Abstracts
An application of TQFT to a question of Ivanov
Gregor Masbaum (IMJPRG/MPIM)
Abstract: We use TQFT to compute the intersection of all maximal
finite index subgroups of the mapping class group of an orientable
surface. This partially answers a question of Ivanov, who was
motivated by the famous open question whether mapping class groups are
linear. (Joint work with A. Reid.)
Sphere boundaries of hyperbolic groups
Nir Lazarovich (ETH)
Abstract: We show that the boundary of a oneended simply connected at
infinity hyperbolic group with enough codimension1 surface subgroups is
homeomorphic to a sphere. By works of Markovic and KahnMarkovic our result
gives a new characterization of groups which are virtually fundamental
groups of hyperbolic 3manifolds. Joint work with B. Beeker.
Curve and arc graphs for infinite type surfaces
Hugo Parlier (Fribourg)
Abstract: Curve, arc and pants graphs have been useful tools for studying
the large scale geometry of Teichmüller spaces and mapping class groups for
finite surfaces. This talk will be about ways to define and study analogous
objects for infinite type surfaces.
Based on joint work with J. Aramayona and A. Fossas.
Ultralimits of maximal representations
Beatrice Pozzetti (Warwick)
Abstract: A representation of the fundamental group of an hyperbolic surface in the symplectic group Sp(2n,R) is called maximal if it maximize the socalled Toledo invariant. Maximal representations form interesting and well studied components of the character variety generalizing the Teichmuller component, that correspond to the case n=1. Given an unbounded sequence of maximal representations one naturally gets an action on an affine building. I will describe geometric properties of such actions, dealing in particular with the structure of elements acting with a fixed point. Joint work with Marc Burger.
Systems of curves and systoles on surfaces
Federica Fanoni (Warwick)
Abstract: I will talk about two types of sets of curves on surfaces, ksystems and kfilling
sets. These are defined by purely topological constraints, such as bounds on the
number of intersections. I will discuss two problems in this setting: bounding the
size of these sets and understanding what happens to these bounds when the surface
is endowed with a hyperbolic structure and the curves are required to be systoles
(shortest closed geodesics). This is joint work with Hugo Parlier.
