Introduction Program Talks & posters Participants Practical Info
Young Women in Harmonic Analysis and PDE
December 2-4, 2016
Taryn C. Flock (University of Birmingham)
A sharp $k$-plane Strichartz inequality for the Schrödinger equation
We explore a natural interplay between the solution to the time-dependent free Schrödinger equation on $\mathbb{R}^d$ and the (spatial) $k$-plane transform for $1\leq k\leq d-1$. A first result is that $$\|X(|u|^2)\|_{L^3_{t,\ell}}\leq C\|f\|_{L^2(\mathbb{R}^2)}^2,$$ where $u(x,t)$ is the solution to the linear time-dependent Schrödinger equation on $\mathbb{R}^2$ with initial datum $f$, and $X$ is the X-ray transform on $\mathbb{R}^2$. In particular, we identify the best constant $C$ and show that a datum $f$ is an extremiser if and only if it is an isotropic centered gaussian. We also establish bounds of this type in higher dimensions $d$, where the X-ray transform is replaced by the $k$-plane transform for any $1\leq k\leq d-1$. In the process we obtain sharp $L^2(\mu)$ bounds on Fourier extension operators associated with certain high-dimensional spheres, involving measures $\mu$ supported on natural "co-$k$-planarity" sets.
Aktuelles
Rajula Srivastava erhält den Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory erhält den Breakthrough Prize in Mathematics 2025
Daniel Huybrechts zum Mitglied der Leopoldina gewählt
Catharina Stroppel erhält Ehrendoktorwürde der Universität Uppsala
Angkana Rüland erhält Gottfried Wilhelm Leibniz-Preis 2025
Wolfgang Lück erhält den von Staudt-Preis
Gerd Faltings in den Orden pour le mérite aufgenommen
Geordie Williamson erhält den Max-Planck-Humboldt Forschungspreis 2024
ERC Starting Grant für Markus Hausmann
EMS-Preis 2024 für Jessica Fintzen
Bonner Mathematik schneidet bei QS-Ranking wieder hervorragend ab
Stefan Schwede eingeladener Sprecher auf dem ECM 2024 in Sevilla
Cole Prize für Jessica Fintzen
Catharina Stroppel erhält Gottfried Wilhelm Leibniz-Preis 2023