Introduction Program Talks & posters Participants Practical Info
Young Women in Harmonic Analysis and PDE
December 2-4, 2016
Judith Campos Cordero (University of Augsburg)
Regularity and uniqueness of minimizers in the quasiconvex case
In the context of integral functionals defined over a Sobolev class of the type $W^{1,p}_g(\Omega,\mathbb{R}^N)$, with $N\geq 1$, the quasiconvexity of the integrand is known to be equivalent to the lower semicontinuity of the functional. In this context, L.C. Evans showed in 1986 that the minimizers are regular outside a subset of their domain of measure zero. On the other hand, E. Spadaro recently provided examples showing that no uniqueness of minimizers can be expected even under strong quasiconvexity assumptions. In this talk we present some results stating that, under the same natural assumptions on the integrand, if the boundary conditions are suitably small, it is possible to obtain full regularity (up to the boundary) for the minimizers and, furthermore, they are unique. This is joint work with Jan Kristensen.
Aktuelles
Das Mathematische Institut trauert um Günter Harder
Floris van Doorn und Koautoren erhalten den Skolem Award
Förderung des Hausdorff Centers for Mathematics für weitere 7 Jahre verlängert
Markus Hausmann erhält die Minkowski-Medaille der Deutschen Mathematiker-Vereinigung
Rajula Srivastava erhält den Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory erhält den Breakthrough Prize in Mathematics 2025
Daniel Huybrechts zum Mitglied der Leopoldina gewählt
Catharina Stroppel erhält Ehrendoktorwürde der Universität Uppsala
Angkana Rüland erhält Gottfried Wilhelm Leibniz-Preis 2025
Wolfgang Lück erhält den von Staudt-Preis
Gerd Faltings in den Orden pour le mérite aufgenommen
Geordie Williamson erhält den Max-Planck-Humboldt Forschungspreis 2024