=1$ and $1 < p \leq 2$, is represented by the integral on a subspace of $L^{p}(\mathbb{R})$, which strictly contains $L^{1}(\mathbb{R})\cap L^{p}(\mathbb{R})$. Moreover, for any function $f$ in that subspace, $\mathcal{F}_{ p} (f)$ obeys a generalized Riemann-Lebesgue Lemma.
News
The Mathematical Institute mourns Günter Harder
Floris van Doorn and coauthors receive the Skolem Award
Hausdorff Center for Mathematics receives 7 additional years of funding
Markus Hausmann receives Minkwoski medal of the DMV
Rajula Srivastava receives Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory receives Breakthrough Prize in Mathematics 2025
Daniel Huybrechts elected as member of Leopoldina
Catharina Stroppel appointed Honorary Doctor at Uppsala University
Angkana Rüland receives Gottfried Wilhelm Leibniz Prize 2025
Wolfgang Lück receives the von Staudt Prize
Gerd Faltings elected member of the Order Pour le Mérite
Geordie Williamson receives the Max Planck-Humboldt Research Award 2024