Introduction Program Talks & posters Participants Practical Info
Young Women in Harmonic Analysis and PDE
December 2-4, 2016
Judith Campos Cordero (University of Augsburg)
Regularity up to the boundary and sufficient conditions for strong local minimality
The question of finding suitable conditions to guarantee that a given map minimizes a functional is a fundamental problem in the Calculus of Variations. It was first solved by Weierstrass in the scalar case and, after developments from Hestenes [5], Taheri [9], Zhang [10], Kristensen & Taheri [8], etc., Grabovsky & Mengesha [7] finally solved the problem for the vectorial case. Their result is framed under the natural quasiconvexity assumptions. It establishes that $C^1$-extremals at which the second variation is strictly positive are, in fact, strong local minimizers. This settled affirmatively a conjecture by Ball [1], according to which a set of sufficient conditions should be based on the notion of quasiconvexity.
In this work we present a new proof of the seminal result by Grabovsky & Mengesha. Furthermore, we introduce a full regularity result (up to the boundary), which aims at relaxing the a priori regularity assumption on the extremal. This is in deep connection with further recent results regarding partial boundary regularity for strong local minimizers [3].
References:
[1] J. M. Ball. The calculus of variations and materials science. Quart. Appl. Math., 56(4):719-740, 1998. Current and future challenges in the applications of mathematics (Providence, RI, 1997).
[2] J. M. Ball and J. E. Marsden. Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Rational Mech. Anal. 1984.
[3] J. Campos Cordero. Boundary regularity and sufficient conditions for strong local minimizers. Preprint: https://arxiv.org/abs/1605.01614
[4] J. Campos Cordero and K. Koumatos. Necessary and sufficient conditions for strong local minimizers on non-smooth domains. Preprint: https://arxiv.org/abs/1603.07626
[5] M. R. Hestenes. Sufficient conditions for multiple integral problems in the calculus of variations. Amer. J. Math., 70:239-276, 1948.
[6] L. C. Evans. Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal., 95(3):227-252, 1986.
[7] Y. Grabovsky and T. Mengesha. Sufficient conditions for strong local minimal: the case of $C^1$ extremals. Trans. Amer. Math. Soc., 361(3):1495-1541, 2009.
[8] J. Kristensen and A. Taheri. Partial regularity of strong local minimizers in the multi-dimensional Calculus of Variations. Arch. Ration. Mech. Anal., 170(1):63-89, 2003.
[9] A. Taheri. Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations. Proc. Roy. Soc. Edin, A 131:155-184, 2001.
[10] K. Zhang. Remarks on quasiconvexity and stability of equilibria for variational integrals. Proc. Amer. Math. Soc. 1992.
Aktuelles
Rajula Srivastava erhält den Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory erhält den Breakthrough Prize in Mathematics 2025
Daniel Huybrechts zum Mitglied der Leopoldina gewählt
Catharina Stroppel erhält Ehrendoktorwürde der Universität Uppsala
Angkana Rüland erhält Gottfried Wilhelm Leibniz-Preis 2025
Wolfgang Lück erhält den von Staudt-Preis
Gerd Faltings in den Orden pour le mérite aufgenommen
Geordie Williamson erhält den Max-Planck-Humboldt Forschungspreis 2024
ERC Starting Grant für Markus Hausmann
EMS-Preis 2024 für Jessica Fintzen
Bonner Mathematik schneidet bei QS-Ranking wieder hervorragend ab
Stefan Schwede eingeladener Sprecher auf dem ECM 2024 in Sevilla
Cole Prize für Jessica Fintzen
Catharina Stroppel erhält Gottfried Wilhelm Leibniz-Preis 2023