Introduction Program Talks & posters Participants Practical Info
Young Women in Harmonic Analysis and PDE
December 2-4, 2016
Cristina Benea (Université de Nantes, LMJL)
On Rubio de Francia's Theorem for arbitrary Fourier projections
In [2], Rubio de Francia proved that disjointness in frequency is enough for establishing a one-dimensional orthogonality principle. That is,
\begin{equation}
\label{RF:thm}
\big|\ \big( \sum_{k} \big| \int_{\mathbb{R}} \hat{f}(\xi) \mathbf{1}_{\left[a_k, b_k \right]}(\xi) e^{2 \pi i x \xi} d \xi \big|^\nu \big)^{1/\nu} \big\|_p \leq C \|f\|_p,
\end{equation}
whenever the intervals $\left[ a_k, b_k\right]$ are mutually disjoint, $\nu > 2$ and $p > \nu'$ or $\nu =2$ and $p \geq 2$. Moreover, the constant $C$ does not depend on the choice of intervals.
In the bilinear setting, a similar, one-parameter question can be formulated: given an arbitrary collection $\Omega$ of mutually disjoint squares, prove that
\begin{equation}
\label{RF-squares}
\big\| \big( \sum_{\omega \in \Omega} \big| \int_{\mathbb{R}^2} \hat{f}(\xi) \hat{g}(\eta) \Phi_\omega(\xi, \eta) e^{2 \pi i x \left(\xi+\eta\right)} d \xi d \eta\big|^r \big)^{1/r} \big\|_s \leq C \|f\|_p \|g\|_q,
\end{equation}
whenever $\frac{1}{p}+\frac{1}{q}=\frac{1}{s}$ and $p, q, s$ are in the ``local $r'$" range. While $r$ needs to be $\geq 2$, just like in the linear case, we were able to prove the above result only for $r>2$. This is joint work with F. Bernicot.
References
[1] C. Benea, F. Bernicot,
A bilinear Rubio de Francia inequality for arbitrary squares, available at
http://arxiv.org/abs/1602.01948
[2] J. Rubio de Francia
A Littlewood-Paley Inequality for Arbitrary Intervals,
Revista Matematica Iberoamericana, 1985
Aktuelles
Rajula Srivastava erhält den Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory erhält den Breakthrough Prize in Mathematics 2025
Daniel Huybrechts zum Mitglied der Leopoldina gewählt
Catharina Stroppel erhält Ehrendoktorwürde der Universität Uppsala
Angkana Rüland erhält Gottfried Wilhelm Leibniz-Preis 2025
Wolfgang Lück erhält den von Staudt-Preis
Gerd Faltings in den Orden pour le mérite aufgenommen
Geordie Williamson erhält den Max-Planck-Humboldt Forschungspreis 2024
ERC Starting Grant für Markus Hausmann
EMS-Preis 2024 für Jessica Fintzen
Bonner Mathematik schneidet bei QS-Ranking wieder hervorragend ab
Stefan Schwede eingeladener Sprecher auf dem ECM 2024 in Sevilla
Cole Prize für Jessica Fintzen
Catharina Stroppel erhält Gottfried Wilhelm Leibniz-Preis 2023