Reading Seminar:
Geometric Invariant Theory and Nakajima's Quiver Varieties
The seminar takes place on Fridays from 10am - 12am in the seminar room at the MPIM.
List of talks:
The current distribution of talks is given below.
Invariant Theory:
1. Classical Invariant Theory: Marc
  Goal: Present examples of classical invariant theory of matrices and quiver representations, [Schmitt, Section 1.3]
2. Quotients: Thorge
  Goal: Definition and Constructions of quotients, [Schmitt, Section 1.4]
3./4. Stability and Hilbert-Mumford Criterium: Jacinta / Joanna
  Goal: Definition of stability and proof of the criterium, [Schmitt, Section 1.5.1]
5. Quiver Moduli: Gustavo
  Goal: Present quiver moduli following King, [Schmitt, Section 1.5.1], [King]
6. Classical Moduli Problems: Hans
  Goal: Explain one or two classcial moduli problems, [Mumford, Chapter 4]
Quiver Varities:
7. Symplectic Geometry: David
  Goal: Explain hamiltonian reduction and relation to GIT quotients, [Ginzburg, Section 4.1], [Kirwan, Chapters 6-8]
8. Lusztig's Quiver Varieties I: Johannes
  Goal: Explain definitions and first properties, see Theorem 4.5.6 in Ginzburg, [Ginzburg, Section 4.2-4.5]
9. Lusztig's Quiver Varieties II: Catharina / Sheng
  Goal: Explain the construction of quantum groups using quiver varieties, [Lusztig]
10./11. Nakajima's Quiver Varieties I: Bea / Arik
  Goal: Explain definitions and first properties, see Theorem 5.2.2 in Ginzburg, [Ginzburg, Section 5.1-5.3]
12. Nakajima's Quiver Varieties II: Dyhan
  Goal: Explain the construction of the lagrangian subvarieties and their properties, [Ginzburg, Section 5.4]
13. Convolution: Tomasz
  Goal: Explain convolution both of functions and Borel-Moore homology, [Ginzburg, Section 6]
14. Nakajima's Quiver Varieties III: Michael
  Goal: Explain constructions of Lie algebras and highest weight modules using quiver varieties, [Ginzburg, Section 7]
References:
The following is a list of references for the seminar.
[Ginzburg] V. Ginzburg, Lectures of Nakajima's Quiver Varieties
[King] A.D. King, Moduli of Representations of Finite Dimensional Algebras
[Kirwan] F.C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry
[Lusztig] G. Lusztig, Constructible functions on varieties attached to quivers
[Schmitt] A.H.W. Schmitt, Geometric Invariant Theory and Decorated Principal Bundles
Aktuelles
Das Mathematische Institut trauert um Günter Harder
Floris van Doorn und Koautoren erhalten den Skolem Award
Förderung des Hausdorff Centers for Mathematics für weitere 7 Jahre verlängert
Markus Hausmann erhält die Minkowski-Medaille der Deutschen Mathematiker-Vereinigung
Rajula Srivastava erhält den Maryam Mirzakhani New Frontiers Prize
Dennis Gaitsgory erhält den Breakthrough Prize in Mathematics 2025
Daniel Huybrechts zum Mitglied der Leopoldina gewählt
Catharina Stroppel erhält Ehrendoktorwürde der Universität Uppsala
Angkana Rüland erhält Gottfried Wilhelm Leibniz-Preis 2025
Wolfgang Lück erhält den von Staudt-Preis
Gerd Faltings in den Orden pour le mérite aufgenommen
Geordie Williamson erhält den Max-Planck-Humboldt Forschungspreis 2024