Arbeitsgruppe Analysis und Partielle Differentialgleichungen
V5B2 - Selected Topics in Analysis and PDE - Dispersive PDEs: deterministic and probabilistic perspectives
Summer Semester 2021
- Dr. Leonardo Tolomeo
- Instructor
Lectures
- Tue 14-16 on zoom
Every Tuesday there will be a lecture, taking place on Zoom. The handwritten notes taken during the lectures will be made available on this website. Recordings of the lectures are available, please contact Dr. Tolomeo via email if you are interested. For convenience, the recording of lecture 1 (and only lecture 1) is available on this page.
- Notes of lecture 1, Recording of Lecture 1,
- Notes of lecture 2,
- Notes of lecture 3,
- Notes of lecture 4,
- Notes of lecture 5,
- Notes of lecture 6,
- Notes of lecture 7,
- Notes of lecture 8,
- Notes of lecture 9,
- Notes of lecture 10,
- Notes of lecture 11,
- Notes of lecture 12,
- Notes of lecture 13.
The information about the zoom session can be found on Basis.
Topics
This course aims at providing the basis for the study of dispersive equations, both in the deterministic setting, and in the probabilistic one. Our goal is to show how probabilistic effects affect the behaviour of these equations, greatly improving the results available. We will cover1. Strichartz estimates for Schrödinger and wave equations.
2. Local well posedness theory Schrödinger and wave equations in subcritical Sobolev spaces H^s.
3. Global well posedness theory for Schrödinger and wave equations in H^1.
4. Ill posedness in supercritical Sobolev spaces.
5. Local well posedness in supercritical Sobolev spaces for random initial data.
6. Global well posedness for random initial data.
If time allows, we will also discuss some features of the associated stochastic PDEs.
Prerequisites
Analysis: basic real and complex analysis, basic knowledge of Fourier analysis.Probability: measure theoretical approach to probability, Gaussian random variables, independence.
Literature
- L. Grafakos, Classical and modern Fourier analysis.
- T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis.
- M. Gubinelli, T. Souganidis, N. Tzvetkov, Singular Random Dynamics, Chapter 4.
Aktuelles
Rajula Srivastava erhält den Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory erhält den Breakthrough Prize in Mathematics 2025
Daniel Huybrechts zum Mitglied der Leopoldina gewählt
Catharina Stroppel erhält Ehrendoktorwürde der Universität Uppsala
Angkana Rüland erhält Gottfried Wilhelm Leibniz-Preis 2025
Wolfgang Lück erhält den von Staudt-Preis
Gerd Faltings in den Orden pour le mérite aufgenommen
Geordie Williamson erhält den Max-Planck-Humboldt Forschungspreis 2024
ERC Starting Grant für Markus Hausmann
EMS-Preis 2024 für Jessica Fintzen
Bonner Mathematik schneidet bei QS-Ranking wieder hervorragend ab
Stefan Schwede eingeladener Sprecher auf dem ECM 2024 in Sevilla
Cole Prize für Jessica Fintzen
Catharina Stroppel erhält Gottfried Wilhelm Leibniz-Preis 2023