Introduction Program Talks & posters Participants Practical Info
Young Women in Harmonic Analysis and PDE
December 2-4, 2016
Marco Fraccaroli (University of Bonn)
On distributions with full $GL_{2}(\mathbb{R})$ dilation symmetry
The tempered distribution in $\mathbb{R}^{4}$
\[
\Lambda(\varphi) := \text{p.v.} \int_{\mathbb{R}^{4}} \frac{1}{\text{det}(x \ y)} \varphi(x,y) \ dx dy,
\]
arises in a recent paper by Gressman, He, Kovač, Street, Thiele, Yung, where $x,y \in \mathbb{R}^{2}$ and the principal value is taken as $\text{det}(x \ y)$ goes to 0. It satisfies the following invariance property:
For a matrix $A \in GL_{2}(\mathbb{R})$ define the transform
\[
D_{A}^{1} \varphi (x,y) := \frac{1}{\text{det } A} \varphi (A^{-1}x,A^{-1}y)
\]
for every $\varphi \in \mathcal{S}(\mathbb{R}^{4})$. Then for every $A$ and $\varphi$ as above
\[
\Lambda(D_{A}^{1}\varphi)=\Lambda(\varphi).
\]
Motivated by this we want to classify all the tempered distributions in $\mathbb{R}^{4}$ satisfying the $D_{A}^{\alpha}$-invariance property for matrices with positive determinant (where $\alpha$ identify the exponent of $({\text{det } A}^{-1})$ in the definition of $D_{A}^{\alpha} \varphi$) and distinguish them according to their behaviour against a matrix with determinant -1, namely one of the two possible invariances of the form
\[
\Lambda (\varphi(x_{1},-x_{2},y_{1},-y_{2}))=\pm \Lambda(\varphi(x,y)).
\]
Aktuelles
Das Mathematische Institut trauert um Günter Harder
Floris van Doorn und Koautoren erhalten den Skolem Award
Förderung des Hausdorff Centers for Mathematics für weitere 7 Jahre verlängert
Markus Hausmann erhält die Minkowski-Medaille der Deutschen Mathematiker-Vereinigung
Rajula Srivastava erhält den Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory erhält den Breakthrough Prize in Mathematics 2025
Daniel Huybrechts zum Mitglied der Leopoldina gewählt
Catharina Stroppel erhält Ehrendoktorwürde der Universität Uppsala
Angkana Rüland erhält Gottfried Wilhelm Leibniz-Preis 2025
Wolfgang Lück erhält den von Staudt-Preis
Gerd Faltings in den Orden pour le mérite aufgenommen
Geordie Williamson erhält den Max-Planck-Humboldt Forschungspreis 2024