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1 Recovery: Reconstructions from boundary

measurements - Talk 2: Sections 4,5,6

A summary written by Alex Amenta

Abstract

We continue the reconstruction of the conductivity γ in the elec-
trical prospection problem, and more generally of the compressibility
κ and density ρ in the reduced acoustic equation for time-harmonic
waves. We also show how to reconstruct κ and ρ from surface point
source data.

1.1 Introduction

Recall that in Calderón’s problem we consider the equation

Lγ(u) := ∇ · (γ∇u) = 0 (1)

on a bounded C1,1 domain Ω ⊂ Rn (n ≥ 3). The problem is to reconstruct
the conductivity γ ∈ C1,1(Ω) from knowledge of the Dirichlet-to-Neumann
map Λγ on the boundary ∂Ω. More generally, we can consider the reduced
acoustic equation for time-harmonic waves with frequency ω,

∇ ·
(

1

ρ(x)
∇p(x)

)
+ ω2κ(x)p(x) = 0, (2)

and in this case we want to reconstruct the compressibility κ ∈ L∞(Ω) and
the density ρ ∈ C1,1(Ω) from the knowledge of the associated Dirichlet-to-
Neumann map Λω,κ,ρ at two suitable frequencies ω. In my talk I will only
consider the more general problem (2) to save doubling up on notation.

1.2 Overview of the reconstruction procedure

Substituting p = ρ1/2w in (2) leads to the Schrödinger equation

−∆w + qw = 0 in Ω (3)

with potential
q = ρ1/2∇ρ−1/2 − ω2κρ.
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Letting Λq denote the Dirichlet-to-Neumann map associated with (3), we
have

Λq = ρ1/2Λω,κ,ρρ
1/2 − 1

2
ρ−1 ∂ρ

∂ν
. (4)

Note that in this expression, other than Λω,κ,ρ, we only use the values of ρ
and its normal derivative on the boundary of Ω.

Nachman’s reconstruction method consists of four steps, summarised in
[1, Theorem 5.2]. We let ω1, ω2 be two frequencies such that ω2

1 and ω2
2 are

not Dirichlet eigenvalues of −κ−1∇ · (ρ−1∇) in Ω, and we suppose that we
are given the Dirichlet-to-Neumann maps Λωj ,κ,ρ, k = 1, 2.

Step 1: Calculate the boundary values ρ|∂Ω and (∂ρ/∂ν)|∂Ω from Λω1,κ,ρ.
Once we have ρ|∂Ω and (∂ρ/∂ν)|∂Ω, equation (4) shows that we have the
maps Λqj . A sketch of this step of the reconstruction is given in the next
section.

Step 2: Compute the scattering transforms tj = tj(qj) from Λqj . These
are given by

tj(ξ, ζ) :=

ˆ
Rn
e−ix·(ξ+ζ)qj(x)ψj(x, ζ) dx

for ξ ∈ Rn and ζ ⊂ Cn with ζ · ζ = 0, where ψ are certain ‘generalised
eigenfunctions’ of (3) (with potential q = qj). The fact that these can be
calculated in terms of Λqj is contained in [1, Theorem 1.4]. Details are given
in the previous talk.

Step 3: Calculate qj from tj. This is handled by [1, Theorem 3.4], which
gives an explicit expression for the Fourier transform q̂j. Again, details for
this step are contained in the previous talk.

Step 4: Calculate ρ and κ from q1 and q2. This is the easiest step of the
procedure. Once we know q1, q2, and ρ|Ω, we can solve the Dirichlet problem

∆v − q̃v = 0 in Ω, v|∂Ω = ρ−1/2|∂Ω, (5)

with potential q̃ := (ω2
2q1 − ω2

1q2)/(ω2
2 − ω2

1). The assumptions guarantee
that (5) has a unique solution, and this solution is ρ−1/2. We can then find
κ = (q1 − q2)/(ρ(ω2

2 − ω2
1)).

1.3 Reconstructing ρ on the boundary

Here we provide a brief sketch of Step 1 in the reconstruction procedure.
Nachman considers the operator

Lγ,βu := ∇ · (γ∇u) + βu
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with corresponding Dirichlet-to-Neumann map Λγ,β. The problem is then to
calculate γ|∂Ω and (∂γ/∂ν)|∂Ω in terms of Λγ,β. The solution is the following
theorem ([1, Theorem 4.3])

Theorem 1. Suppose that Ω has a C1,1 boundary and Rn \ Ω is connected.
Assume γ ∈ C1,1(Ω;R) has a positive lower bound, β ∈ L∞(Ω;R), and 0 is
not a Dirichlet eigenvalue of Lγ,β in Ω. Then

lim
|η|→∞

∥∥∥∥2e−i〈·,η〉S0Λγ,βe
i〈·,η〉 − γ

∥∥∥∥
L2(∂Ω)

= 0 (6)

and

lim
|η|→∞

∥∥∥∥2e−i〈·,η〉(γΛ1,0 + Λ1,0γ − 2Λγ,β)ei〈·,η〉 − ∂γ

∂ν

∥∥∥∥
L2(∂Ω)

= 0. (7)

This theorem makes use of the single layer potential

S0f(x) :=

ˆ
∂Ω

G0(x, y)f(y) dσ(y), (8)

where G0 is the classical Green’s function

G0(x, y) =
1

(n− 2)ωn
|x|2−n, ωn =

2πn/2

Γ(n/2)
.

The trace double layer potential,

B0f(x) := p.v.

ˆ
∂Ω

∂G0

∂ν(y)
(x, y)f(y) dσ(y),

also plays a role.
The proof of (6) relies on the identity

S0Λγ,β −
1

2
γ = B0γ −R(G0β +∇G0 · ∇γ)Pγ,β, (9)

where R is the trace map, G0 and ∇G0 denote the integral operators with
kernels G0 and ∇G0 respectively, and Pγ,β is the solution operator for the
Dirichlet problem for Lγ,β. This identity is proven by applying the divergence
theorem to a regularised version of the integral expression for the left hand
side. One applies (9) to the functions ei〈·,η〉 for η ∈ Rn, and shows that the
right hand side disappears as |η| → ∞. This uses compactness of B0 on
L2(∂Ω) (which is classical), boundedness of Pγ,β from H−1/2(∂Ω) to L2(∂Ω)
([1, Lemma 4.2]), the trace theorem, and boundedness of ∇G0 and G0 from
L2(Ω) to H1(Ω) (which is related to [1, Lemma 2.11]) The limit (7) is proven
similarly, but requires a bit more work.
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1.4 Reconstruction from surface point source data

The reconstruction procedure for the acoustic equation can be used to solve a
further reconstruction problem: that of computing ρ and κ from surface point
source data. In this problem one is given the scattering solutions P (x, y, ω)
with frequency ω for all x, y ∈ ∂Ω, i.e. solutions to the equation

∇x ·
(

1

ρ(x)
∇xP (x, y, ω)

)
+ ω2κ(x)P (x, y, ω) = −δ(x− y) in Rn,

with ρ and κ equal to known constants ρ0, κ0 outside of Ω. One can then com-
pute ρ and κ from the surface data P (·, ·, ω) for two ‘admissible’ frequencies
[1, Theorem 1.1].

This is done by computing the Dirichlet-to-Neumann maps Λqj−k2j from

the point source data, where

qj(x) = ρ1/2(x)∇ρ−1/2(x) + ω2
j (κ0ρ0 − κ(x)ρ(x)) and k2

j = ω2
jκ0ρ0

for j = 1, 2. In [1, Theorem 1.6] Nachman proves the formula

Λq−k2 = Λ−k2 + S−1
k − S

+
k
−1
. (10)

The single layer potentials S+
k and Sk are defined as in (8), but with kernels

G+
k (x, y) :=

i

4

(
|k|

2π|x− y|

)(n−2)/2

H
(1)
(n−2)/2(|k||x− y|)

(the outgoing Green’s function for the Helmholtz equation) and Gk, the in-
tegral kernel for the operator

(H − k2 − i0)−1 := lim
ε↓0

(H − k2 − iε)−1,

with H := −∆ − q. This limit exists as an operator between weighted L2-
spaces L2

δ(Rn) → L2
−δ(Rn), δ > 1/2 [1, Proposition 6.1], and the kernel

satisfies the integral equation

Gk(x, y) = Gk(x, y)+ −
ˆ
G+
k (x, z)q(z)Gk(z, y) dz.

Once the identity (10) is established, one can use it to recover the maps
Λqj−k2j , j = 1, 2, corresponding to two frequencies; all components of the
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right hand side of (10) are known, since the integral kernel of Sk can be
written in terms of the surface point source data,

Gk(x, y) = ρ−1
0 P (x, y, ω).

Once one has the maps Λqj−k2 at hand, one can compute ρ and κ from the
reconstruction procedure outlined in the last section.
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2 A property of measures in RN and

an application to unique continuation

(after T.H. Wolff [1])

A summary written by Adolfo Arroyo-Rabasa

Abstract

The author discusses unique continuation results for functions which
satisfy an elliptic differential inequality and where the governing side
can be written in terms certain p-norms of the lower order terms.
The proof is constructive, and based on a fundamental property of
measures with rapid decay.

2.1 Introduction

We focus in unique continuation results when the Laplacian is bounded in
terms of the function itself and its gradient, that is,

|∆u| ≤ A|u|+B|∇u|,

where A,B are positive weights, each of which satisfies adequate local Lp-
bounds. The precise statement is the following.

Theorem 1. Suppose d ≥ 3 and 1
p

= 1
p′

+ 2
d
. 1Let Ω be domain in Rd and

assume u ∈ W 2,p
loc (Ω) satisfies

|∆u| ≤ A|u|+B|∇u| for some A ∈ Ld/2loc , B ∈ Ldloc . (1)

Then if u vanishes on an open set it must vanish identically.

2.2 The difficulty of the problem

When the right-hand side of (1) only depends on u (B = 0), the unique con-
tinuation property follows from a classical Carleman estimate (see [2]). The
fundamental principle of the proof goes as follows. Assume that u vanishes

1i.e., p = 2d/(d+ 2) and p′ = 2d/(d− 2)
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in the half-space {xd < 0} and let Sρ be the strip {0 ≤ xd < ρ}. Carleman’s
classical estimate and assumption (1) give

‖e−λed·xu‖Lp′ (Sρ) ≤ ‖e−λed·x∆u‖Lp
≤ ‖A‖Ld/2(Sρ) · ‖e−λed·xu‖Lp′ (Sρ) + ‖e−λed·x∆u‖Lp(Rd\Sρ),

which (for ρ� 1) means we obtain the bound

‖e−λed·(x−ρ)u‖Lp′ (Sρ) . ‖∆u‖Lp(Rd\Sρ) ∀ λ > 0. (2)

This allows us to deduce u ≡ 0 in Sρ, which is in turn equivalent to the
unique continuation property.

Notice we only used the smallness of A on very thin ρ-stripes. To carry
the same reasoning into the general case of (1) we would require a uniform
Carleman estimate for the gradient. Unfortunately such bounds do not
exist and hence we can only expect a bound of the form

‖e−λed·(x−ρ)u‖Lp′ (Sρ) . ‖e−λed·(x−ρ)∇u‖Lp(Sρ) + ‖∆u‖Lp(Rd\Sρ) (3)

for all λ > 0; which is clearly insufficient to deduce the strong continuation
of u.

2.3 A weighted Carleman estimate for gradients

Wolff proposes a somewhat alternative approach which rests in the following
weak Carleman estimate for differential forms in terms of their exterior
and interior derivatives.

Lemma 2 (weak Carleman estimate). Let |E| ≥ |k|−1. Let ω be a differential
form in Rd with compact support and W 1,p coefficients, then

‖ek·xω‖L2(E) . |k||E|
1
d ·
(
‖ek·xdω‖Lp + ‖ek·xd∗ω‖Lp

)
.

In the case of 1-forms this yields a weighted Carleman-estimate for
gradients. Indeed, since d2 = 0 and d∗d = ∆, then

‖ek·x∇u‖L2(E) . |k||E|
1
d · ‖ek·x∆u‖Lp . (4)

Notice it is impossible to simply plug-in this weaker inequality directly into
the original argument. Indeed, the strength of (2) comes from the estimate
being uniform with respect to λ whilst (4) worsens as |k| tends to infinity. In
the context of (2) this is equivalent to taking ρ↘ 0, whence the proof fails.
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2.4 The alternative argument of Wolff’s proof

We have established that a direct deductive proof of the unique continuation
property using (4) is incompatible with the spirit of the proof itself. This is
because one needs to work with a strictly larger neighborhood of an open
set where u vanishes. The author is well aware of this and instead he proposes
a proof by contradiction. In turn, he avoids passing to the dangerous limit
k → ∞. The idea is to contradict a version of (4) for a particular vector k
and a particlular set E. The proof is based in the following Ansatz.

Proposition 3 (Ansatz). Let u be as in the assumptions of Theorem 1.
Assume u does not vanish identically in Ω and suppose that we can find
E ⊂ Ω and k ∈ Rd with the following properties.

1. On the one hand, E is sufficiently large so that

‖ek·x
(
A|u|+B|∇u|

)
‖Lp(E) & ‖ek·x

(
A|u|+B|∇u|

)
‖Lp , (5)

2. on the other hand E remains small in the sense that 2

|E| . 1

|k|d
, (6)

‖A‖Ld/2(E) + ‖B‖Ld(E) � 1 . (7)

Then u vanishes in Ω.

Proof. By Hölder’s inequality and the use of both the classical and the
weighted Carleman estimates we deduce

‖ek·x
(
A|u|+B|∇u|

)
‖Lp

(4),(5)

.
[
‖A‖Ld/2(E) + (|k| · |Ej|

1
d )‖B‖Ld(E)

]
· ‖ek·x∆u‖Lp

(1)

≤
[
‖A‖Ld/2(E) + (|k| · |Ej|

1
d )‖B‖Ld(E)

]
· ‖ek·x

(
A|u|+B|∇u|

)
‖Lp

Hereby we conclude (recall that u 6= 0)

1
(6)

. ‖A‖Ld/2(E) + ‖B‖Ld(E)

(7)
� 1 ⇒ ⊥ (contradiction) .

2Notice that if the upper bound above holds, then (4) does behave as a uniform
Carleman inequality.
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2.5 The building blocks of the proof

Let us now briefly discuss the construction linking Theorem 1 to the Ansatz
(Proposition 3). We emphasize the following angular stones:

1. a reduction argument of Theorem 1 to functions supported in a
unitary ball, and

2. a geometric property of measures which have compact support.

The following result tells addresses the first point.

Lemma 4 (reduction argument). The conclusion of Theorem 1 is equivalent
to the following statement. If u : Ω→ R satisfies (1) and

Ω{ ⊂ B1/2(−ed) (8)

supp u ⊂ B1(−ed), 0 ∈ supp u (9)

u ∈ W 2,p
loc (Ω), (10)

then u ≡ 0.

Proof. This lemma follows by applying a simple transformation which takes
a ball where u vanishes into its polar (with respect to larger ball where u is
no longer identically zero).

The following result addresses the aforementioned geometrical property
of measures; this is extracted from a stronger result (see Lemma 1 in [1]).
Its proof relies on convex analysis methods.

Lemma 5 (geometric property). Suppose µ is a positive measure in Rd which
has compact support. For k ∈ Rd define a measure dµk(x) = ek·xdµ(x). Then
for any k ∈ Rd there is a compact convex set Ek such that

µk(Ek) ≥
1

2
‖µk‖ .

Furthermore if C ⊂ Rd is compact convex then there is a pairwise disjoint
sub-collection {Ej}, {kj} ⊂ C such that∑

j

|Ej|−1 ≥ C(d)|C| .
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2.5.1 Sketch of the construction

In light of Lemma 5 it suffices to show Proposition assuming (8)-(10). Let
u ∈ W 2,p(Rd) satisfy (8)-(10). Our goal is to construct v satisfying (5)-(7).

Localization. Set K to be convex hull of supp u ∩ {x : xd ≥ −1
4
}.

Choose a cut-off function φ of a small neighborhood of K supported on the
larger strip S(−1

3
) := {x : xd ≥ −1

3
} so that the corresponding norms of A

and B are small:

‖A‖Ld/2(suppφ) + ‖B‖Ld(suppφ) < α� 1. (11)

Figure 1: Elements of the construction

Localizing u as v = φu we get the point-wise bound

|∆v| ≤ A|v|+B|∇v|+B|u∇φ|+ |2∇φ · ∇u+ u∆φ|︸ ︷︷ ︸
=:χ

.

Hence the error term χ ∈ Lp is supported in the intersection union of the
moon-piece A1 := D1(−ed) ∩ S(−1

3
) and A2 := S(−1

3
) \ S(−1

4
).

Bounding the error term. In analogy to Lemma 5, we define the
positive measure

µ := A|v|+B|∇v| ,

16



which by construction is supported in B1(−ed). Similarly, we set

µk := ek·x
(
A|v|+B|∇v|

)
.

For k in the cone Γ := {k ∈ Rd : kd ≥ 4
√
|k|2 − k2

d} of sufficiently large
modulus, we can bound the error term ek·xχ in terms of µk. More precisely,

‖ek·xχ‖Lp ≤ ‖µk‖Lp whenever k ∈ Γ, k � 1 . (12)

This estimate relies on a purely geometric argument and the fact that 0 ∈
supp u (see Figure 1).

Conclusion. Let M � 1 so that (12) holds if |k| ≥ M . We are now in
possition to apply Lemma 1 to µ and C = BεM(−Med) (where ε is a small
parameter) to find vectors {kj} and disjoint convex sets {Ej} such that (after
Hölder’s inequality)

‖ekj ·x
(
A|v|+B|∇v|

)
‖Lp(Ej) ≥ 2−

1
p ‖ekj ·x

(
A|v|+B|∇v|

)
‖Lp ,

and ∑
|Ej|−1 & Md ≈ |kj|d.

These two inequalities and (12) suffice to guarantee (5)-(6); (7) holds pro-
vided that α in (11) is chosen to be sufficiently small.
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3 2D Unique Continuiation and Quasiconfor-

mal Maps - Talk 3: Strong unique contin-

uation for general elliptic equations in 2D

A summary written by Constantin Bilz

Abstract

We prove the strong unique continuation property for two-dimensional
elliptic operators in divergence form with lower order terms and bounded
coefficients in the principal part. A key ingredient is a representation
theorem due to Bers and Nirenberg [6] for solutions to Beltrami equa-
tions.

3.1 Result and strategy

Let Ω ⊂ R2 be a connected open set. We consider the weak form of the
elliptic equation

Lu = 0 in Ω, (1)

where the operator L takes the form

Lu = − div(A∇u+ uB) + C · ∇u+ du.

We assume the coefficients A = (aij), B = (bi), C = (ci) and d to be defined
on all of R2.

The main result of the article under review is the following

Theorem 1. Let K ≥ 1, q > 2 and κ > 0. Assume that A is positive
definite but possibly non-symmetric with L∞(R2) entries and assume uniform
ellipticity in the sense that

A(x)ξ · ξ ≥ K−1|ξ|2

A−1(x)ξ · ξ ≥ K−1|ξ|2

for every ξ ∈ R2 and almost every x ∈ R2. If furthermore B ∈ Lq(R2;R2)
and d ∈ Lq/2(R2) with

‖B‖Lq(R2) + ‖C‖Lq(R2) + ‖d‖Lq/2(R2) ≤ κ,

then the operator L has the strong unique continuation property.
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The strategy consists of three main steps. First, the reduction to the
case of a pure divergence equation using two special multipliers. Then, the
passage to a first order elliptic system of Beltrami type. Finally, the analysis
of solutions to the Beltrami equations by using a representation theorem due
to Bers and Nirenberg [6].

Similar proof strategies were used before in the predecessors [1] (see also
[5]), [2] and [9], in each case using only one instead of two multipliers in the
first step and hence obtaining results for more restricted classes of elliptic
operators.

Regarding the last step, first applications of the mentioned representation
theorem for Beltrami equations, which is Theorem 4 below, to unique con-
tinuation appeared in [6] and [7] where elliptic equations in non-divergence
form were considered.

We will demonstrate the reduction to a pure divergence equation in Sub-
section 3.2. In Section 3.3 we will complete the proof of Theorem 1. In the
talk we will also outline the proof of the representation theorem.

3.2 Reduction to a pure divergence equation

The following lemma is a slight variation of a gradient estimate first proved
by N. G. Meyers.

Lemma 2 ([8, Theorem 1]). There exists an exponent p ∈ (2, q) only de-
pending on K and q, and a radius R0 > 0 only depending on K, q and κ
such that given R ≤ R0 and functions F ∈ Lp(BR;R2) and f ∈ Ls(BR) with
1
s
≤ 1

2
+ 1

q
, the equation

Lu = − divF + f

has a unique weak solution u ∈ W 1,p
0 (BR) and we have for a constant C

depending only on K, q and s:

‖∇u‖Lp(BR) ≤ C
(
R2( 1

p
− 1
q

)‖F‖Lq(BR) +R2( 1
p
− 1
s

)+1‖f‖Ls(BR)

)
and also

‖u‖L∞(BR) ≤ CR1− 2
p
(
R2( 1

p
− 1
q

)‖F‖Lq(BR) +R2( 1
p
− 1
s

)+1‖f‖Ls(BR)

)
.
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We now let the first multiplier m be a weak solution to (1) in a ball BR1

of radius R1 < R0 when the coefficient B is replaced by 0, i.e.

− div(A∇m) + C · ∇m+ dm = 0 in BR1 . (2)

From Lemma 2 it can be seen that we can choose R1 and m in such a way
that

1

2
≤ m ≤ 2, (3)

‖∇u‖Lp(BR1
) ≤ 1. (4)

Now we can define an auxiliary elliptic operator L̃ by

L̃u = − div(Ã∇u+ uB̃) + C̃ · ∇u

with coefficients Ã = mAT , B̃ = mC − A∇m and C̃ = mB. Similarly as L,
the new operator L̃ again satisfies a uniform ellipticity condition and an Lp

integrability condition for the lower order terms B and C.
Repeating the same procedure, we can choose a second multiplier w, a

radius R2 < R1 and an exponent t ∈ (2, p) only depending on K, κ and q
such that w is a weak solution to

L̃w = 0 in BR2 , (5)

and satisfies

1

2
≤ w ≤ 2, (6)

‖∇w‖Lt(BR2
) ≤ 1. (7)

This second multiplier w yields a second auxiliary operator

L̂ = − div(Â∇u+ uB̂)

with coefficients Â = mwA and B̂ = wA∇m + mwB − mAT∇w − mwC.
Again we have uniform ellipticity for L̂ and Lt integrability for B. Note that
L̂ is a pure divergence operator.

Now it can be verified by elementary calculations that the following re-
duction formula holds.

Proposition 3. For any v ∈ W 1,2(BR) we have

L̂v = wL(mv)

in W−1,2(BR).
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3.3 A representation theorem for Beltrami equations

Let u be a weak solution to Lu = 0, and let BR ⊂ Ω be a disk of radius
R < R2. We write

v =
u

m

where m is the first multiplier defined in the previous subsection. By Propo-
sition 3 we have

L̂v = 0. (8)

As L̂ is a pure divergence operator, we can easily pass to a system of Beltrami
type using a well known method. Let

J =

(
0 −1
1 0

)
.

By (8) there is a ṽ ∈ W 1,t(BR) unique up to an additive constant such that
∇ṽ = J(Â∇v + vB̂). We set f = v + iṽ and can rewrite this equation in
terms of the complex coordinate z = x1 + ix2 to obtain the Beltrami system

fz = µfz + νfz + αf + βf in BR (9)

with coefficients µ, ν only depending on Â and lower order coefficients α, β
only depending on Â and B̂. It is easy to verify |µ|+ |ν| ≤ k < 1 in BR.

This is where the previously mentioned representation theorem comes
into play.

Theorem 4 ([6, p. 116]). The function f has a representation of the form

f = esF (χ)

where χ : C → C is a k-quasiconformal homeomorphism and η-H??lder
continuous in BR, F : χ(BR) → C is holomorphic, and s : BR → C is η-
Hölder continuous in BR. Furthermore, χ−1 is η-Hölder continuous in χ(BR)
and the exponent η and the implied constants only depend on K, κ, and q.

By Hölder continuity of χ−1 we can now see that a nontrivial f may
vanish only up to finite order. From this it is possible show that the same
conclusion holds for u. Hence we finished a proof sketch of Theorem 1. We
will outline a proof of Theorem 4 in the talk, but omit it here. Proofs can
be found e.g. in [6] and [4].
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4 A nonlinear Plancherel theorem with ap-

plications to global well-posedness for the

defocusing Davey-Stewartson equation and

to the inverse boundary value problem of

Calderón - Talk 1: Estimates for a ∂̄-problem

Sections 2, 3 up to Lemma 3.7

A summary written by Gianmarco Brocchi

Abstract

We study solvability of the inhomogeneous problem Lqu = f ,
where Lqu := ∂̄u+ qū, and q ∈ L2. The authors prove new pointwise
bounds for fractional integrals and pseudo-differential operators with
non-smooth symbols, as well as new estimates for pointwise multiplier
in negative Besov spaces.

4.1 Introduction

Consider the problem
∂̄u+ qū = f. (1)

Indicate with Lq the operator ∂̄+ q ·̄ . We want to study the inverse operator
L−1
q , particularly the dependence on q of the operator norm ‖L−1

q ‖.
Let s ∈ [0, 1). The operator ∂̄ : Ḣs(C) → Ḣs−1(C), as well as the multi-

plication by q for q ∈ L1/s(C). When s = 1
2
, q ∈ L2 and we have

Lq : Ḣ
1
2 (C)→ Ḣ−

1
2 (C).

Our aim is to prove the following theorem.

Theorem 1. Given q ∈ L2, for every f ∈ Ḣ−
1
2 there exists an unique

solution u = L−1
q f to the problem (1), obeying the following bound:

‖u‖
Ḣ

1
2
. ‖L−1

q ‖ ‖f‖Ḣ− 1
2
.

Moreover, the operator norm only depends on the L2-norm of q:

‖L−1
q ‖ . C(‖q‖2).
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Solutions of equation (1) are related to the Scattering Transform used in
[1] to study the defocusing Davey-Stewartson II equation. New bounds on
∂̄−1 and on pointwise multiplication are needed to apply Inverse-Scattering
methods in this settings.

4.2 New bounds on fractional integrals

In the following, Mf is the Hardy-Littlewood maximal function.

Theorem 2. Let α ∈ (0, d), and p ∈ (1, 2]. For any f ∈ Lp(Rd) we have:

a) |(−∆)−
α
2 f(x)| .d,α λd−αMf̂(0) + λ−αMf(x) for any λ > 0;

b) |(−∆)−
α
2 f(x)| .d,α

(
Mf̂(0)

)α
d
(
Mf(x)

)1−α
d

.

In order to apply the result to the Scattering transform, we rewrite point b)
using eiyξf(y) as function of y in place of f . Then

b) |(−∆)−
α
2

(
eiyξf(y)

)
(x)| .d,α

(
Mf̂(ξ)

)α
d
(
Mf(x)

)1−α
d
.

We are mainly interested in the case d = 2, α = 1.

Corollary 3. For q ∈ L2(C) we have

b’) |∂̄−1(e−i(zk+zk)q(z))(x)| .
(
Mq̂(k)

) 1
2
(
Mq(x)

) 1
2

c) ‖∂̄−1(e−i(zk+zk)q(z))‖L4 . ‖q‖
1
2

L2

(
Mq̂(k)

) 1
2
.

We use Theorem 2 to show L2-boundness for a class of pseudo-differential
operators (PDOs) with non-smooth symbols.

Theorem 4. Let α ∈ [0, d), and a(x, ξ) be a symbol on Rd × Rd such that

i) a ∈ L
2d
d−α (Rd × Rd), and

ii) ‖(−∆ξ)
α
2 a(x, ξ)‖

L
2d
d+α
ξ

∈ L
2d
d−α
x
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then the pseudo-differential operator

a(x,D)f(x) :=

ˆ
Rd
eixξa(x, ξ)f̂(ξ)

dξ

(2π)d

is bounded on L2. We have the following bounds:

‖a(x,D)f‖L2 .α,d ‖(−∆ξ)
α
2 a(x, ξ)‖

L
2d
d−α
x L

2d
d+α
ξ

‖f‖L2

|a(x,D)f(x)| .α,d (Mf(x))
α
d ‖(−∆ξ)

α
2 a(x, ·)‖

L
2d
d+α
ξ

‖f‖1−α
d

L2 for a.e. x ∈ Rd.

4.3 Estimates on pointwise multiplier

By the Sobolev embedding Ḣr(Rd) ↪→ Lp
∗
(Rd), with p∗ = 2d

d−2r
. We embed

the dual space L(p∗)′(Rd) ↪→ Ḣ−r(Rd). To show the continuity of the map

Ḣr(Rd)→ Ḣ−r(Rd)

u 7→ qu

it is enough to prove that it maps continuously Lp
∗

into its dual. This follows
from the embeddings above and Hölder’s inequality:

‖qu‖Ḣ−r . ‖qu‖(p∗)′ ≤ ‖q‖p‖u‖p∗ . ‖q‖p‖u‖Ḣr . (2)

It gives q ∈ Lp, with p = d/2r. In our case (C ∼= R2) from (2) we have

‖qu‖Ḣ−r(R2) . ‖q‖L 1
r
‖u‖Ḣr(R2).

We can improve the above estimate, trading regularity with integrability, by
putting q in a negative homogeneous Besov space. The norm of Ḃs,p

q is

‖f‖Ḃs,pq =
∥∥2sk‖Pkf‖Lp

∥∥
`q

where Pk is the Littlewood-Paley projector. We have the following theorem.

Theorem 5. Let r ∈ [0, 1) and max
{

2, d
r

}
≤ p < d

2r
. Then

‖qu‖Ḣ−r(Rd) . ‖q‖
Ḃ
d
p−2r

p,∞
‖u‖Ḣr(Rd).
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Note: The space Ḃ
d
p
−2r

p,q has the same scaling of L
d
2r , but negative regularity.

Sketch of the proof. Write

qu =
∑

(k1,k2,k3)∈A

Pk1 ((Pk2q)(Pk3u)) ,

where Pk is the frequency projector to Ak = {2j−1 < |ξ| < 2j+1}, and

A = {(k1, k2, k3) ∈ Z3 : Ak1 ∩ (Ak2 + Ak3) 6= 0}.

Estimate ‖qu‖Ḣ−r using Bernstein inequalities and Littlewood-Paley trichotomy.

4.4 A ∂̄-problem

In order to prove Theorem 1, we have to show that, for q ∈ L2(C), Lq is

invertible from Ḣ
1
2 (C) to Ḣ−

1
2 (C). We recall two known bounds on ∂̄−1:

Lemma 6. i) Let p ∈ (1, 2), and 1/p∗ = 1/p− 1/2. For h ∈ Lp we have

‖∂̄−1h‖Lp∗ .p ‖h‖Lp (3)

ii) Let 1 < p1 < 2 < p2 and f ∈ Lp1 ∩ Lp2, then

‖∂̄−1f‖∞ .p1,p2 ‖f‖Lp1 + ‖f‖Lp2 .

The inverse operator L−1
q is well defined from L

4
3 to L4.

Lemma 7. Let q ∈ L2(C). Then Lqu = f has an unique solution for f ∈ L 4
3 .

In particular, the operator Lq : L4 → L
4
3 is invertible.

Idea. By the previous result, ∂̄−1 : L
4
3 → L4 continuously. We write

Lq = ∂̄(I + ∂̄−1(q ·̄ )) =: ∂̄ ◦ B.

Then it is enough to show the existence of an unique solution to Bu = ∂̄−1f
for f ∈ L 4

3 . In other words, if B : L4 → L4 is invertible, the unique solution
to Lqu = f is given by u = B−1∂̄−1f .
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Proof. Since the operator ∂̄−1(q ·̄ ) is compact from L4 to itself, the operator
B := (I+ ∂̄−1(q ·̄ )) is Fredholm, in particular B is injective iff is surjective.We
prove that B is injective. Let u ∈ L4 such that Bu = 0, i.e. ∂̄u = −qū. Write
q = qn + qs, where qs has small L2-norm to be determined. We can choose
ν ∈ L∞ such that (!) holds3 in the following

∂̄(uν) = (∂̄u)ν + u∂̄ν
(!)
= (∂̄u+ qnū)ν

(∗)
= (−qsū)ν

where (∗) holds since ∂̄u = −qū. Then, using bound (3) on ∂̄−1, we have

‖uν‖L4 ≤ c‖∂̄(uν)‖
L

4
3

= c‖qsūν‖L 4
3
≤ c‖qs‖L2‖uν‖L4 ≤ 1

2
‖uν‖L4

where in the last inequality we chose qs with ‖qs‖L2 ≤ (2c)−1. This shows
that, if B(uν) = 0, uν = 0, so ker(B) = {0}.

The same result holds when we consider L−1
q on Sobolev spaces.

Lemma 8. For q ∈ L2(C) the operator Lq : Ḣ
1
2 → Ḣ−

1
2 is invertible and

‖L−1
q f‖

Ḣ
1
2
≤ C(q)‖f‖

Ḣ−
1
2
.

We now study the dependence of L−1
q and C(q) on q.

Lemma 9. The constant C(q) has a local Lipschitz dependence on q. Given
q0 ∈ L2, there exists ε > 0 such that for every q1, q2 ∈ B(q0, ε).

‖L−1
q1
− L−1

q2
‖ . C(q0)2‖q1 − q2‖L2

|C(q1)− C(q2)| . C(q0)2‖q1 − q2‖L2 .

It remains to prove that the bound on C(q) is uniform for q in a bounded
set in L2. Denote with

C(R) := sup{C(q) : ‖q‖2 ≤ R}, C : R+ → [0,∞].

3Choose ν as solution of the equation

∂̄ν = qn
ū

u
ν.
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The previous lemma, taking q0 = 0, showed that C(R) is finite for small R.
We shall prove that it is finite for all R > 0. Argue by contradiction: let

R0 := inf{R ∈ R+ : C(R) = +∞}.

Then limR→R0 C(R) = +∞, and there exists a sequence {qn}n∈N ⊂ BR0

such that ‖qn‖2 → R0, with ‖L−1
qn ‖

n→∞−→ +∞. If we were able to extract a
convergent subsequence {qnk} we would have

qnk
L2

→ q, and ‖L−1
qk
‖ k→∞−→ ‖L−1

q ‖ < +∞

leading to a contradiction, since R0 was minimal. Unfortunately, we cannot
hope to extract a subsequence converging in L2.

Symmetries: obstruction to compactness Translations and dilations
are symmetries of the problem that preserve the L2-norm. Indicate with
S(λ, y)q(x) = λq(λ(x− y)). One has

C(q) = C(S(λ, y)q).

To prove finiteness of C(R), it would suffices to show compactness up to
symmetries of {qn} in a weaker topology.

Definition 10. The sequence {qn} is compact up to symmetries if there exists
a sequence {(λn, yn)}n∈N such that {S(λn, yn)qn} is compact.

Using Theorem 5, we can extend the result of Lemma 9 to a larger space:

the Besov space Ḃ
− 1

3
,3

∞ .

Lemma 11. Given q0 ∈ L2, there exists ε = ε(C(q0)) > 0 such that for
q1, q2 ∈ {q : ‖q − q0‖

B
− 1

3 ,3∞
< ε} we have

‖L−1
q1
− L−1

q2
‖ . C(q0)2‖q1 − q2‖

B
− 1

3 ,3∞

|C(q1)− C(q2)| . C(q0)2‖q1 − q2‖
B
− 1

3 ,3∞
.

Using profile decomposition we can split {qn} in different pieces driven
by different symmetries and conclude the proof.
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5 L2 Carleman estimates - Talk 1: Carleman

Inequalities

A summary written by Daniel Campos

Abstract

We present Carleman’s method of weighted L2-inequalities and
applications to Cauchy uniqueness and unique continuation problems.
These kind of estimates are based essentially in a lower bound for
the commutator of the symmetric and skew-symmetric parts of the
conjugated operator.

5.1 Introduction

The Cauchy initial value problem asks for a solution to a differential equation
with prescribed data over a hypersurface. For linear equations, the theorems
of Cauchy-Kovalevskaya (1875) and Holmgren (1901) concern the existence
and uniqueness of solutions under analyticity conditions on the coefficients
of the equation and the Cauchy data. The method of weighted inequalities,
introduced by Carleman (1939), allowed for the first time to remove the
analyticity condition on the coefficients.

Let Ω ⊂ Rn be an open connected set, letDj = i−1∂/∂xj, and consider the
linear differential operator of orderm, P (x,D) =

∑
|α|≤m aα(x)Dα. We define

its principal part by Pm(x,D) =
∑
|α|=m aαD

α, and its principal symbol by

pm(x, ξ) :=
∑
|α|=m aα(x)ξα. We will be interested in properties of functions

satisfying differential inequalities of the form

|P (x,D)u| ≤
∑

0≤j<m

Vj(x)|∇ju(x)|, Vj ∈ L∞loc(Ω). (1)

Definition 1. The operator P has the unique continuation property if every
u ∈ Hm

loc that satisfies the inequality (1) pointwise a.e. and vanishes in an
open set of Ω must vanish identically.

Let Σ be a hypersurface of Ω given by the equation ρ(x) = 0, for a C1(Ω)
real-valued function ρ with ∇ρ 6= 0 on Σ.

Definition 2. The operator P has Cauchy uniqueness across Σ if every
u ∈ Hm

loc that satisfies the inequality (1) pointwise a.e. and vanishes in the
set {ρ < 0} must vanish in a neighborhood of Σ.
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Definition 3. The characteristics of P are simple with respect to Σ if when-
ever pm(x, ξ − iλ∇ρ) = 0 we have that ∇ξpm(x, ξ − iλ∇ρ) · ∇xρ(x) 6= 0, for
(ξ, λ) ∈ Rn × R \ {(0, 0)}.

Under this condition, Euler’s identity for homogeneous polynomials implies
that pm(x,∇ρ) 6= 0, i.e. the hypersurface is non-singular with respect to P .
The following theorems will be the guiding motivation of our presentation.

Theorem 4. (Calderón, 1958) Let Ω ⊂ Rn be an open set and let P be a
differential operator of order m with real smooth coefficients in the principal
part and L∞loc complex-valued for the lower order terms. If Σ is a C1 hyper-
surface as before and the characteristics of P are simple with respect to Σ,
then P has Cauchy uniqueness across Σ.

Theorem 5. Let P be a second-order elliptic operator with real smooth coeffi-
cients in the principal part and L∞loc complex valued for the lower order terms.
Then the characteristics of P with respect any hypersurface are simple and
thus has the unique continuation property.

5.2 Example of Carleman’s method

Consider the following example of an elliptic equation in R2: let u ∈ C1 solve

(∂x + i∂y)u = a(x, y)u, u|y<0 = 0,

with a ∈ L∞. We will show that u has to vanish in a neighborhood of the
x-axis. This is ensured by Holmgren’s theorem if a is analytic, but that
may not be the case in our problem. Carleman’s idea was to construct a
special real-valued weight φ such that for a large parameter λ > 0 we have
an inequality of the form

‖e−λφ(∂x + i∂y)v‖ ≥ C‖e−λφv‖, (2)

valid for any v ∈ C1
c . The purpose of this is to compete with the differential

inequality |(∂x + i∂y)u| ≤ C|u| obtained from the equation. To determine a
more precise form for it we rewrite it as ‖e−λφ(∂x + i∂y)e

λφw‖ ≥ C‖w‖ and
observe that the conjugated operator equals

e−λφ(∂x + i∂y)e
λφw = (λ∂xφ+ i∂y)w + i(λ∂yφ− i∂x)w =: Aw + iBw,
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where A and B are formally self-adjoint operators. To exploit this decompo-
sition it may be convenient to consider L2 estimates, so that we obtain

‖(A+ iB)w‖2
L2 = ‖Aw‖2

L2 + ‖Bw‖2
L2 + 〈Aw, iBw〉+ 〈iBw,Aw〉

= ‖Aw‖2
L2 + ‖Bw‖2

L2 + i〈[A,B]w,w〉 ≥ i〈[A,B]w,w〉.

A simple computation yields i〈[A,B]w,w〉 = λ〈(−∆φ)w,w〉. With a choice
of φ that ensures −∆φ ≥ c > 0, we see that (2) could take the form

‖e−λφ(∂x + i∂y)v‖L2 ≥ Cλ1/2‖e−λφv‖L2 . (3)

The fact that the constant in the smaller side increases with λ is fundamental
and will allow to absorb smaller terms from the other part.

Let us show that such an estimate and a convexity property of the weight
imply that the solution to the equation must vanish in a neighborhood of the
origin. The translation invariance of the problem then gives the same result
for any point on the x-axis, thus yielding the Cauchy uniqueness. Let χ be
a smooth cutoff function with χ ≡ 1 if |(x, y)| ≤ 1 and χ ≡ 0 if |(x, y)| ≥ R,
for some R > 1 to be determined. From (3) and the equation it follows that

Cλ1/2‖e−λφχu‖L2 ≤ ‖e−λφ(∂x + i∂y)(χu)‖L2

≤ ‖e−λφ(∂xχ+ i∂yχ)u‖L2 + ‖e−λφχau‖L2 .

The boundedness of a allows to absorb the second term into the left-hand
side for large λ, so that we obtain

Cλ1/2‖e−λφχu‖L2 ≤ ‖e−λφ(∂xχ+ i∂yχ)u‖L2 ,

for a new constant C and λ large (say Cλ1/2 > 2‖a‖L∞). We are interested in
the weight φ satisfying the convexity properties −∆φ ≥ c > 0 and φ ≥ c1 > 0
on U := supp[(∂xχ + i∂yχ)u] ⊂ {1 ≤ |(x, y)| ≤ R, y ≥ 0}. If we bound
φ ≤ c2 ≤ c1 in a small ball B = {|(x, y)| ≤ r} near the origin, then this
would give Cλ1/2e−λc2‖u‖L2(B) ≤ e−λc1‖χ‖C1‖u‖L2 , which yields that u must
vanish in B. For the choice of weight

φ(x, y) = y − y2

2
+ αx2,

it is not difficult to choose the appropriate parameters R > 1 > r and α > 0.
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5.3 Derivation of a Carleman estimate

5.3.1 Conjugation identities

Above we saw that the main step in proving Cauchy uniqueness was a Carle-
man estimate. Since we will consider operators with L∞loc coefficients for the
lower part, the analogs of (3) we are interested in have the form

‖e−λφPmv‖L2 ≥ CK
∑
|α|<m

λm−|α|−1/2‖e−λφDαv‖L2 , (4)

for λ ≥ λ0 ≥ 1 and v ∈ C∞c (K), with compact K ⊂ Ω. As in the previous
section we conjugate this expression. We have that e−λφDje

λφ = Dj− iλ∂jφ.
It can be useful to think of the parameter λ as having the same “weight” as
a derivative. In the expansion of e−λφDαeλφw = (D − iλ∇φ)αw we observe
that the function w is hit every time by at most one derivative or one factor
of λ. Using the commutator relation [D, iλΦ] = λ∇Φ for any function Φ,
and the conjugation identity e−λφPm(x,D)eλφ = Pm(x,D − iλ∇φ), we can
show that (4) is equivalent to

‖Pm(x,D − iλ∇φ)w‖L2 ≥ CKλ
1/2‖w‖Hm−1

λ
, (5)

where the Sobolev space Hk
λ is defined as the space of functions that satisfy

‖f‖Hk
λ

:=

(ˆ
Rn

(λ2 + |ξ|2)k|f̂(ξ)|2dξ
)1/2

<∞.

Definition 6. The class of symbols of order k, denoted by Sk, is the set of
smooth functions a(x, ξ, λ) : Ω × Rn × [1,+∞) which are polynomials, in ξ
and λ, of degree less than or equal to k.

The symbol of the operator Pm(x,D−iλ∇φ) is pm(x, ξ−iλ∇φ)+rm−1(x, ξ, λ),
with pm the principal symbol, as in the introduction, and rm−1 ∈ Sm−1. The
following proposition allows us to disregard the lower order terms.

Proposition 7. If a is in Sk, then ‖op(a)w‖L2 = O(‖w‖Hk
λ
).

This gives that ‖Pm(x,D − iλ∇φ)w‖2
L2 ≥ C‖Qmw‖2

L2 +O(‖w‖Hm−1
λ

), where

Qm is the operator with homogeneous symbol qm(x, ξ, λ) := pm(x, ξ− iλ∇φ).
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5.3.2 Computations

As in the example we write Qm = Am + iBm, where A = (Qm +Q∗m)/2 and
B = (Qm −Q∗m)/2i are formally self-adjoint operators, to obtain

‖Qmw‖2
L2 = ‖Amw‖2

L2 + ‖Bmw‖2
L2 + i〈[Am, Bm]w,w〉.

The symbol of the adjoint operator Q∗m is qm + Sm−1, and so the principal
symbols of Am and Bm are am := Re qm and bm := Im qm, respectively. We
will later use that these are real-valued. From Proposition 7 we obtain that

‖Qmw‖2
L2 ≥ C(‖op(am)w‖2

L2+‖op(bm)w‖2
L2)+i〈[Am, Bm]w,w〉+O(‖w‖2

Hm−1
λ

).

The following two propositions allow us to deal with the previous expression.

Proposition 8. If a ∈ Sj and b ∈ Sk, then there exists a symbol c ∈ Sj+k
such that op(a)op(b) = op(c), and we have the expansion

c = ab+ i−1∇ξa · ∇xb+ Sj+k−2.

In particular, the symbol of the commutator [op(a), op(b)] equals

i−1{a, b}+ Sj+k−2 := i−1(∇ξa · ∇xb−∇xa · ∇ξb) + Sj+k−2.

Proposition 9. If q is in S2k, then |〈op(q)w,w〉| = O(‖w‖2
Hk
λ
).

These propositions and the self-adjointness of i[A,B] yield

i〈[Am, Bm]w,w〉 = Re i〈[Am, Bm]w,w〉
= Re i〈[op(am), op(bm)]w,w〉+O(‖w‖2

Hm−1
λ

)

= Re 〈c2m−1,φw,w〉+O(‖w‖2
Hm−1
λ

),

where c2m−1,φ is a homogeneous polynomial symbol in S2m−1 that equals

{am, bm} =
1

2i
{qm, qm} = Im (∇ξqm · ∇xqm)

= Im (∇ξpm(x, ζ) · ∇xpm(x, ζ))− λ(∇2φ∇ξpm(x, ζ)) · ∇ξpm(x, ζ),

where ζ := ξ − iλ∇φ and ∇2φ is the Hessian matrix of φ. The symmetry of
the Hessian implies that c2m−1 is real-valued if φ is.
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5.3.3 Carleman estimate and Cauchy uniqueness

In the past two subsections we proved that

O(‖w‖2
Hm−1
λ

) + ‖Pm(x, ζ)‖2
L2

≥ C1(‖op(am)w‖2
L2 + ‖op(bm)w‖2

L2) + C2Re〈op(c2m−1,φ)w,w〉,

for some constants C1 < C2 < 1. Analogous results to Propositions 7, 8, 9
for pseudodifferential operators give that if λ ≥ µ > 0 then

‖op(am)w‖2
L2 ≥ µ‖op(λ2 + |ξ|2)−1/4op(am)w‖2

L2

≥ Re〈op[Cµ(λ2 + |ξ|2)−1/2a2
m]w,w〉+ µO(‖w‖2

H
m−3/2
λ

).

We are left to bound the homogeneous symbol Cµ(λ2+|ξ|2)−1/2|qm|2+c2m−1,φ.
We carry out the rest of the proof in a simple setting. Denote the points in
Rn = Rn−1 × R by x = (y, t), and assume that the height function is given
by ρ(y, t) = t with hypersurface Σ = {ρ = 0}. Denote the dual variables
ξ = (η, τ) ∈ Rn−1×R = Rn. As before, we will look for a weight of the form

φ(y, t) = t− µt2

2
+
|y|2

2µ
,

with µ > 0 a large parameter to be fixed. With this choice we obtain that
ζ = ξ − iλ∇φ = (η − iλy/µ, τ − iλ(1− 2t)) and

c2m−1,φ = Im (∇ξpm(x, ζ) · ∇xpm(x, ζ))− λ

µ
|∇ηpm(x, ζ)|2 + λµ|∂τpm(x, ζ)|2.

The last term has the largest coefficient in the previous expression. The
condition on the characteristics being simple prevents pm(x, ζ) and ∂τpm(x, ζ)
from vanishing simultaneously. This allows to bound the symbol we want.

Lemma 10. Let pm, c2m−1,φ, and Σ be as before. Suppose that the charac-
teristics of pm are simple with respect to Σ and that the coefficients in pm
are real-valued. There exists a (large) constant µ > 0 such that if |x| ≤ µ−2,
then for (ξ, λ) ∈ Rn × (0,+∞) we have

Cµ(λ2 + |ξ|2)−1/2|pm(x, ξ − iλ∇φ)|2 + c2m−1,φ(x, ξ, λ) ≥ µ−1λ(λ2 + |ξ|2)m−1.

The bound O(‖w‖2
Hm−1
λ

)+‖Pm(x, ζ)‖2
L2 ≥ µ−1λ‖w‖2

Hm−1
λ

follows by G̊arding’s

inequality on quadratic forms associated to positive symbols. This gives (5)
for large λ and w supported in {|x| ≤ µ−2}. The weight φ has the convexity
properties as in the example, so we conclude the Cauchy uniqueness as before.
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5.4 Application: a unique continuation problem

Let us prove Theorem 5. Let Σ be given by ρ = 0, where ρ ∈ C1(Ω;R) with
∇ρ 6= 0 on Σ. Suppose that for some x0 ∈ Ω and (ξ0, λ0) ∈ Rn ×R \ {(0, 0)}
we have that p2(x0, ξ0−iλ0∇ρ(x0)) = ∇ξp2(x0, ξ0−iλ0∇ρ(x0)) ·∇xρ(x0) = 0.
Assume without loss of generality that ∇xρ(x0) = en, so that we have

p2(x0, (η0, τ0 − iλ0)) = ∂τp2(x0, (η0, τ0 − iλ0)) = 0.

The ellipticity condition gives that p2(x, ξ) 6= 0 for any ξ ∈ Rn \ {0}. In
particular it implies that λ0 6= 0. It also gives that p2(x0, (0, τ)) 6= 0, and
so τ 7→ p2(x0, (η0, τ)) is a (non-trivial) polynomial of degree 2 with real
coefficients. This contradicts that τ0 − iλ0 /∈ R is a double root of it.

To show the unique continuation property we use the Cauchy uniqueness
with respect to spheres to extend the vanishing domain. Suppose u ∈ H2

loc

satisfies (1) and vanishes in a non-empty open set of the open connected set Ω.
Let K = supp u ⊂ Ω. If ∂K is empty, then K is closed and open, and so K is
empty (since Kc is non-empty). Thus we can assume that there is x0 ∈ ∂K.
Take a radius R > 0 such that B(x0, 3R) ⊂ Ω and let x1 ∈ B(x0, R) ∩Kc.
Note that x0 ∈ B(x1, R) ⊂ B(x0, 2R) ⊂ Ω. Let r ≤ R be the supremum
of the radii such that B(x1, s) ⊂ Kc. This implies that u vanishes in the
closed ball B(x1, r), and theorem 4 gives that u must vanish in a bigger ball,
contradicting the maximality of r.
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6 A counterexample to unique continuation

for elliptic equations in divergence form with

C0,1− coefficients (after N. Mandache [4])

A summary written by Mihajlo Cekić

Abstract

We review a sharp counterexample (on the Hölder scale) of N.
Mandache to unique continuation for second order elliptic equations
in divergence form in dimension 3 with C0,1− coefficients.

6.1 Introduction

We consider the uniqueness problem for the uniformly elliptic equation in
divergence form in Rn:

Pu :=
n∑

i,j=1

∂i(aij∂ju) = 0 (1)

We will also write A = (aij) for the matrix of coefficients; it is assumed that
A is positive definite, symmetric and has eigenvalues in [C,C−1] with C > 0.

The unique continuation property (UCP in short) for the operator P
holds if any solution u to equation (1) vanishing on an open non-empty
subset, must vanish on Rn. We introduce the limiting Hölder space via

C0,1−(Rn) := ∪α<1C
α(Rn) (2)

For n = 2, it is known by a Theorem of Bers and Nirenberg [1] that UCP
holds for P with only measurable coefficients; for n ≥ 3, it is known that the
UCP holds for P with Lipschitz coefficients (see e.g. Hörmander [2]).

For negative results, first there was a counterexample by Plís [6] for elliptic
operators in general (non-divergence) form with C0,1− coefficients, then by

Miller [5] for P when n = 3 and aij of regularity C
1
6 . Mandache [4] proves

the optimality on the Hölder scale, by proving the non-UCP for P , when
n = 3 and aij in C0,1− – his construction builds on the one by Miller.

For the sharp counterexamples in the Lp scale of coefficients, see Koch
and Tataru [3] and references therein.

Here is the main theorem we discuss, Theorem 1. in [4]:
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Theorem 1. There exist a smooth function u, smooth functions b11, b12, b22,
and continuous functions d1, d2 defined on R3 3 (t, x, y), such that:

1. u is the solution of the equation:

∂2
t u+∂x((b11 +d1)∂xu)+∂y(b12∂xu)+∂x(b12∂yu)+∂y((b22 +d2)∂yu) = 0. (3)

2. There is a T > 0 such that supp u = (∞, T ]× R2.
3. u, bij and di are periodic in x and in y with period 2π.
4. For any t ∈ R, u(t, ·, ·) satisfies the Neumann boundary condition on

(0, 2π)2 with respect to equation (3) (as an equation in x and y).
5. d1 and d2 do not depend on x and y and are of Hölder class C0,1−.
6.

1

2
<

(
b11 + d1 b12

b12 b22 + d2

)
< 1 (4)

Furthermore, there are also functions as above, satisfying conditions 1.-6.
except that equation (3) is replaced with the parabolic equation:

∂tu = ∂x((b11 + d1)∂xu) + ∂y(b12∂xu) + ∂x(b12∂yu) + ∂y((b22 + d2)∂yu) (5)

6.2 Idea of the proof

We denote ∆xy = ∂2
x + ∂2

y the Laplacian in 2D. Observe that e−λt cosλx
and e−λt cosλy are harmonic functions, in the kernel of ∂2

t + ∆xy, for any
λ ∈ R. We will alternately glue infinitely many of the e−λkt cosλkx and
e−λk+1t cosλk+1 in the limit λk → ∞, in increasingly shorter intervals. In
the gaps between these intervals, we smoothly modify solution and the co-
efficients accordingly. With a careful choice of lengths of intervals, gaps and
λk →∞ in the end, we obtain a smooth solution. We divide the construction
in the following two steps.

Step 1. We construct the “typical” smooth modification in the gaps that
alternates between the two harmonic functions above. More precisely, we
construct v,Bij, Di : [0, 5a]× R2 → R, where the parameter a > 0 plays the
role of time and [0, 5a] of the gap. We also need: λ > 1

a
– the old frequency,

λ′ > λ – the new frequency and ρ ∈ (0, λ
λ′

) – a technical parameter.
We ask that for an ε > 0, we have Bij = δij and Di = 0 for i, j = 1, 2 and

t ∈ [0, ε)∪ (5a− ε, 5a]; also v(t, x, y) = e−tλ cosλx for t ∈ [0, ε) and v(t, x, y)
proportional to e−tλ

′
cosλ′y for t ∈ (5a− ε, 5a].

Step 2. Put infinitely many occurrences of Step 1 together.
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6.3 Sketch of the construction

We divide the construction in two steps, as described in the previous section.

6.3.1 Step 1: filling the gaps

We construct v,Bij, Di from Step 1 above for i, j = 1, 2. Let χ(t) be a smooth
cut off function with χ = 0 near (−∞, 0] and χ = 1 near [1,∞]. We divide
the construction in this step in five cases, one for each interval of the form
[(i− 1)a, ia] for i = 1, 2, 3, 4, 5 and describe the v,Bkl and Dl separately.

Case i = 1. Aim: smooth decay of B22 +D2 from 1 to ρ2. We let

v = e−λt cosλx, B11 = B22 = 1, B12 = D1 = 0, D2 = χ
( t
a

)
(ρ2 − 1) (6)

Case i = 2. Aim: introduce a component of solution oscillating in y, i.e.

v = e−λt cosλx+ c̃χ
(t− a

a

)
e−ρλ

′t cosλ′y (7)

Here c̃ = e
5a
2

(ρλ′−λ) is a constant. Furthermore, we let B22 = 1, D1 = 0 and
ρ2 − 1. In what follows, we construct B11 = 1 + B̃ and B12 by hand. By
imposing the equation (3) on v, we obtain after simplifying:

χ̃(t) cosλ′y = λ∂x(B̃ sinλx)

+ λ′c̃χ
(t− a

a

)
e(λ−ρλ′)t sinλ′y∂xB12 + λ sinλx∂yB12 (8)

Here we introduced the shorthand notation χ̃(t) for:

χ̃(t) = c̃e(λ−ρλ′)t
( 1

a2
χ′′
(t− a

a

)
− 2ρλ′

a
χ
(t− a

a

))
(9)

We consider an ansatz B12 = χ̃(t)2 sinλx sinλ′y
λλ′

. It is easy to see from eq. (8):

B̃(t, x, y) = χ̃(t)
(cosλ′y cosλx

λ2
− c̃e(λ−ρλ′)tχ

(t− a
a

)2 sin2 λ′y

λ2

)
(10)

Case i = 3. Aim: propagate two components with different speeds. Let

v = e−λt cosλx+ c̃e−ρλ
′t cosλ′y (11)
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For the coefficients, we just pick B11 = B22 = 1, B12 = D1 = 0 and D2 =
ρ2 − 1. Note that the second component is decaying faster as ρλ′ < λ.

Case i = 4. Aim: remove the x-component, symmetric to i = 2. Let

v = χ
(4a− t

t

)
e−λt cosλx+ c̃e−ρλ

′t cosλ′y (12)

We let B11 = 1, D1 = 0, D2 = ρ2 − 1. Similarly to the case i = 2, we define
B12 and B22 = 1 +B′ by imposing equation (3) on v. We skip the details.

Case i = 5. Aim: increase B22 +D2 from ρ2 to 1. Let χ1(t) =
´ t

0
χ(s)ds,

so that χ1 = 0 near (−∞, 0] and χ1 = t+ χ1(1)− 1 near [1,∞). Take:

v = c̃ cosλ′y exp
(
− λ′ρt− λ′(1− ρ)aχ1

(t− 4a

a

))
(13)

Then we reverse-engineer the coefficients by imposing that v satisfies equation
(3). We get B11 = B22 = 1, B12 = D1 = 0 and

D2 = −∂
2
t v

∂2
yv
− 1 =

(
ρ+ (1− ρ)χ

(t− 4a

a

))2

− 1− ρ
aλ′

χ′
(t− 4a

a

)
− 1 (14)

It is straightforward to check that for t ∈ (5a− ε, 5a] for some ε > 0:

v(t, x, y) = α(a, λ, λ′)e−λ
′(t−5a) cosλ′y (15)

Here α(a, λ, λ′) is a constant bounded above by e
5aλ
2 .

Derivative estimates for v, bij and di. We sketch the estimate for b12

and the rest follow similarly. We first estimate χ̃(t) (eq. (9)) on [a, 2a]:

|∂kt χ̃(t)| ≤ c̃e(λ−λ′ρ)t

k∑
j=0

(
k

j

)
(λ− λ′ρ)j

( 1

ak−j+2

∣∣∣χ(k−j+2)
∣∣∣(t− a

a

)
+

2ρλ′

ak−j+1

∣∣∣χ(k−j+1)
∣∣∣(t− a

a

))
≤ e−a(λ−ρλ′)/2 · 3 · 2k · Cχ,k+2λ

k+2 (16)

Here we used λ > ρλ′, c̃et(λ−ρλ
′) ≤ e−a(λ−ρλ′)/2 for t ∈ [a, 2a], binomial formula

and λ′ > λ > 1/a. From this, definition of B12, similar reasoning for i = 4
and more generally for Bij, v and Di, we have for all k + l +m > 0

|∂kt ∂lx∂my Bij| ≤ e−a(λ−ρλ′)/2C ′χ,k,mλ
k+lλ′m (17)

|∂kt ∂lx∂my v| ≤ C ′′χ,kλ
′k+mλl and |∂tDi| ≤ 5Cχ

1− λ2

λ′2

a
(18)

Boundary conditions. Aim: check that v satisfies conditions 3. and 4.
in the theorem. It is straightforward to check it suffices to have λ, λ′ ∈ N.
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6.3.2 Step 2: the glueing construction

Let {ak}k≥1 and {λk}k≥1 be increasing sequence of positive integers s.t.∑∞
i=1 ai <∞ and 1/ak < λk < λk+1. Denote the partial sums Tk = 5

∑k
i=1 ai

and let ρk := λ2
k/λ

2
k+1. Let k0 ∈ 2N. We specify these parameters later.

Define the main function as:

u(t, x, y) :=


e−(t−Tk)λk cosλkx, t ∈ (−∞, Tk0 ]
ckvak,λk,λk+1

(t, x, y), t ∈ [Tk, Tk+1] and k even

ckvak,λk,λk+1
(t, y, x), t ∈ [Tk, Tk+1] and k odd

0, t ∈ [T,∞]

(19)

The coefficients bij, di for i = 1, 2 are defined similarly using the construction
in Step 1, so that u satisfies equation (3). To make u smooth, we need to
take ck0 = 1 and ck+1 = ck · α(ak, λk, λk+1) for k > k0 (see eq. (15)). Again

by (15), we get ck ≤ e−
5
2

∑k−1
j=k0

ajλj . Note u, bij and di are smooth for t 6= T .
Hölder continuity of di. We claim there is an estimate of the form:

|di(t1)− di(t2)| ≤ 10Cχ sup
k≥k0

(
(1− λ2

k

λ2
k+1

) ·min
(
5,
|t1 − t2|
ak

))
(20)

The estimate is proved by considering cases on t1 and t2: both are in [Tk, Tk+1]
for some k, one of them is in R \ [Tk0 , T ] or they are in [Tk, Tk+1] for distinct
k. For example, the first case follows from the derivative estimate (18) and
as |t1 − t2| ≤ 5ak. To check Hölder continuity, ask for Cα > 0 for α < 1 s.t.

(1− λ2k
λ2k+1

) ·min(5, |t|/ak) ≤ Cαt
α for k ≥ k0 and t ≥ 0. In turn, it suffices

1− λ2
k

λ2
k+1

≤ Cαa
α
k (21)

Smoothness of u and bij at t = T . It suffices to prove all the derivatives
converge to zero at t = T . For bij, it suffices to have for all m ∈ N, by (17):

lim
k→∞

e
−ak
(
λk−

λ2k
λk+1

)
/2
λmk+1 = 0 (22)

The continuity of di implies limk→∞ ρk = 1, so limk→∞
λk
λk+1

= 1. This, com-

bined with derivative estimates (18) and the fact−5
2

∑k
j=k0

ajλj ≤ −akλk/2 ≤
−ak(λk −

λ2k
λk+1

)/2, we see it suffices to prove the estimate (22).
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Choice of ak, λk and k0. Combining the facts above, we need to have:∑∞
i=1 ai < ∞ (finiteness), 1/ak < λk < λk+1 (technical condition), λk ∈ N

(periodicity and boundary condition), limit condition (22) (smoothness of
bij and u), estimate (21) (di are in C0,1−). One such choice is given by

λk = (k + 1)3 and ak =
(
k log2(k + 1)

)−1
. It is an exercise to show these

satisfy the conditions above.
Note that bij and di are uniformly continuous, so for large k0 we get the

uniform ellipticity condition 6. in the theorem. This ends the construction.

Remark 2. We see that as
∏

k≥k0 ρ
2
k = 0, we have

∑
k≥k0(1− ρ

2
k) =∞. So

one of d1 and d2 has unbounded variation and is not an element of C0,1.
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7 Stability - Talk 1: Stable determination of

conductivity by boundary measurements

A summary written by Dimitrije Cicmilović

Abstract

We consider the problem of determining the scalar coefficient γ
in the elliptic equation div(γ∇u) = 0 in Ω when, for every Dirichlet
u = φ on ∂Ω, the Neumann datum γ( ∂

∂n)u = Λγφ is known. We
discuss Alessandrini’s proof of a continuous dependence result.

7.1 Introduction

We consider the Dirichlet problem of the conductivity equation

div(γ∇u) = 0 (1)

u|∂Ω = φ (2)

in Ω ⊂ Rn and for a fixed real valued function (conductivity) γ : Ω → R.
We always assume that γ is strictly positive and that the boundary of Ω is
smooth. We want to recover the conductivity from the Dirichlet-to-Neumann
map

Λγ : φ 7→ γ
∂u

∂n
,

where n denotes the outer normal at boundary ∂Ω and u is a solution to the
Dirichlet problem (1), (2), and to study its stability.

Prior to this result, Kohn and Vogelius proved the unique determinedness
from Dirichlet-to-Neumann map when the conductivity is analytic ([2]), and
extended it to a piecewise analytic case ([3]). Sylvester and Uhlmann then
proved the determinedness in the case of smooth conductivity for n ≥ 3 ([4]),
and a continuous dependence from γ|Ω to Λγ ([5]).

We now present Alessandrini’s continuous dependence result for the case
of space dimension n ≥ 3. The space restriction is due to the fact that
Alessandrini used the approach in [4], where techniques used imply n ≥ 3,
when studying the stability of (1).

Firstly, we assume that Ω is bounded and that for some constants E > 0
and s > n

2
, the conductivities satisfy a priori estimates

E−1 ≤ ‖γ‖L∞(Ω), (3)

‖γ‖Hs+2(Ω) ≤ E. (4)
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Given initial data φ ∈ H
1
2 (Ω), we denote by uk (k = 1, 2) the H1(Ω)

solutions of (1), with respective conductivities γk, and define the respective
Dirichlet-to-Neumann maps

Λk : φ 7→ γk
∂uk
∂n

.

Then one has the following result:

Theorem 1. Let γ1, γ2 satisfy (3), (4). The following estimate holds

‖γ1 − γ2‖L∞(Ω) ≤ CEω(‖Λ1 − Λ2‖)

where the function ω is such that

ω(t) ≤ | log t|−δ, (5)

for every t, 0 < t < 1
e
, and δ, 0 < δ < 1, depends only on n and s.

The constant CE depends only on Ω, s, n and E. Note that s > n
2

implies that γ ∈ C2(Ω). We remark that one cannot drop assumption (4),
which would result in an ill-posedness of the Dirichlet problem (1), (2).

The proof of Theorem 1 is based on analysis of stability for inverse prob-
lem for the Schrödinger equation obtained by modifying (1), and for which
the bounds for continuous dependence can be derived.

7.2 Reduction to Schrödinger equation

Defining

v =
√
γu (6)

q =
√
γ−1(∆

√
γ) (7)

one derives from (1) the following equation

∆v − qv = 0 in Ω. (8)

Let v be solution to (8) for Dirichlet data ψ ∈ H 1
2 (∂Ω). We define Dirichlet-

to-Neumann map Λ̃ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω) by

Λ̃ : ψ 7→ ∂

∂n
v. (9)
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We remark that (6) implies the existence and uniqueness result in H1(Ω) for
Dirichlet problem (8), hence Λ̃ is well-defined.

In view of previous discussion, different conductivities (γk) lead to dif-
ferent potentials (qk) in Schrödinger equation. First step towards proving
Theorem 1 is the following proposition

Proposition 2. Let γk satisfy (3), (4), and let qk be given by (7). The
following estimate holds

‖q1 − q2‖L2(Ω) ≤ CEω(‖Λ̃1 − Λ̃2‖), (10)

where the function ω satisfies (5) with δ, 0 < δ < 1, depending only on n.

Aside from the ansatz in the following section, the proof will rely on the
identity

〈(Λ̃1 − Λ̃2)v2, v1〉 =

ˆ
Ω

(q1 − q2)v1v2dx, (11)

which follows from Green’s formula and exploiting the structure of Dirichlet
problem (8).

7.2.1 Ansatz - complex geometrical optics (CGO)

As mentioned, the stability issue of (1) is derived to stability issue of (8),
which is investigated by looking at specific type of its solutions, introduced
in [4]. Alessandrini relies on the following lemma from [4]:

Lemma 3. Let γk satisfy (3), (4), and let qk be given by (7). There exists
CE > 0 such that, for every ξk ∈ Cn, satisfying

ξk · ξk = 0, |ξk| ≥ CE (12)

there exists solution vk to (8) of the form

vk(x) = eξk·x(1 + ψk(x)), x ∈ Ω, (13)

such that
‖ψk‖Hs(Ω) ≤ CE|ξk|−1. (14)

Combination of previous lemma with (11), and some complex analysis
estimates, gives Proposition 2.
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7.3 Final steps

The following proposition gives boundary measurements stability

Proposition 4. Let γ1 and γ2 satisfy (3), (4). The following estimates hold

‖γ1 − γ2‖L∞(∂Ω) ≤ CE‖Λ1 − Λ2‖, (15)

‖ ∂
∂n

(γ1 − γ2)‖L∞(∂Ω) ≤ CE(‖Λ1 − Λ2‖τ + ‖Λ1 − Λ2‖) (16)

where τ , 0 < τ < 1, depends only on n.

The proof of the first inequality was first presented in [5]. The role of the
second one is to enable bridging the Dirichlet-to-Neumann maps for (1) and
(8), and subsequently relate the stability decay from one to another. This
bridging follows from the identity

Λ̃kψ =
√
γk
−1Λk(

√
γk
−1ψ) +

1

2
γ−1
k

∂γk
∂n

ψ
∣∣∣
∂Ω
. (17)

Short computation, (16) and application of a priori bounds (3),(4) gives
the inequality

‖Λ̃1 − Λ̃2‖ ≤ C(‖Λ1 − Λ2‖+ ‖γ1 − γ2‖C1(∂Ω)). (18)

Now the application of Sobolev embedding, logarithmic convexity of Sobolev
norms and trace theorem gives the control of second summand on RHS of
last inequality by a power of L2 norm, and hence L∞ one. Then (15) gives
the control of Dirichlet-to-Neumann maps.

We finalize the proof of Theorem 1. Direct computation gives us the
identity √

γ−1(∆
√
γ) = ∆(log

√
γ) + |∇(log

√
γ)|2.

From the definition (7) one readily gets

∇ · ((γ1γ2)∇f) = (γ1γ2)
1
2 (q1 − q2) in Ω, (19)

where f = log
√
γ1√
γ2

is a C2(Ω) function. Now a priori estimates (3), (4) and

maximum principle imply

‖γ1−γ2‖L∞(Ω) ≤ CE‖f‖L∞(Ω) ≤ CE(‖γ1−γ2‖L∞(∂Ω) +‖q1− q2‖L∞(Ω)). (20)
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Note that the first summand on the RHS is controlled by the norm of
Dirichlet-to-Neumann map (15), whereas for the second one one wants to
use the stability result (Prop. 2) for Schrödinger equation, meaning one has
to relate L2 and L∞ norms of the potentials, which is done by the following
interpolation inequality

‖q1 − q2‖L∞(Ω) ≤ C‖q1 − q2‖δL2(Ω)‖q1 − q2‖1−δ
Hs(Ω),

where δ = 1− n
2s

. Using a priori bounds (3), (4) once again, (20) reads

‖γ1 − γ2‖L∞(Ω) ≤ CE(‖Λ1 − Λ2‖+ ‖q1 − q2‖δL2(Ω)).

Now the Proposition 2, with remark following (18), completes the proof.
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8 2D Unique Continuitation and Quasicon-

formal Maps - Talk 2: Uniqueness proper-

ties of solutions to nonlinear Beltrami equa-

tions and the Stoilow factorization

A summary written by Gael Yomgne Diebou

Abstract

We classify all solutions to the linear Beltrami equation within a
suitable regularity class by means of the Stoilow factorization. In a
slightly similar fashion, we equally classify solutions to the nonlinear
Beltrami equation. Ultimately, we discuss the uniqueness properties of
principal solutions of some general nonlinear first order elliptic system
in the plane.

8.1 Introduction

The Beltrami equation occurs in the study of conformal mappings between
two domains endowed with measurable Riemannian structures. This equa-
tion has a vast history (see [1], [3]) and plays a central role in the diverse
interplays between the geometric theory of quasiconformal mappings, the
nonlinear elliptic planar PDEs and complex analysis.
Let Ω be an open connected subset of the complex plane C and µ : Ω → C
be a measurable function with |µ(z)| < 1 a.e. The complex linear Beltrami
equation reads

∂f

∂z
= µ(z)

∂f

∂z
(1)

where
∂f

∂z
= ∂f = (∂xf+ i∂yf)/2,

∂f

∂z
= ∂f = (∂xf− i∂yf)/2, z = x+ iy and

∂xf and ∂yf are partial derivatives of f with respect to x and y, respectively.
The function µ : Ω→ C in the equation (1) is called the Beltrami coefficient
of f or more generally the complex dilatation of f .
The existence theory for equation (1) is well understood. Indeed, for arbitrary
measurable µ which enjoys the property ‖µ‖∞ < 1, there are homeomorphic
solutions to equation (1). This statement is justified by the measurable
Riemann mapping theorem and was first proven by Morrey [2]. Concerning
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the uniqueness theory, one can only speak of a unique solution to (1) if one
additionally imposes a certain normalization condition (f(z) = z + O(1/z)
near ∞) on f , see [1, p. 165]. This normalized solutions of equation (1)
are called principal solutions. Then, it is reasonable to ask whether one
can provide a complete classification of non principal solutions to equation
(1). To this interrogation, there is a positive answer owing to the Stoilow
factorization which has its origin in two dimensional topology and which is
used to obtain all solutions of (1) within natural regularity classes provided
one has the existence of one solution of (1) beforehand. We will present the
Stoilow factorization in more details in section 2.
The Beltrami equation also exists in the nonlinear setup. It can be written
in the general form given by the first order system

∂f = H(z, f, ∂f) (2)

The existence of solutions for the equation (2) is established under general
conditions on the function H.
A function f is a principal solution of (2) if f ∈ W 1,2

loc (C) is a solution to
equation (2) normalized outside a compact set by the condition f(z) = z +
a1z
−1 + a2z

−2 + · · · while a homeomorphic solution f ∈ W 1,1
loc (C) to (2) is

said to be normalized if the solution is normalized by its value at three given
points, that is, f(0) = 0, f(1) = 1 and f(∞) =∞.
In [1, p. 238], the uniform ellipticity and the Lusin measurability assumptions
on H afford the authors to prove that equation (2) admits both principal and
normalized solutions. Analogously to the linear theory, the uniqueness issue
for the equation (2) only deals with principal and normalized solutions. If
a certain Lipschitz regularity assumption is granted on H, one will see later
that the equation (2) has a unique principal solution. In case the function
H in (2) is real homogeneous with respect to the last variable and does not
depend on f , we will discuss a particular connection between solutions of the
corresponding equation (2) and the reduced distortion inequality.

8.1.1 Remark

The notion of principal solution of (2) introduced above is pertinent only
when the function H(z, w,Λ) vanishes for sufficiently large values of |z|.
Due to Theorem 3.6.3 in [1], the normalization f(∞) = ∞ holds auto-
matically. Note that all normalized solutions as defined above are actually
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W 1,2
loc (C)-functions. Principal and normalized solutions of (2) have an inter-

esting connection with the linear theory which in fact allows them to inherit
all properties of solutions to (1). In effect, any principal or normalized solu-
tion f of (2), if it exists, solves its own linear equation

∂f

∂z
= µ(z)

∂f

∂z
, µ(z) =

H(z, f(z), ∂f)

∂f
.

8.2 Stoilow factorization

Let Ω be defined as above. The classical Stoilow factorization in two dimen-
sions states that any discrete open mapping f : Ω→ R2 can be factorized in
the following manner; there is an analytic function ϕ and a homeomorphism
h such that f = ϕ ◦ h (a mapping f is called discrete if the preimage of a
point in C is discrete in the domain Ω). We need to understand this result
from the point of view of PDEs and analysis thus, requires a reformulation.
Quasiregular mappings (see below for its definition) in the complex plane are
discrete and open and the previous factorization indicates that they can be
decomposed as ϕ ◦ h with ϕ analytic and h quasiconformal, see [4, p. 247].
This motivates the consideration of quasiregular mappings at the expense of
open and discrete maps in establishing the factorization theorem. For the
Beltrami equations, it stipulates that if the latter has a homeomorphic solu-
tion, then all other solutions within the same regularity class are obtained by
composition with a holomorphic map. Multiple versions of the factorization
theorem also exist for other first order PDEs, see [1]. The chosen regularity
class here is the Sobolev space W 1,2

loc .

Definition 1. A function f ∈ W 1,2
loc (Ω) is said to be K-quasiregular if it

is orientation-preserving (its Jacobian J(z, f) ≥ 0 almost everywhere) and
the following estimate on its derivative known as the distortion inequality
|Df(z)|2 ≤ KJ(z, f) for almost every z ∈ Ω holds true.

The factorization theorem will provide a clear understanding of planar
quasiregular mappings.

Theorem 2 (Stoilow Factorization). Let f : Ω → Ω′ be a homeomorphic
solution to the Beltrami equation

∂f

∂z
= µ(z)

∂f

∂z
, f ∈ W 1,1

loc (Ω), (3)
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with |µ(z)| ≤ k < 1 almost everywhere in Ω.
Suppose g ∈ W 1,2

loc (Ω) is any other solution to (3) on Ω. Then there exists a
holomorphic function ψ : Ω′ → C such that

g(z) = ψ(f(z)), z ∈ Ω.

Conversely, if ψ is holomorphic on Ω′, then the composition ψ ◦ f ∈ W 1,2
loc (Ω)

and solves (3).

It may look surprising that one is considering W 1,1
loc -solutions in (3) instead

of the W 1,2
loc regularity as announced earlier. Note that any homeomorphism

in the regularity class W 1,1
loc (Ω) has a locally integrable Jacobian as asserts

Corollary 3.3.6 in [1] which readily implies the W 1,2
loc regularity from the dis-

tortion inequality.
Now let us consider the nonlinear Beltrami equation

∂f

∂z
= H(z, ∂f/∂z) in Ω (4)

where H(z,Λ) satisfies the uniform ellipticity condition that for almost every
z ∈ C and all Λ1,Λ2 ∈ C,

|H(z,Λ1)−H(z,Λ2)| ≤ k|Λ1 − Λ2|, 0 ≤ k < 1,

and the real homogeneity condition

H(z, λΛ) = λH(z,Λ) for λ ∈ R.

It is natural to ask if one can establish a Stoilow-type factorization for solu-
tions to (4). This case is rather subtle but still leads to an interesting result
which involves a modified version of the distortion inequality in Definition 1.

Theorem 3. Assume f is a homeomorphic solution to the equation

∂f

∂z
= H(z, ∂f/∂z), f ∈ W 1,2

loc (Ω).

Then any other W 1,2
loc -solution g to the equation in Ω takes the form

g = G ◦ f

where G : f(Ω)→ C satisfies the reduced distortion inequality∣∣∣∣∂G∂w
∣∣∣∣ ≤ c

∣∣∣∣Im ∂G

∂w

∣∣∣∣ , w ∈ f(Ω)

where c only depends on the ellipticity constant k.
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8.3 Uniqueness

Suppose that the function H in (4) also depends on f and consider the
nonlinear first order system

∂f

∂z
= H(z, f, ∂f/∂z). (5)

Observe that the difference of two principal solutions of (5) need not to be
a principal solution of the same equation. To establish uniqueness of these,
one needs some regularity on H. Indeed, assuming that H has the following
Lipschitz regularity

|H(z, w1,Λ)−H(z, w2,Λ)| ≤ c|Λ||w1 − w2| (6)

for some constant c independent of z and Λ, we obtain the following.

Theorem 4. Suppose the function H : C3 → C is such that (6) holds and is
compactly supported in the z-variable. Assume further the homogeneity con-
dition H(z, w, 0) = 0 for almost every (z, w) ∈ C2, the Lusin measurability
on H, the uniform elliptic condition, that for almost every z, w ∈ C and all
Λ,Λ′ ∈ C,

|H(z, w,Λ)−H(z, w,Λ′)| ≤ k|Λ− Λ′|, 0 ≤ k < 1.

Then the equation (5) has only one principal solution.
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9 The Calderón problem with partial data -

Talk 1

A summary written by Marco Fraccaroli

Abstract

We introduce the tools, namely the Carleman estimates and the
construction of CGO solutions, needed in order to prove that in di-
mension n ≥ 3, the knowledge of the Cauchy data for the Schrödinger
equation measured on possibly very small subsets of the boundary
determines uniquely the potential.

9.1 Introduction

From now on we will always assume n ≥ 3.
Let Ω ⊂ Rn be a bounded open connected set with C∞ boundary. For

q ∈ L∞(Ω), we consider the operator −∆ + q with domain H2(Ω) ∩ H1
0 (Ω)

as a bounded perturbation of minus the usual Dirichlet Laplacian.
The operator has a discrete spectrum, and we assume

0 is not an eigenvalue of −∆ + q : H2(Ω) ∩H1
0 (Ω)→ L2(Ω). (1)

Under this condition, the Dirichlet problem for the operator is well-posed
and the Dirichlet to Neumann map

Nq : H
1
2 (∂Ω) 3 v 7→ ∂νu|∂Ω ∈ H−

1
2 (∂Ω), (2)

is well defined, where ν denotes the exterior unit normal and u is the unique
solution in

H∆(Ω) : = {u ∈ H1(Ω),∆u ∈ L2(Ω)} (3)

of the problem
(−∆ + q)u = 0 in Ω, u|∂Ω = v. (4)

Question: does the map Nq determine uniquely the potential q?

In [3], Sylvester and Uhlmann proved the uniqueness result under the
condition that the Dirichlet to Neumann map is measured on the whole
boundary.
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Theorem 1. Let Ω be defined as above. Let q1, q2 ∈ L∞(Ω) be two potentials
satisfying (1) and assume

Nq1 = Nq2 . (5)

Then q1 = q2.

It arises naturally the question about the uniqueness in the case in which
only partial data of Nq are known. A first result was obtained by Bukhgeim
and Uhlmann in [1], where, roughly speaking, it is proved a uniqueness result
when the Dirichlet to Neumann map is measured on slightly more than half
of the boundary.

In [2], Kenig, Sjöstrand and Uhlmann showed a uniqueness result when
the Dirichlet to Neumann map is measured on an arbitrary open subset of
the boundary.

Let x0 ∈ Rn \ch(Ω), where ch(Ω) denotes the convex hull of Ω. We define
the front and the back faces of ∂Ω with respect to x0 by

F (x0) = {x ∈ ∂Ω: (x− x0) · ν(x) ≤ 0}, (6)

B(x0) = {x ∈ ∂Ω: (x− x0) · ν(x) ≥ 0}. (7)

Their main result is the following

Theorem 2. Let Ω, x0, F (x0), B(x0) be defined as above. Let q1, q2 ∈ L∞(Ω)
be two potentials satisfying (1) and assume that there exist open neighbour-

hoods F̃ , B̃ ⊂ ∂Ω of F (x0) and B(x0) respectively, such that

Nq1u = Nq2u in F̃ , for all u ∈ H
1
2 (∂Ω) ∩ E ′(B̃). (8)

Then q1 = q2.

Here E ′(B̃) denotes the space of compactly supported distributions in B̃.

If B̃ = ∂Ω, then we have the following

Theorem 3. Let Ω, x0, F (x0), B(x0) be defined as above. Let q1, q2 ∈ L∞(Ω)
be two potentials satisfying (1) and assume that there exist open neighbour-

hoods F̃ ⊂ ∂Ω of F (x0), such that

Nq1u = Nq2u in F̃ , for all u ∈ H
1
2 (∂Ω). (9)

Then q1 = q2.
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In particular, if Ω is “well shaped” with respect to one point x1 ∈ ∂Ω, F̃
can be made arbitrary small by choosing x0 arbitrarily close to x1.

Along the line of the argument of Sylvester and Uhlmann in [3], the main
tool will be the construction of special solutions, called complex geometrical
optics (CGO) solutions to the Schrödinger equation associated to the op-
erator −∆ + q. However, in order to control the solutions on parts of the
boundary, as in [1], we need some Carleman estimates. They allow us to
construct a larger class of CGO solutions that better fits our purpose.

9.2 CGO solutions

The CGO solutions that we want to construct have the form

u = e
1
h

(−ϕ+iψ)(m+ r), (10)

where h is small, m is smooth and non-vanishing, r is a correction term with
controlled norms, namely

‖r‖L2(Ω) ≤ O(h), ‖r‖H1(Ω) ≤ O(1). (11)

Moreover, the functions ϕ, ψ satisfy the conditions

∇ϕ · ∇ψ = 0, |∇ϕ|2 = |∇ψ|2, (12)

ϕ has non-vanishing gradient and is a limiting Carleman weight on Ω.
To define the last condition we consider the conjugated operator e

ϕ
h (−h2∆)e−

ϕ
h .

It has the Weyl symbol for the semiclassical quantization a(x, ξ) + ib(x, ξ),
where

a(x, ξ) = ξ2 − (∇ϕ(x)), b(x, ξ) = 2∇ϕ(x) · ξ. (13)

Definition 4. We say that ϕ is a limiting Carleman weight on Ω if, for
every x ∈ Ω, the Poisson bracket

{a, b}(x, ξ) = a′ξ · b′x − a′x · b′ξ = 0, when a(x, ξ) = b(x, ξ) = 0. (14)

In particular, if ϕ is a limiting Carleman weight, then also −ϕ is a limiting
Carleman weight.
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9.2.1 Carleman estimates

Proposition 5. Let Ω be as above, ϕ be a limiting Carleman weight on a
neighbourhood of Ω, q ∈ L∞(Ω). Then if u ∈ C∞c (Ω), we have

h(‖e
ϕ
hu‖L2(Ω) + ‖h∇(e

ϕ
hu)‖L2(Ω)) ≤ C‖e

ϕ
h (−h2∆ + h2q)u‖L2(Ω), (15)

where C depends on Ω, and h > 0 is small enough so that Ch‖q‖L∞(Ω) ≤ 1
2
.

Proposition 6. Let Ω, ϕ, q as above. Let ν denote the exterior unit normal
to ∂Ω and define

∂Ω± = {x ∈ ∂Ω: ±∇ϕ · ν ≥ 0}. (16)

Then there exists a constant C0 > 0, such that for every u ∈ C∞(Ω) with
u|∂Ω = 0, we have for 0 < h� 1,

−h
3

C0

((∇ϕ · ν)e
ϕ
h ∂νu|e

ϕ
h ∂νu)∂Ω− +

h2

C0

(‖e
ϕ
hu‖2

L2(Ω) + ‖e
ϕ
hh∇u‖2

L2(Ω))

≤ ‖e
ϕ
h (−h2∆ + h2q)u‖2

L2(Ω) + C0h
3((∇ϕ · ν)e

ϕ
h ∂νu|e

ϕ
h ∂νu)∂Ω+ .

(17)

9.2.2 Construction of CGO solutions

We outline the construction of CGO solutions needed to prove Theorem 3;
the construction of the CGO solutions needed to prove Theorem 2 is left to
second part of the exposition of this article.

We first prove an existence result for solutions of the inhomogeneous
equation.

Theorem 7. Let 0 ≤ s ≤ 1. Then for h ≥ 0 small enough, for every
v ∈ Hs−1(Ω), there exists u ∈ Hs(Ω) such that

e
ϕ
h (−h2∆ + h2q)e−

ϕ
h r = v, h‖r‖Hs ≤ C‖v‖Hs−1 . (18)

The proof is given by a Hahn-Banach theorem argument, relying on the
Carleman estimate of Proposition 5 (the correspondent result for Theorem 2
relies on the Carleman estimate of Proposition 6).

The construction of the CGO solution is now analogous to the WKB
approximation for the solutions of the wave equation.

Once the limiting Carleman weight ϕ is fixed, the eikonal equations

∇ψ(x)2 = ∇ϕ(x)2,∇ψ(x) · ∇ϕ(x) = 0, (19)

determine ψ in the following way.
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Theorem 8. Let ϕ ∈ C∞(Ω̃) be a limiting Carleman weight on a neigh-
bourhood of Ω and define the hypersurface G = ϕ−1(C0) for some fixed C0.
Assume that each integral curve of ∇ϕ·∇ through a point in Ω also intersects
G and that the corresponding projection map Ω→ G is proper. Then we get a
solution for the eikonal equations in C∞(Ω) by solving first ∇g(x)2 = ∇ϕ(x)2

on G and then defining ψ by ψ|G = g,∇ϕ · ∇ψ = 0.

The smooth non-vanishing function m ∈ C∞ is determined by the trans-
port equation

(∇ψ · ∇+∇ · ∇ψ + i(∇ϕ · ∇+∇ · ∇ϕ))m = 0. (20)

Due to the construction, we obtain that

e
ϕ
h (−h2∆ + h2q)e−

ϕ
h e

iψ
h m = h2d, (21)

with d = O(1) in L2(Ω).
Finally, the correction term r is constructed via Theorem 7 with ϕ re-

placed by −ϕ. We are able to find r ∈ H1(Ω) with h‖r‖H1(Ω) ≤ Ch2 such
that

e
ϕ
h (−h2∆ + h2q)e−

ϕ
h e

iψ
h r = −h2d, (22)

and as a consequence

(−h2∆ + h2q)(e
1
h

(−ϕ+iψ)(m+ r)) = 0. (23)

The conditions on the different components of the CGO solutions we
enlisted at the beginning of this section are then satisfied. In particular
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10 2D Unique Continuation and Quasifonfor-

mal - Talk 1: On Landis’ Conjecture in the

Plane

A summary written by Maŕıa Ángeles Garćıa-Ferrero

Abstract

Landis’ conjecture claims that a solution to ∆u − V u = 0 in Rn
decaying superexponentially must be zero. We see that this holds in
R2 and in an exterior domain for real-valued u and V , provided that
V ≥ 0 a.e. The proof relies on reducing the equation to a Beltrami
system and estimates for that.

10.1 Introduction

Let u be a solution of the equation ∆u− u = 0 in Rn (or outside a compact
set). It is well known that if u(x) is bounded and decays as |x| → ∞ at the
rate e−(1+ε)|x|, ε > 0, then u ≡ 0. Landis posed the following question: Does
this also happen for solutions to ∆u− V u = 0, with ‖V ‖L∞(Rn) ≤ 1?

In R2, a counterexample is constructed in [3] with complex-valued V and

u satisfying |u(x)| ≤ Ce−C|x|
4/3

. In the case of real-valued u and V , Landis’
conjecture is proved in [2], provided that V ≥ 0 a.e. The same result holds if
we add to the equation a term as −∇(Wu) or W ·∇v, with W = (W1,W2) a
measurable real-valued vector. Actually, the result is given in a quantitative
form, meaning that if u decays fast than some rate (e−|z| log |z|), then it must
vanish.

Although Carleman estimates have been powerfully used in questions
related to Landis’ conjecture, here another approach is necessary since they
would not distinguish between real- or complex-valued functions. The proof
hinges on the relation between second order elliptic equations in the plane
and the Beltrami system ∂̄u = µu (∂̄ = 1

2
(∂x + i∂y)).

In addition, [2] also provides a proof of Landis’s conjecture in an exterior
domain, what requires a Carleman estimate for ∂̄.

Notation
We will denote by z = (x, y) any point in R2, and sometimes it can be

identified with z = x + iy in C. Clearly, Br(z0) will denote the open disc of
radius r and centre z0, and Br = Br(0).

59



The elliptic operators we will deal with in §10.2 are Lu = ∆u−∇(Wu)−
V u and its adjoint L∗u = ∆u + W · ∇u − V u. Since we will always be
considering L∞ norms, we will shorten the notation as ‖ · ‖Ω = ‖ · ‖L∞(Ω).

10.2 Quantitative Landis’ Conjecture in the Plane

The following result proves Landis’ conjecture in the plane in quantitative
form:

Theorem 1. Assume that W1, W2 and V are measurable, real-valued and
V ≥ 0 a.e. in R2, furthermore

‖W‖R2 ≤ 1, ‖V ‖R2 ≤ 1 .

Let u be a real solution to Lu = 0 or L∗u = 0 in R2 such that |u(z)| ≤ eC0|z|

and u(0) = 1. Then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ e−CR logR (1)

for R� 1 and C depending on C0.

This result follows by a scaling argument from the following estimate for
the maximal vanishing order of solutions in a bounded domain:

Theorem 2. Assume that W1, W2 and V are measurable, real-valued and
V ≥ 0 a.e. in B2, moreover, there exists K ≥ 1, M ≥ 1 such that

‖W‖B2 ≤ K , ‖V ‖B2 ≤M.

Let u be a real solution to Lu = 0 or L∗u = 0 in B2 such that ‖u‖B2 ≤ eC0

√
M+K

and ‖u‖B1 ≥ 1. Then

‖u‖Br ≥ rC
√
M+K

for all sufficiently small r and C depending on C0.

Proof of Theorem 1
Theorem 1 is proved from Theorem 2 after a suitable rescaling. Take

R � 1 and z0 such that |z0| = R. Let us consider the function uR(z) =
u(z0 +Rz), which satisfies the equation LuR = 0 or L∗uR = 0 with

WR(x) = RW (z0 +Rz) , VR(x) = R2V (z0 +Rz) ,
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which then verify the estimates ‖WR‖B2 ≤ R, ‖VR‖B2 ≤ R2. In addition, it
is easy to see that ‖uR‖B2 ≤ eC

′
0R and ‖uR‖B1 ≥ 1.

Consequently, Theorem 2 holds and ‖uR‖Br ≥ rCR for r small enough
and C = C(C ′0). Taking r = R−1 we obtain the desired estimate (1).

Theorem 2 for the Beltrami system
To exemplify the main ideas of the proof of Theorem 2, we start with the

simple case of the Beltrami system ∂̄u− V u = 0 in B2, with ‖V ‖B2 ≤M . As-
suming that ‖u‖B2 ≤ eC0M and ‖u‖B1 ≥ 1, our goal is to prove that ‖u‖Br ≥ rCM

for sufficiently small r and C = C(C0).
To start, we write the solution as u = ewh, where h is holomorphic in B2

and ∂̄w = V . Hence we can write w as

w(z) = − 1

π

ˆ
B2

V (ξ)

ξ − z
dξ ,

and deduce from here that |w(z)| ≤ C‖V ‖B2 ≤ CM for z ∈ B2.
The rest of the proof lies on the Hadamard’s three-circle theorem, which

states that if h is an holomorphic function in Ω, then

‖h‖Br1 ≤ ‖h‖
θ
Br‖h‖

1−θ
Br2

(2)

where r < r1 < r2, Br2 ⊂ Ω, and θ =
log

r2
r1

log
r2
r

.

Taking into account that for any ρ < 2

e−CM‖u‖Bρ ≤ ‖h‖Bρ ≤ eCM‖u‖Bρ ,

from (2) with r1 = 1 and r2 = 3
2

and assumptions on u, we obtain e−CM ≤ ‖u‖θBr ,
C = C(C0), and hence ‖u‖Br ≥ rCM as we want.

Proof of Theorem 2 with W = 0
Following the previous ideas, we prove Theorem 2 without the presence

of W , i.e. for the equation ∆u−V u = 0 in B2. We start writing the solution
as u = φv, where

∆φ− V φ = 0 , e−2
√
M ≤ φ ≤ e2

√
M in B2 ,

and
∇ · (φ2∇v) = 0 in B2 . (3)
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The existence and bounds of φ are ensured by the existence of subsolution
e
√
Mz and supersolution e2

√
M and the assumption that V ≥ 0 a.e.

In order to deal with v, we rewrite (3) as a Beltrami system as follows:
Let ṽ be the stream function related to v, i.e. ∇⊥ṽ = φ2∇v (or equivalently
∂̄ṽ = −iφ2∂̄v). Let g = φ2v + iṽ, then

∂̄g = (∂̄φ2)v = ∂̄(log φ)(g + ḡ) = α̃g in B2 ,

where

α̃ =

{
(∂̄ log φ)

(
1 + ḡ

g

)
if g 6= 0

0 otherwise
(4)

Again, let us write g as g = hew, where ∂̄w = α̃. We can proceed as
before provided that we verify a similar estimate for α̃ and we control g by u.
For the former, it can be proved that ‖∇ log φ‖B7/5

≤ C
√
M , which implies

the same estimate for α̃. For the latter it is used that g = φu+ iṽ and that
‖ṽ‖ can be also bounded by ‖u‖.

Combining previous estimates with assumptions on u we see that
e−C

√
M ≤ ‖u‖θBr , and hence ‖u‖Br ≥ rC

√
M .

Proof of Theorem 2
In the case that W = (W1,W2) does not vanish, the proof follows the

same strategy with essentially the following changes:
• φ now satisfies L∗φ = 0 and e−2(

√
M+K) ≤ φ(z) ≤ e2(

√
M+K) for z ∈ B2.

• If Lu = 0, then v = u
φ

verifies ∇(φ2(∇v −Wv)) = 0 in B2. We construct
g in the same way but now

∂̄g =
(
∂̄ log φ+

1

4
(W1 + iW2)

)
(g + ḡ) = γ̃g .

In this case, it can be proved similarly that ‖∂̄ log φ‖B7/5
≤ C(

√
M +K) and

same bound holds for γ̃.
• If L∗u = 0, then we have ∆v+(2∇ log φ+W ) ·∇v = 0 in B2, which can be
rewritten as ∂̄(∂v) = W̃ (∂v). Now ∂v = ewh with w ≤ C(

√
M +K). Here

the tricky (but not difficult) point is to bound ‖∇v‖ from above and below
by ‖u‖.

10.3 Landis’ Conjecture in an Exterior Domain

In this section we state Landi’s conjecture in an exterior domain in a quan-
titative form. Although Theorem 2 remains true, the scaling argument fails.
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We again reduce our problem to a Beltrami system, in this case inhomoge-
neous, what requires to use a Carleman estimate for ∂̄.

Theorem 3. Assume V is measurable, real valued and V ≥ 0 a.e. in Bc
1

and satisfies ‖V ‖Bc1 ≤ 1. Let u be a real solution of

∆u− V u = 0 in Bc
1

such that

‖u‖Bc1 ≤ 1 , inf
|z0|= 5

2

ˆ
B1(z0)

|u|2 ≥ C0 .

Then
inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ Ce−C
′R(logR)2 (5)

for R� 1, C depending on C0 and C ′ an absolute constant.

Proof of Theorem 3
For R � 1, let us consider z′0 = (R + 5

2
)e1 and uR(z) = u(z′0 + ARz).

This satisfies the equation ∇uR − VRuR = 0 in Bc
1
AR

(z1), where z1 =
z′0
AR

,

VR(z) = (AR)2V (z′0 + ARz). We take A large enough so B 1
AR

(z1) ⊂ B7/5.
Let us write uR = φv as in the previous section. But now the equation

∇ · (φ2∇v) = 0 is just satisfied in the not simply-connected regionB2\B 1
AR

(z1).
Therefore, the stream function may not exist and we need to add a suitable
cutoff function χ which vanishes on a neighborhood of B 1

AR
(z1):

ṽ(x, y) =

ˆ x

a

−[χφ2∂yv](s, y)ds+

ˆ y

0

[χφ2∂xv](a, s)ds ,

where a is taken so that χ(a, y) = 1. Notice that whereas ∂xṽ does not differ
from the case on B2 (up to χ), ∂yṽ has an extra term coming from ∂y of the
first integral of ṽ. Therefore, if g = χφ2v+ iṽ, ∂̄g = α̃g+F , where α̃ is given
by (4) and F depends on ∇χ.

Similarly, we write g = e−wh, with ∂̄w = −α̃ in B7/5 and suitable esti-
mate. But h is not longer an holomorphic function: ∂̄h = ewF = H1 +H2 in
B7/5 with

H1 = ew(∂̄χ)φuR , H2 =
ew

2

ˆ x

a

[∂yχφ
2∂yv + ∂xχφ

2∂xv](s, y)ds .
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Hadamard’s three-circle theorem cannot be applied to h. Instead we use the
following Carleman estimate [1, Proposition 2.1]: for any f ∈ C∞0 (B7/5\{0}),ˆ

|∂̄f |2eϕτ ≥ 1

4

ˆ
(∆ϕτ )|f |2eϕτ =

ˆ
|f |2eϕτ , (6)

where ϕτ (z) = −τ log |z| + |z|2, which is decreasing in |z| for τ > 8. We
apply it to f = ζh, where ζ is supported on Ẑ = { 1

4AR
≤ |z| ≤ 6

5
} and ζ ≡ 1

in Z = { 1
2AR
≤ |z| ≤ 1}. Taking A and R large enough then (6) becomesˆ

B 1
AR

(− e1
A

)

|h|2eϕτ ≤
ˆ
Z
|h|2eϕτ ≤ 2

ˆ
Ẑ

(
|∂̄ζh|2 + |ζ∂̄h|2

)
eϕτ

≤ C(AR)2

ˆ
X
|h|2eϕτ + C

ˆ
Y
|h|2eϕτ +

ˆ
Ẑ

(|H1|2 + |H2|2)eϕτ ,

with X =
{

1
4AR
≤ |z| ≤ 1

2AR

}
and Y =

{
1 ≤ |z| ≤ 6

5

}
.

Each term can be bounded properly through a careful analysis of the
supports and the behaviour of their functions. Going back to the original
function u and using assumptions on it, it can be seen that taking τ suitably
and R large enough, the three last terms on the r.h.s. can be absorbed by
the l.h.s. whereas

´
X |h|

2eϕτ involves
´
B1(z0)

|u|2, with z0 = Re1, which finally

leads to ˆ
B1(z0)

|u|2 ≥ CC0e
−CAR(log(AR))2 ,

and hence (5) holds.
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Maŕıa Ángeles Garćıa-Ferrero, MPI MIS Leipzig
email: mag.ferrero@icmat.es

64



11 L2 Carleman estimates - Talk 2: Back-

wards Uniqueness for the Heat Equation

in an Exterior Domain

A summary written by Max Hallgren

Abstract

Two L2 Carleman estimates are proved for the backwards heat
operator in (Rn \ BR) × [0, T ]. These estimates are then used to
prove backwards uniqueness for functions satisfying general growth
conditions and solving a heat-type equation.

11.1 Introduction

The focus of the paper is on solutions of the backwards heat equation on the
exterior domain QR,T := (Rn \ B̄R) × [0, T ]. The main goal is the following
theorem.

Theorem 1. Suppose u ∈ C∞(QR,T ) satisfies u(·, 0) = 0 in Rn \ B̄R and

|(∂t + ∆)u| ≤ C(|u|+ |∇u|), |u(x, t)| ≤ CeC|x|
2

in QR,T . Then u = 0 in QR,T .

Remark 2. A similar problem was previous solved independently by C.C.
Poon and X.Y. Chen, where QR,T is replaced by Rn × [0, T ], without using
Carleman estimates. That result is a corollary of the main theorem here by
letting R→ 0.

Remark 3. Note that this theorem is false, even with stronger assumptions,
if ∂t + ∆ is replaced by ∂t − ∆, as the heat kernel p(x, t) = (4πt)−

n
2 e−|x|

2/4t

is a counterexample.

11.2 Carleman-Type Inequalities for the Backwards Heat
Equation

The first goal is to prove a L2 Carleman inequality for the backwards heat
operator. In particular, we want to bound weighted L2 norms of u ∈ C∞c (Rn×
[0, 1)) and |∇u| in terms of the weighted L2 norm of (∂t + ∆)u.
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Theorem 4. (First Carleman Estimate)There exists α0 = α0(R, n) < ∞
such that for all α ≥ α0 and all u ∈ C∞c (QR,T ) satisfying u(·, 0) = 0, we have

||eα(T−t)(|x|−R)+|x|2u||L2(QR,T ) + ||eα(T−t)(|x|−R)+|x|2∇u||L2(QR,T )

≤ ||eα(T−t)(|x|−R)+|x|2(∂tu+ ∆u)||L2(QR,T ) + ||e|x|2∇u(·, T )||L2(Rn\B̄R).

For G ∈ C∞(QR,T ), define F := (∂tG−∆G)/G. The L2(Gdxdt)-self-adjoint
part of ∂t + ∆ is

S = ∆ +∇ logG · ∇ − 1

2
F,

and the L2(Gdxdt)-skew-adjoint part of ∂t + ∆ is

A = ∂t −∇ logG · ∇+
1

2
F.

We may compute the principal symbol of the commutator: by [2],

σ[S,A](x, t, ξ, τ) = {σS, σA}(x, t, ξ, τ) = −∇2 logG(ξ, ξ),

which suggests that (up to lower order terms) if G is log-convex, it should
be possible to prove a priori estimates for [S,A]. In fact, for carefully
chosen G, an elementary integration by parts argument shows that u 7→
〈Su,Au〉L2(Gdxdt) has strong positivity properties:

〈Su,Au〉L2(Gdx)(t) =
1

2

ˆ
Rn\BR

u2(∂tF + ∆F )Gdx−
ˆ
Rn\B̄R

|∇u|2Gdx (1)

+ 2

ˆ
Rn\BR

∇2 logG(∇u,∇u)Gdx−
ˆ
Rn\B̄R

u2FGdx.

Since ||(∂t+∆)u||2L2(Gdxdt) = ||Au||2L2(Gdxdt)+||Su||2L2(Gdxdt)+2〈Au, Su〉L2(Gdxdt),

the desired Carleman inequality will follow (by integrating (1) from t = 0 to
t = T ) from finding G such that F ≤ 0, ∂tF + ∆F ≥ 1, and ∇2 logG ≥ I.
The functions G(x, t) := e2α(T−t)(|x|−R)+2|x|2 satisfy these properties for large
α > 0. The parameter α will be important later for dealing with our lack of
information about u near (∂BR) × [0, T ], making use of the important fact
that, for fixed t1 < t2, G(x, t1)/G(x, t2)→∞ as α→∞.

For the second Carleman estimate, we need to define the auxiliary functions
σ(t) := te−

t
3 and σa(t) := σ(t+ a).
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Theorem 5. (Second Carleman Estimate) There exists N = N(n) < ∞
such that, for any α ≥ 0, a ∈ (0, 1), y ∈ Rn, and u ∈ C∞c (Rn × [0, 1))
satisfying u(·, 0) ≡ 0, we have

||σα−1/2
a e−

|x−y|2
8(t+a) u||L2(Rn×(0,1) + ||σαa e

− |x−y|
2

8(t+a)∇u||L2(Rn×(0,1)

≤ N ||σαa e
− |x−y|

2

8(t+a) (∂tu+ ∆u)||L2(Rn×(0,1).

Note that in this case, the Gaussian weight x 7→ e−
|x−y|2
8(t+a) is in fact log-

concave rather than log-convex, so the σα term is essential for the second

Carleman estimate. Set Ga(x, t) := (4π(t+a))−
n
2 e−

|x−y|2
4(t+a) , and apply (1) with

G replaced by σ−αa Ga. Assuming that u(·, 0) ≡ 0 and u ∈ C∞c (Rn × [0, 1),
multiplying (1) by σ/σ̇, and integrating from t = 0 to t = 1 leads to

ˆ
Rn×[0,1]

σ1−α
a

σ̇a
(Su)(Au)Gadxdt (2)

=

ˆ
Rn×(0,1)

σ1−α
a

σ̇a

((
log(

σa
σ̇a

)

)′
I + 2∇2 logGa

)
(∇u,∇u)Gadxdt.

We used here that Ga is an exact solution of the heat equation. Because
(this is where the e−3t term in σ is important)(

log(
σa
σ̇a

)

)′
I + 2∇2 logGa =

1

3

1/3

1− (t+ a)/3)
I ≥ 1

3
I

and 1
3e
≤ σ̇a(t) ≤ 1 for t ∈ [0, 1], we conclude that

||σ−αa G
1
2
a∇u||L2(Rn×[0,1]) ≤ N ′||σ−αa G

1
2
a (∂tu+ ∆u)||L2(Rn×[0,1]).

where we replaced α with 1 + 2α. Integrating (∂t + ∆)u2 = 2u(∂t + ∆u) +
2|∇u|2 against the weight σ−2α

a Ga, and integrating by parts and using Cauchy-
Schwartz gives the claim. Note that here the nice formula for the heat op-
erator applied to the weights rescues us, when a Poincare inequality in the
unbounded domain would not be helpful.
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11.3 Proving Quadratic Exponential Decay

We first recall two a priori estimates for solutions of second order parabolic
equations.

Lemma 6. (Gradient Estimate for the Nonhomogeneous Heat Equation) Set
Pr := Br × [−r2, 0) for r > 0. There exists C∗ = C∗(n) < ∞ such that, for
any u ∈ C∞(Pr), we have

sup
(x,t)∈Pr

dx,t|∇u(x, t)| ≤ C∗ sup
(x,t)∈Pr

(|u(x, t)|+ d2
x,t|(∂t + ∆)u(x, t)|),

where dx,t := min{d(x, ∂Br), |t|}.

Proof. Use a parabolic barrier function and the maximum principle.

Lemma 7. (Parabolic Mean Value Inequality) There exists C = C(n) < ∞
such that, for any s > 0 and u ∈ C∞(B√s(y)×[s, 2s]) satisfying |(∂t+∆)u| ≤
|u|+ |∇u|, we have

|u(y, s)|2 ≤ C

sn+2

ˆ 2s

s

ˆ
B√s(y)

u2dxdt.

Proof. Use parabolic Moser iteration on u+, u−.

Lemma 8. There exists ε = ε(n) > 0 and M = M(n) < ∞ such that the
following holds. Suppose u ∈ C∞(QR,1) satisfies

|∂tu+ ∆u| ≤ ε(|u|+ |∇u|), |u(x, t)| ≤ eε|x|
2

,

and u(·, 0) = 0 in Rn \ B̄R for some R ≥ 1. Then

|u(y, s)|+|∇u(y, s)| ≤Me−
|y|2
Ms (1+||u||L∞((B4R\BR)×(0,1))) for (y, s) ∈ Q6R,M−1 .

Proof. Fix y ∈ Rn \ 6R. The strategy is to first obtain an L2(dxdt) estimate
on a forwards parabolic cylinder around y, by applying the second Carleman
inequality with the Gaussian weight centered at y. This gives a good L2

bound for u near y since the Gaussian weight is bounded below near y, while
σ−α(t) is large for t small. The claim then follows immediately from the
above parabolic regularity theorems.
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To get a right hand side of the Carleman inequality we can estimate
effectively, we need to cutoff u appropriately, so that we only have to estimate
Gaσ

−2α
a u2 where the weight σ−2α

a Ga is relatively small. Define ur(x, t) =
u(x, t)ϕ(t)ψr(x), where φ ∈ C∞(R) and ψr ∈ C∞c (Rn) satisfy φ = 1 on
(−∞, 1/2], φ = 0 on [3/4,∞), ψr = 1 on B2r \B3R, ψr = 0 outside B3r \B2R.
Then

|(∂t + ∆)ur| ≤ ε(|ur|+ |∇ur|) + |ϕ′u|+ϕ(|u|(|∆ψr|+ |∇ψr|) + 2|∇ψr| · |∇u|),

so applying the first Carleman estimate gives

||σ−α−
1
2

a Gaur||L2(Rn×[0,1]) + ||σ−αa Ga∇ur||L2(Rn×[0,1])

≤ C(n)(||σ−αa Gau||L2((Rn\BR)×[ 1
2
, 3
4

] + ||σ−αa Ga(|u|+ |∇u|)||L2((A1∪A2)×[0,3/4]),

where A1 := B3R\B2R and A2 := B3r \B2r. Now apply the gradient estimate
for u to get (at scale 1, and assuming ε < 1

2
C∗) to get |∇u(x, t)| ≤ C(n)eε|x|

2
,

so the integral over A2 vanishes as we let r →∞, for ε small. Also, we know
y /∈ A1, so the right hand side stays bounded as a → 0, and the left hand
side converges by the monotone convergence theorem. Applying the gradient
estimate in A1 gives M(n) <∞ such that

||σ−αG
1
2 (|u|+|∇u|)||L2(A1×[0,3/4]) ≤Mα

(
sup
t>0

t−αe−
|y|2
16t

)
||u||L∞((B4R\BR)×[0,1]),

and completing the square gives

||σ−αG
1
2u||L2((Rn\BR)×[ 1

2
, 3
4

] ≤Mαe|y|
2

.

By Stirling’s formula,

sup
t>0

t−ke−
|y|2
16t = |y|−2k(16k)ke−k ≤ |y|−2kMkk!,

so we can take α = k, multiply by |y|2k(2M)−k/k!, and sum to get

||e
|y|2
4MtG

1
2u||L2(Q3R,(8M)−1 ) ≤ C(n)(1 + ||u||L∞((B4R\BR)×[0,1]).
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11.4 Completing the Proof of Theorem 1

Lemma 9. With the same hypotheses as the previous lemma, we have u = 0
in QR,ε.

Proof. We now apply the second Carleman inequality to ua,r = uψa,r, where
ψa,r ∈ C∞c (B2r \B(1+a)R), |∇ψa, r| ≤ C(n)a−1, and ψa,r = 1 on Br \B(1+2a)R.
Take T = 4ε to get

e10αεaR||u||L2((Br\B(1+10a)R)×[0,ε] ≤ C(n)e8αεr+4r2|||u|+ |∇u|||L2((B2r\Br)×[0,4ε])

+ C(a, n)e8αεaR|||u|+ |∇u|||L2((B(1+2a)R\B(1+a)R)×[0,4ε]

+ C(n)||e|x|2(|u|+ |∇u|)||L2(BRn\BR ).

Note that we traded integrating over a larger region in return for a better
exponent on the left hand side. Dealing with the gradient terms as before,
we obtain

||u||L2((Br\B(1+10a)R)×[0,ε]) ≤ C · (eαr−r2 + e−2αεaR).

Let r →∞, then α→∞, then a→ 0.

Proof of Theorem 1 Now we finish the proof of Theorem 1. By parabolic
rescaling, we can assume the hypotheses of the previous lemmas (including
T ≥ 1), so u = 0 on QR,ε. Repeat with ε as the new initial time, and keep
repeating to get u = 0 on QR,a, where T − a < 1. Rescaling so that a is
the initial time and T becomes 1, and applying the previous lemma gives
u = 0 on QR,a+(T−a)ε. Iterate, and see that we have u = 0 outside some
region whose time interval is decreasing geometrically, hence u = 0 on all of
QR,T .
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12 LP Carleman estimates and the Oscula-

tion Techniques - Talk 1: Carleman esti-

mates and unique Continuation for second

order elliptic equations with nonsmooth

coefficients (SUCP, Talk 1)

A summary written by Zihui He

Abstract

This talk will show local Carlemen estimate in special case P = ∆
with a radially symmetric exponential weight. Based on the Carleman
estimates we can prove the strong unique continuation property for
the corresponding second order elliptic operators.

12.1 Introduction

Consider the second order elliptic operator

P = ∂ig
ij(x)∂j (1)

in Rn, the potential V and the vector fields W1 and W2. To these we associate
the differential equation

Pu = V u+W∇u+∇(W2u) (2)

Definition 1. Given a function u ∈ L2
loc and x0 ∈ Rn we say that u vanishes

of infinite order at x0 if there exits R so that for each integer N we have

ˆ
Br(x0)

|u|2dx ≤ cNr
N , r < R (3)

Definition 2. We say the problem (1) has the strong unique continuation
property (SUCP) if for every H1 function u satisfying (1) in a ball BR(x0)
the following is ture, if u vanishes of infinite order at x0 the u=0 near x0.

We consider the following assumptions of metrics g, potentials V, W1 and
W2, we consider metrics g uniformly bounded frrom above and below and
satisfying

‖|x|∇g‖l1w(L∞) < ε, εsmall (4)
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this doesn not imply that g is close to rhe Euclidean metric. However, in our
estimates later on we use a perturbation argument starting from estimates
for the Euclidean metric. This requires a stronger form of (4), namely

‖g − In‖l1w(L∞) + ‖|x|∇g‖l1w(L∞) < ε, εsmall (5)

The reduction of (4) to (5) is carried out by using a suitable change of
coordinates.
For potentials V, W1 and W2 we consider the following assumptions:

V ∈ l∞(L
n
2 ), lim sup

r→0
‖V ‖

n
2
L ({r ≤ |x| ≤ 2r}) ≤ ε, εsmall. (6)

respectively,

‖W1‖l1w(Ln) + ‖W2‖l1w(Ln) ≤ ε, εsmall. (7)

A simple replacement of (4), (6) and (7) is,

|x||∇g| ∈ l1(L∞), V ∈ c0(L
n
2 ),W1,W2 ∈ l1(Ln). (8)

Now we state our main result.

Theorem 3. Assume that (4), (6) and (7) hold. Then (SUCP) holds at 0
for H1 solution u to (1).

12.2 Carleman estimate

Recall the estimate of Jerison and Kenig [3],

‖|x|−τu‖Lp . ‖|x|−τ4u‖Lp′ (9)

where p and p’ are dual exponents satisfying the gap condition

1

p′
− 1

p
=

2

n
(10)

and for all u vanishing of infinite order at 0 and∞, τ away from ±(n−2
2

+N).

Theorem 4. Assume that (5) holds. Then for each τ > 0 there exists a
convex function h satisfying h′ ∈ [τ, τ 2] so that

‖eϕ(x)u‖lp′ (Lp) . ‖eϕ(x)P (x, ∂)u‖Lp′ (11)

and for all u vanishing of infinite order at 0 and ∞.
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Theorem 5. Assume that (5) holds. Then for each τ > 0, W1,W2 ∈ l1w(Ln)
and each function u vanishing of infinite order at o and ∞ there exists a
function ϕ satisfying

τ ≤ −r∂rϕ ≤ τ 2, |∂θϕ| ≤ |r∂rϕ| (12)

so that

‖eϕ(x)u‖lp′ (Xϕ) +
‖eϕ(x)W1∇u‖Lp′
‖W1‖l1w(Ln)

+
‖eϕ(x)W2u‖|∇ϕ|−1Lp′

‖W2‖l1w(Ln)

. ‖eϕ(x)P (x,∂)u‖lp′ (X′ϕ).

(13)

We can easily obtain the following corollary as a consequence of (12):

Corollary 6. Assume that (4), (6) and (7) hold. Then for each τ > 0 amd
each function u vanishing of infinite order at 0 and ∞ which solves

P (x, ∂)u− (V u+W1∇u+∇W2u) = f (14)

there exists a function ϕ satisfying

τ ≤ −r∂rϕ ≤ τ 2, |∂θϕ| ≤ |r∂rϕ| (15)

so that

‖eϕ(x)u‖Lp . ‖eϕ(x)f‖Lp′ (16)

This implies the desired unique continuation result.

12.3 Polar coordinates and estimates for the flat case

We start from local estimate in special case P = ∆ with a radially symmetric
exponential weight. Introduce the polar coordinates

x = e−sθ, (s, θ) ∈ R× Sn−1 := C (17)

We introduce the space X̃τ,εof functions define onthe cylinder C:

X̃τ,ε = {v ∈ Lp ∩ τ−
1
2 (1 + ετ)−

1
4L2,∇v ∈ L2 + τLp ∩ τ

1
2 (1 + ετ)−

1
4L2}

For the right hand side of the equation we use the dual space,

X̃
′

τ,ε = Lp
′
+ τ

1
2 (1 + ετ)−

1
4L2 +∇(L2 ∩ τ−1Lp

′
) + τ−

1
2 (1 + ετ)−

1
4L2
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We set,

‖u‖Xτ,ε = ‖|x|
n−2
2 u‖X̃τ,ε

‖g‖X′τ,ε = ‖|x|
n+2
2 g‖X̃′τ,ε

Proposition 7. Let τ � 1. We consider a convex function h satisfying

|h′′|+ dist(2h′,Z) ≥ 1

4

for which |h′| ∈ [τ, 2τ ]. Then

‖eh(−in(|x|))u‖Xτ,0 . ‖eh(−in(|x|))∆u‖X′τ,0 (18)

for all functions u vanishing of infinite order at 0 and ∞.

We consider in more detail the case when h is uniformly convex in some
region:

Proposition 8. Let τ−1 < ε < 1. We consider a convex function h satisfying

|h′| ∈ [τ, 2τ ], h′′ ∈ [ετ, τ ]

in some interval I. Then

‖eh(−in(|x|))v‖Xτ,ε . ‖eh(−in(|x|))∆v‖X′τ,ε (19)

for all functions v supported in {x : |x| ∈ e−I}.

References

[1] H. Koch and D. Tataru., Carleman estimates and unique Continuation
for second order elliptic equations with nonsmooth coefficients. Commun.
Pure Appl. Math. 54, No 3, 339-360 (2001). CPAM.

[2] T. H. Wolff Recent work on sharp estimates in second-order elliptic
unique continuation problems Journal of Geometric Analysis 3.6 (1993):
621-650.

[3] D. Jerison and C. E. Kenig. Unique continuation and absence of
positive eigenvalues for Schrödinger operators. Ann. of Math. (2),
121(3):463??C494, 1985. With an appendix by E. M. Stein.

Zihui He, Bonn
email: s6ziheee@uni-bonn.de

74



13 A nonlinear Plancherel theorem with ap-

plications to global well-posedness for the

defocusing Davey-Stewartson equation and

to the inverse boundary value problem of

Calderón - Talk 2: Profile decomposition

and Section 4

A summary written by Xian Liao

Abstract
In this section we study the scattering transform associated to

the defocusing Davey-Stewartson equations, making use of the profile
decomposition technics and the estimates for the fractional integrals
and for the pseudo-differential operators with non-smooth symbols.

13.1 Introduction

We study the Cauchy problem for the integrable defocusing Davey-Stewartson
equations for the unknown q : R× C 7→ C

i∂tq + 2(∂2
z̄ + ∂2

z )q + q(g + ḡ) = 0,
∂z̄g + ∂z(|q|2) = 0,
q(0, z) = q0(z),

(1)

by means of the inverse scattering method. More precisely, we first solve the
following two linear equations for the unknowns m± : C 7→ C

∂z̄m± = ±e−kqm± with m±(z)→ 1 as |z| → ∞, ek(z) := ei(zk+zk), (2)

where q(z) and k ∈ C can be viewed as the given potential function and the
parameter respectively, such that we define the scattering transform of q(z)
as

s(k) := Sq(k) =
1

2πi

ˆ
R2

ek(z)q(z)
(
m+(z, k) +m−(z, k)

)
dz, (3)

where z = x1 + ix2 and dz = dx1dx2. We then proceed as follows to solve
the Cauchy problem (1):

s0(k) = Sq0(k),

s(t, k) = e2i(k2+k̄2)ts0(k),
q(t, z) = S−1(s(t, k)).

(4)
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We take the L2-framework and aim to show the global well-posedness of
Davey-Stewartson equations (1) in L2(R2) by means of the above procedure
(4). To this end, we first solve the linear equations (2) and more generally
we consider the following d-bar problem:

Lqu := ∂̄u+ qū = f, q ∈ L2, (5)

and we have

Theorem 1. For each f ∈ Ḣ− 1
2 , there exists a unique solution u ∈ Ḣ 1

2 of
the inhomogeneous problem (5) with

‖u‖
Ḣ

1
2
≤ C(‖q‖L2)‖f‖

Ḣ−
1
2
. (6)

We then prove the Plancherel theorem for the nonlinear scattering trans-
form in L2(R2) as follows:

Theorem 2. The nonlinear scattering transform S : q 7→ s is a C1 diffeo-
morphism from L2 to L2, satisfying

• The Plancherel Identity ‖Sq‖L2 = ‖q‖L2 ;

• The pointwise bound: |Sq(k)| ≤ C(‖q‖L2)Mq̂(k), a.e. k, where M de-
notes the Hardy-Littlewood maximal function;

• Locally uniform bi-Lipschitz continuity:

1

C
‖Sq1 − Sq2‖L2 ≤ ‖q1 − q2‖L2 ≤ C‖Sq1 − Sq2‖L2 ,

C = C(‖q1‖L2)C(‖q2‖L2);

• Bound on the derivative: ‖DSq‖L2 7→L2 ≤ C(‖q‖L2);

• Inversion Theorem: S−1 = S.

As a consequence of Theorem 2 we have the bound on q(z) in terms of
the Fourier transform of its scattering transform s(k) = Sq(k):

|q(z)| = |S−1s(z)| = |Ss(z)| ≤ C(‖s‖L2)M ŝ(z) = C(‖q‖L2)M ̂(
e2it(k2+k̄2)Sq0

)
(z).

The above bound allows us to transfer Strichartz estimates on the lineariza-
tion of the Davey-Stewartson equations (1) to bounds on the nonlinear flow,
which implies the global well-posedness and scattering results.
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13.2 The d-bar problem

In this subsection we solve the d-bar problem (5) such that the bound (6)
holds true.

13.2.1 Solvability of (5)

Recall the following solvability results for (5) (see the Lemmas at the begin-
ning of Section 3 [1]):

Lemma 3. Let q ∈ L2. Then the operator Lq : Ḣ
1
2 7→ Ḣ−

1
2 via Lqu = ∂̄u+qū

is invertible and there exists a constant C = C(q) such that

‖L−1
q f‖

Ḣ
1
2
≤ C(q)‖f‖

Ḣ−
1
2
.

Furthermore, for any q0 ∈ L2 there exists ε > 0 (depending only on C(q0))
such that the map q 7→ L−1

q is analytic on the ball Bε(q0) = {q ∈ L2 | ‖q −
q0‖

Ḃ
− 1

3 ,3∞
≤ ε} and

‖L−1
q1
− L−1

q2
‖
Ḣ−

1
2 7→Ḣ

1
2
. (C(q0))2‖q1 − q2‖

Ḃ
− 1

3 ,3∞
, ∀q1, q2 ∈ Bε(q0),

where ‖f‖
Ḃ
− 1

3 ,3∞
= supk∈Z(2−

1
3
k‖Pkf‖L3) with Pk denoting the Littlewood-

Paley projectors is the homogeneous Besov norm and L2(R2) ⊂ Ḃ
− 1

3
,3

∞ (R2).

13.2.2 A contradiction argument

We will use a contradiction argument to show C(q) = C(‖q‖L2), which to-
gether with Lemma 3 above implies Theorem 1.

Let
C(R) = sup{C(q) | ‖q‖L2 ≤ R} C : R+ 7→ [0,∞],

then the function C is nondecreasing and continuous. We aim to show that

C(R) < +∞ for all R > 0.

We argue by contraction. Let R0 ∈ (0,∞) be the minimal constant such that
C(R0) =∞. Then there exists a bounded sequence {qn} ⊂ L2 such that

R0 > ‖qn‖L2 → R0 and ‖L−1
qn ‖Ḣ− 1

2 7→Ḣ
1
2
→∞. (qn)
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Taking into account of the symmetry of the function C(q): C(q) = C(S(λ, y)q),
S(λ, y)q = λq(λ(· − y)), if there exist sequences (λn, yn) such that

S(λn, yn)qn → q1 in Ḃ
− 1

3
,3

∞ , q1 ∈ L2, (1p)

then by the estimates in Lemma 3,

‖L−1
S(λn,yn)qn

‖
Ḣ−

1
2 7→Ḣ

1
2
→ ‖L−1

q1 ‖Ḣ− 1
2 7→Ḣ

1
2
< +∞,

which is a contradiction to (qn). We are going to make this argument more
precise by use of profile decomposition technics below.

13.2.3 Profile decomposition

Proposition 4. Let {qn} be a bounded sequence in L2. Then up to the
extraction of subsequence, for any l ∈ N, the sequence can be decomposed as
qn =

∑l
k=1 S(λkn, y

k
n)qk + qln, where

‖qn‖2
L2 =

l∑
k=1

‖qk‖2
L2 + ‖qln‖2

L2 + on(1), lim
l→∞

lim sup
n→∞

‖qln‖
Ḃ
− 1

3 ,3∞
= 0,

and the scale and core sequences (λkn, y
k
n) satisfy that whenever j 6= k then

lim
n→∞

(λkn
λjn

+
λjn
λkn

)
=∞ or λjn = λkn, lim

n→∞
|yjn − ykn|λjn =∞.

Let {qn} be the bounded sequence in (qn) and we do the above profile
decomposition to it. Then as qln plays a perturbative role, we will simply
fix l and assume qn =

∑l
k=1 S(λkn, y

k
n)qk. If l = 1, then (1p) holds and the

contradiction argument works. We hence consider the case l ≥ 2 such that

sup
k
‖qk‖L2 = R < R0. (7)

We choose a slowly increasing sequence {µn} and decompose f as

f =
∑

fkn + f outn , fkn = T µn(λkn, y
k
n)f = χ(µ−2

n λkn(· − ykn))P[λkn/µn,λ
k
nµn](f),

such that fkn primarily interact only with S(λkn, y
k
n)qk and f outn does not in-

teract with either of them, and correspondingly we take the approximate
solution for Lqnu = f as

uappn =
∑

ukn + uoutn , ukn = L−1
S(λkn,y

k
n)qk

fkn , uoutn = L−1
0 f outn ,
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such that Lqnu
app
n = f +

∑
j 6=k S(λkn, y

k
n)qkujn. Then by virtue of (7),

‖uappn ‖Ḣ 1
2
. C(R)‖f‖

Ḣ−
1
2
, ‖Lqnuappn − f‖Ḣ− 1

2
= on(1)‖f‖

Ḣ−
1
2
,

and hence lim supn→∞C(qn) . C(R) which is a contradiction to (qn).

13.3 The Plancherel theorem

Recall the following pointwise estimates for fractional integrals (see Corollary
2.2 [1] with α = 1, n = 2):

|∂̄−1(e−kq)(x)| .
(
Mq̂(k)

) 1
2
(
Mq(x)

) 1
2 , if q ∈ L2(C),

and hence ‖∂̄−1(e−kq)(x)‖L4
x
. ‖q‖

1
2

L2

(
Mq̂(k)

) 1
2 .

(8)

Recall the following pointwise estimates for the pseudo-differential operators
with non-smooth symbols (see Theorem 2.3 in [1] with α = 1, n = 2):

|a(x,D)f(x)| .
(
Mf(x)

) 1
2‖∂ξa(x, ·)‖

L
4
3
ξ

‖f‖
1
2

L2 , if ∂ξa ∈ L4
xL

4
3
ξ . (9)

Then we have the following estimates for m± − 1,m1 − 1,m2 which satisfy
∂̄m± = ±e−kqm±, ∂̄m1 = qm2, (∂ + ik)m2 = q̄m1, m± = m1 ± e−km2:

‖(m± − 1)(·, k)‖L4 + ‖∂̄m1(·, k)‖
L

4
3

+ ‖m2(·, k)‖L4 ≤ C(‖q‖L2)
(
Mq̂(k)

) 1
2 ,

and hence is(k) = 1
π

´
ekq̄ + 1

π

´
ekq̄(m

1 − 1) with the first and second terms
reading resp. as the Fourier transform of q̄ and (m1 − 1)(D, k)¯̂q(k) satisfies

|s(k)| ≤ C(‖q‖L2)Mq̂(k).

The elegant difference formula

s1 − s2 = Tq1,q2(q1 − q2) with ‖Tq1,q2‖L2 7→L2 ≤ C(‖q1‖L2)C(‖q2‖L2),

together with the classical Plancherel identity and S2 = I in the Schwartz
function setting, implies Theorem 2.
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14 Boundary recovery: Determining conduc-

tivity by boundary measurements

A summary written by Yi-Hsuan Lin

Abstract

Based on the fundamental work from A. P. Calderón [1], one can
determine the conductivity of an object from appropriate boundary
measurements. In addition, one can prove the unique determination
for the conductivity with its all derivatives at the boundary.

14.1 Introduction

Let Ω ⊂ Rn be a bounded domain with a C∞-smooth boundary ∂Ω, for
n ≥ 2. Let γ(x) ∈ L∞(Ω) be a positive conductivity with γ(x) ≥ λ > 0 for
some universal constant λ > 0. Let Lγ be a second order elliptic operator

Lγ = ∇ · (γ∇),

which acts on functions u ∈ H1(Ω). It is well known that given any boundary
Dirichlet datum φ ∈ H1/2(∂Ω), one has the unique solution u ∈ H1(Ω) to{

Lγu = 0 in Ω,

u = φ on ∂Ω.
(1)

Hence, one can define the energy operator by

Qγ(φ) :=

ˆ
Ω

γ|∇u|2dx,

where u ∈ H1(Ω) is the unique solution of (1).
Calderón asked the question: Is the map Φ : γ → Qγ injective? Calderón

demonstrated that the map Φ is analytic as a conductivity γ ∈ L∞(Ω) and
its linearized map dΦ|γ=1 is injective.

• The goal of Kohn-Vogelius work is: The energy function Qγ determines
γ with its all derivative at the boundary, provided that γ is C∞-smooth
near the boundary.
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In addition, knowing Qγ(φ) for each φ ∈ H1/2(∂Ω) is equivalent to knowing
the Dirichlet-to-Neumann map Λγ : H1/2(∂Ω)→ H−1/2(∂Ω)

Λγ(φ) = γ
∂u

∂ν

∣∣∣∣
∂Ω

,

where u ∈ H1(Ω) is the unique solution of (1). Notice that the integration
by parts formula yields that

ˆ
∂Ω

φ2Λγ(φ1)dS =

ˆ
Ω

γ∇u2 · ∇u1dx,

where uj is the solutions of Lγuj = 0 in Ω with uj = φj on ∂Ω for j = 1, 2.

14.2 Boundary determination

Theorem 1. For n ≥ 2, let Ω ⊂ Rn be a bounded domain with a C∞-smooth
boundary ∂Ω. Let γi ∈ L∞(Ω) (i = 1, 2) be positive conductivities. Given
x0 ∈ ∂Ω, let B be a neighbourhood of x0 relative to Ω. Suppose that

γi ∈ C∞(B), for i = 1, 2,

and
Qγ1(φ) = Qγ2(φ) for φ ∈ H1/2(∂Ω) with suppφ ⊂ B ∩ ∂Ω.

Then one has

Dkγ1(x0) = Dkγ2(x0) for any k = (k1, k2, · · · , kn),

where Dk stands for the derivative ( ∂
∂x1

)k1 · · · ( ∂
∂xn

)kn.

It is easy to see the following result.

Corollary 2. Φ is injective on the set of real-analytic functions, which are
bounded away from zero.

Remark 3. For the C∞-smooth conductivities, Sylvester-Uhlmann [3] has
proved the global uniqueness result by using the complex geometrical optics
solutions.
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14.3 Lemmas

In order to prove Theorem 1, we need following lemmas.

Lemma 4. Let M ∈ N and z ∈ ∂Ω. Then there exists a sequence {φN}N∈N ⊂
C∞(∂Ω) such that

‖φN‖H1/2+t(∂Ω) ≤ CtN
t, for t ≥ −M,

‖φN‖H1/2(∂Ω) = 1,

and
supp(φN)→ {z} as N →∞.

Lemma 5. Let D ⊂ Ω with ρ(x) :=dist(z,D) > 0. Suppose that γ ∈ C∞

near an neighbourhood U of z ∈ ∂Ω, then

(a) We have
‖uN‖H1(D) ≤ CN−M , for all N ≥ 1,

where uN is the solution of LγuN = 0 in Ω with uN = φN on ∂Ω and
C > 0 is a constant independent of N .

(b) Given l ≥ 0 and ε > 0, there is a constant Cl,ε > 0 such thatˆ
U
ρl|∇uN |2dx ≥ Cl,εN

−(n+ε)l

for N ∈ N large enough.

Combining above two lemmas, we can prove Theorem 1.
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15 Recovery: Reconstructions from bound-

ary measurements - Talk 1: Sections 1,2,3

A summary written by Itamar Oliveira

Abstract

Let Ω be a bounded domain in Rn, n ≥ 3, with a C1,1 boundary.
Consider the operator Lγu = ∇ · (γ∇u), where γ is a real-valued
function in C1,1(Ω) with a positive lower bound. Define the quadratic

form Qγ on H
1
2 (∂Ω) by Qγ(f) =

´
Ω γ(x)|∇u(x)|2dx, where u ∈ H1(Ω)

is the unique solution to Lγu = 0 in Ω, u∣∣∂Ω
= f . A. P. Calderón posed

the problem of deciding whether γ is uniquely determined by Qγ and,
if so, if one can calculate it explicitly. This talk will discuss some
reductions done by A. Nachman in [1], where he provides a positive
answer to the latter problem.

15.1 Introduction

Consider the problem

Lγu = ∇ · (γ∇u) = 0 in Ω, u∣∣∂Ω
= f,

where Ω is a bounded domain in Rn, n ≥ 3, with a C1,1 boundary. Let Qγ

be the quadratic form

Qγ(f) =

ˆ
Ω

γ(x)|∇u(x)|2dx

where u ∈ H1(Ω) is the unique solution to the problem above. Integrating
by parts in the definition of Qγ we get the alternate expression

Qγ(f) =

ˆ
∂Ω

fγ
∂u

∂ν
dσ =

ˆ
∂Ω

f(Λγf)dσ (1)

where ν is the outward normal on ∂Ω, dσ is the usual surface measure and
the Dirichlet to Neumann operator Λγ is given by

Λγf = γ
∂u

∂ν
. (2)

A. P. Calderón posed the following problem:
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• Decide whether γ is uniquely determined by Qγ.

• If so, calculate γ in terms of Qγ.

The first part was answered affirmatively for ∂Ω ∈ C∞ and γ piecewise
analytic by R. Kohn and M. Vogelius (recovery on the boundary, [2] and [3]),
and for γ ∈ C∞(Ω) by J. Sylvester and G. Uhlmann (in [4], [5] and [6]).
Here we will deal with the second problem, i.e. determining γ in terms of Qγ

(equivalently, in terms of Λγ).
By a change of variables,

∇ · (γ∇u) = 0 ⇐⇒ −∆w + qw = 0, where q = γ−
1
2 ∆γ

1
2 .

For the Schrödinger operator −∆ + q define

Λq(f) :=
∂w

∂ν
∣∣∂Ω

where w is the solution to −∆w + qw = 0 in Ω, w∣∣∂Ω
= f . We also have

Λq(f) = γ−
1
2 Λγ(γ

− 1
2f) +

1

2
γ−1∂γ

∂ν
f (3)

Thus, to recover Λq, it is enough to first find γ and ∂γ
∂ν

on ∂Ω given Λγ. For
the first of a sequence of two talks, we will assume that we have recovered
this data on ∂Ω and focus on the problem of recovering q given Λq above
(sections 2 and 3 of [1]). In the second lecture we will learn how to obtain γ
once we have q (Section 5 of [1]).

15.2 Recovering q from Λq

An intermediate step to find q is to recover the scattering amplitude t given
by

t(ξ, ζ) =

ˆ
Rn
e−ix·ξq(x)ψ(x, ζ)dx,

where ψ(·, ζ) are solutions of

−∆ψ + qψ = 0 in Rn. (4)
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Suppose for a moment that solutions to the PDE above exist. By applying
Green’s formula to ψ(x, ζ) and e−ix·(ξ+ζ) we get

t(ξ, ζ) =

ˆ
Ω

e−ix·(ξ+ζ)∆ψdx =

ˆ
∂Ω

e−i·(ξ+ζ)
[
∂ψ

∂ν
+ i(ξ + ζ) · ν

]
dσ

when (ξ + ζ)2 = 0. To recover t, we are then led to study the behavior of ψ
on ∂Ω. Solutions of (4) satisfy the following integral equation:

ψ(x, ζ) = eix·ζ −
ˆ
Rn
Gζ(x− y)q(y)ψ(y, ζ)dy (5)

where

Gξ(x) =
1

(2π)n
eix·ξ
ˆ

eix·ξ

ξ2 + 2ζ · ξ
dξ.

The problem now becomes the solvability of (5).
A key step in the proof is showing that solutions to (5) are closely related

to the ones of the following problem:

(a) ∆ψ = 0 in Ω′,

(b) ψ ∈ H2(Ω′ρ) for any ρ > ρ0,

(c) ψ(x, ζ)−eix·ζ satisfies a technical condition to be explained in the talk.

(d) ∂ψ
∂ν+

= Λqψ (on ∂Ω).

where Ω′ := Rn\Ω and Ω′ρ := {x /∈ Ω, |x| < ρ}.
By getting a solution to the problem above in terms of layer potentials,

we will be able to find a solution to the PDE (5), hence we have will have t.
Finally, Theorem 3.4 of [1] gives an explicit inverse formula to compute q̂ in
terms of t, which is enough to conclude this step of the proof.
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16 Stability - Talk 1: Exponential instability

in an inverse problem for the Schrödinger

equation

A summary written by Lisa Onkes

Abstract

We show that the problem of determining the potential from the
Dirichlet to Neumann map of the Schrödinger operator is severely
ill-posed. This is connected to the problem of electrical impedance
tomography.

16.1 Introduction

Let d ≥ 2 and B := B(0, 1) ⊂ Rd the unit ball. Consider the boundary value
problem {

u|∂B = f

(−∆ + q)u = 0 in B
, (1)

where the potential q is bounded, and 0 is not a Dirichlet eigenvalue of
−∆ + q. If f ∈ H1/2(∂B) then (1) has a unique solution u ∈ H1(B).
We define the Dirichlet to Neumann operator Λqf = ∂u

∂ν

∣∣
∂B

, where ∂ν de-
scribes the normal derivative to the boundary. The question now is, what
can one find out about q, when only Λq is known?

16.1.1 Connection to the problem of electrical impedance tomog-
raphy

The problem of electrical impedance tomography (EIT) is the problem of
determining the isotropic electrical conductivity γ of an object from mea-
surements at its boundary. EIT has several applications in medicine and
most prominently is used for monitoring the lungs, since the lungs and sur-
rounding tissue differ highly in conductivity.
The mathematical description of this problem reads as follows. We want to
retrieve γ from the voltage to current map Λ̃γ defined by Λ̃γf = γ ∂v

∂ν

∣∣
∂B

,
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with {
v|∂B = f

div γ∇v = 0 in B.
(2)

One can reduce problem (2) to (1). However this requires to know the
restriction of γ and its normal derivative to the boundary.

16.2 The main stability result

The results in [1],[2] and the methods of [4] show that for any d ≥ 3 and
m > 0, there exists an α > 0, such that for every M > 0 there is C(M) > 0,
so that ‖q1‖Cm , ‖q2‖Cm ≤M implies

‖q1 − q2‖L∞ ≤ C(M)(log(1 + ‖Λq1 − Λq2‖−1
H1/2→H−1/2))

−α. (3)

We will show, that the result (3) is optimal in the sense, that there exist
counter-examples in the case α > m(2d − 1)/d. Our instability result reads
as follows.

Theorem 1. In dimension d ≥ 2 for any m > 0 and any s ≥ 0, there is a
constant β > 0, such that for any ε ∈ (0, 1) and q0 ∈ L∞ with ‖q0‖∞ ≤ 1
and supp q0 ⊂ B(0, 1/2), there are real-valued potentials q1, q2 ∈ Cm, also
supported in B(0, 1/2) such that

‖Λq1 − Λq2‖H−s→Hs ≤ exp
(
−ε−

d
(2d−1)m

)
‖q1 − q2‖∞ = ε

‖q1 − q0‖Cm , ‖q2 − q0‖Cm ≤ β

‖q1 − q0‖∞, ‖q2 − q0‖∞ ≤ ε

. (4)

In the following we will give a sketch of the proof of Theorem 1.

16.3 The basic estimate

Let {fjp : j ≥ 0, 1 ≤ p ≤ pj} be an orthonormal basis in L2(Sd−1), with fjp a
spherical harmonic of degree j and pj the dimension of the space of spherical
harmonics of degree j. We make the following estimate.
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Lemma 2. Let r0 ∈ (0, 1). Suppose that q is bounded, supp q ⊂ B(0, r0)
and 0 is not an eigenvalue of −∆ + q. Denote Γ(q) := Λq − Λ0. Then
there is a constant ρ = ρ(r0, d), such that for any 0 ≤ j, 1 ≤ p ≤ pj and
0 ≤ k, 1 ≤ q ≤ pk, we have

|〈Γ(q)fjp, fkq〉| ≤ ρr
max(j,k)
0 ‖q‖∞‖(−∆ + q)−1‖L2 . (5)

Sketch of proof. Consider the problem (1) with the potential q and the bound-
ary value f = fjp and denote the solution by u. The solution for the zero
potential and again the boundary value f = fjp is u0(r, w) = rjfjp(w). Then

• u− u0 = −(−∆ + q)−1qu0 and

• Γ(q)fjp = ∂(u−u0)
∂ν

∣∣∣
∂B(0,1)

.

Now estimate ∂(u−u0)
∂ν
|∂B(0,1) in terms of u−u0 to achieve the desired estimate.

In the following we fix r0 = 1/2 and denote ρ(1/2, d) by ρ.

16.4 A fat metric space and a thin metric space

Definition 3. Let (X, d) be a metric space and ε > 0. We say that a set
Y ⊂ X is an ε-net for X1 ⊂ X if for any x ∈ X1 there is y ∈ Y such that
d(x, y) ≤ ε. A set Z ⊂ X is called ε-discrete if for any distinct z1, z2 ∈ Z,
we have d(z1, z2) ≥ ε.

Lemma 4. Let d ≥ 2 and m > 0. For ε, β > 0, consider the metric space

Xmεβ := {f ∈ Cm
0 (B(0, 1/2)) : ‖f‖∞ ≤ ε, ‖f‖Cm ≤ β}, (6)

with the metric induced by L∞. Then there is a µ > 0 such that for any
β > 0 and ε ∈ (0, µβ) there is an ε-discrete set Z ⊂ Xmεβ with at least
exp(2−d−1(µβ/ε)d/m) elements.

Sketch of proof. The elements of Z are constructed by adding up bump-
functions.
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Given an operator A : H−s(Sd−1) → Hs(Sd−1), we denote its matrix
elements in a basis of spherical harmonics (fjp) by ajpkq := 〈Afjp, fkq〉. One
can estimate

‖A‖H−s→Hs ≤ 4 sup
j,p,k,q

(1 + max(j, k))2s+d−1/2|ajpkq|. (7)

Therefore we introduce the Banach space

Xs :=

{
(ajpkq)

∣∣∣∣ ‖(ajpkq)‖Xs := sup
j,p,k,q

(1 + max(j, k))2s+d|ajpkq| <∞
}
.

Let us denote by B∞ the unit ball of L∞(B(0, 1/2)).

Lemma 5. Γ maps B∞ into Xs for any s. There is a constant 0 < η =
η(s, d), such that for every δ ∈ (0, e−1), there is a δ-net Y for Γ(B∞) in Xs,
with at most exp(η(− log δ)2d−1) elements.

Sketch of proof. The embedding is proven by the estimate (5).
In order to define the δ-net Y let lδs be the smallest integer such that (1 +
l)2s+dρ2−l ≤ δ for any l ≥ lδs. Then

Y := {(ajpkq) | ajpkq ∈
(
(1 + lδs)

−2s−dδZ
)⋂

[−ρ, ρ] for max(j, k) ≤ lδs,

ajpkq = 0 otherwise}

fulfills the requirements. This, again, is proven by estimate (5).

Now we are in the position to prove the main Theorem 1.

Proof sketch of Theorem 1. Take q0 ∈ L∞(B(0, 1/2)), ‖q0‖∞ ≤ 1 and ε ∈
(0, 1). Set δ = 1

8
exp(−ε

−d
(2d−1)m ) and show that the set q0 + Xmεβ has an

ε-discrete set q0 + Z and Γ(q0 + Xmεβ) has a δ-net Y in Xs with |Z| > |Y |.
This implies that there are two points in q0 + Z with images under Γ in the
same Xs-δ-ball centered at a point of Y . These are the looked-for potentials
q1 and q2. The sets Z and Y exist by Lemma 4 and Lemma 5.
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17 Counterexamples - Talk 3: A Remark on

Gradients of Harmonic Functions in Di-

mension ≥ 3.

A summary written by João Pedro G. Ramos

Abstract

We show that there are C1+ε harmonic functions on Rd+ (d ≥ 3) for
which ∇f vanishes on a boundary set of positive measure, generalizing
to higher dimensions an earlier result of Wolff [3].

17.1 Main Result

The main motivation of this work is to generalize the previous work of Wolff
[3] about boundary values of gradients of harmonic functions. In fact, we
shall prove the following:

Theorem 1. If d ≥ 3 there is a harmonic function f : Rd
+ → R which is C1

up to the boundary and such that f and ∇f vanish on a common boundary
set of positive measure.

17.2 Outline of the methods

In order to prove this result, we shall begin with an arbitrary smooth function
u0 on Rd−1 that vanishes on an open subset of the boundary. The procedure
basically consists then on an application of a correction theorem multiple
times to decrease the normal derivative of a specific function on a large set
where it vanishes. Of course, we shall identify a function in Rd−1 to its har-
monic extension to Rd

+ canonically.

In order to do this “correction theorem” procedure, we must select well
the functions we are adding at each step of the process. We must pcik
them with a small compact support, as well as make our normal derivastive
diminish at the same time. The main idea to construct them is due to A. B.
Aleksandrov – P. Kargaev [1]:
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Lemma 2. Let p > 0 be small enough. Then for all sufficiently small ε
there is Fε : Rd−1 → R with suppFε ⊂ DRd−1(0, ε1/2), and, if F̂ε denotes its
harmonic extension to Rd

+,

ˆ
Rd−1

(∣∣∣∣∣1 +
dF̂ε
dn

∣∣∣∣∣
p

− 1

)
dx < −η,

with η > 0 independent of ε > 0. Moreover, one can also assume |∇F̂ε| .
min(ε−d, |x|−d) on Rd−1.

We need, however, a sharper, ‘perturbed’ version of the last Lemma:

Lemma 3. If N is large enough, there is a constant β = β(N) > 0 such
that, if Q ⊂ Rd−1 is a cube, aQ its center and I : Q → R is a function such
that Nd−1|I(aQ)|−1 supx∈Q |I(x)− I(aQ)| is sufficiently small (independently
of N, ε), then

(ˆ
Q

∣∣∣∣∣I(x) +
dF̂ε
dn

(N`(Q)−1(x− aQ))

∣∣∣∣∣
p

dx

)1/p

< e−2β|I(aQ)||Q|1/p.

As promised, we shall iterativelly construct our sequence of functions.
Begin, as stated, with a smooth function u0 which vanishes on the open unit
cube Q(1). For shortness, we shall sometimes identify a harmonic function
on the upper half space to its boundary value.

We suppose further that, at stage n, we are provided with a number
δn > 0 such that δ−1

n ∈ Z, a subcollection Gn of cubes of side δn contained in
Q(1), and a smooth function un such that(ˆ

Vn

∣∣∣∣dundn
∣∣∣∣p)1/p

≤ Ae−βn,

where Vn = ∪Q∈GnQ, β is as above, and A is a large constant not depending
on n. For instance, we can begin with δ0 = 1, G0 = {Q(1)}.

In order to pass to the next stage, we choose δn+1 small such that δn/δn+1

in an integer. Moreover, we define the cubes of the collection Gn+1 to be the
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children of cubes of the family Gn such that(
1

|Q|

ˆ
Q

|dun/dn|p
)1/p

< Kn+1e
−βn,

where we will specify what “small” and Kn+1 mean later. If aQ is the center
of the cube Q, as above, then we define the function

un+1(x) = un(x) +
∑

Q∈Gn+1

dun
dn

(aQ)Fεn+1(Nδ
−1
n+1(x− aQ))

δn+1

N
.

Next, we prove an estimate that allows us to have good control on the norms
of gradients of un+1 :

Lemma 4. ∑
Q∈Gn+1:|x−aQ|>ρ

|∇Fεn+1(Nδ
−1
n+1(x− aQ))| ≤ CN−dδn+1ρ

−1,

for all ρ > cδn+1 and x ∈ Rd−1.

Corollary 5. If δn+1 is small enoguh, then, on Rd−1,

|∇un+1 −∇un| ≤ CKn+1e
−βnε−dn+1.

With these, we can then verify, although we shall omit the details here,
that un+1 satisfies the same assumption as un:

Lemma 6. If we pick A to be large enough, then(ˆ
Vn+1

|dun+1/dn|p
)1/p

< Ae−β(n+1).

We remark only that, for the proof of this lemma, one must choose δn+1

small enough, but in a harmless way to the rest of our argument.

Finally, in order to conclude the proof, we must pick Kn, εn suitably: they
must satisfy

1.
∑
ε−dn+1Kn+1e

−βn <∞,
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2.
∑

[K−pn+1 + ε
(d−1)/2
n+1 ] is sufficiently small.

We can pick, for instance, εn = C−1n−2 and Kn = Cn2/p for a big constant
C > 1, and those properties are immediately verified.

By the first condition above, we can ensure that the functions form a
Cauchy sequence in C1(Rd−1

+ ). Let u be the limit function. By the support

of the functions Fεn bein contained in DRd−1(0, ε
1/2
n ) and by the fact that

un+1 6= un in (at most) δ
−(d−1)
n+1 discs of radius δn+1ε

1/2
n+1, we conclude that

|{x ∈ Q(1) : u(x) 6= 0}| ≤ C
∑

ε
(d−1)/2
n+1 .

Also, by the recursive definition of the functions un, one can estimate the
measure of |Vn+1\Vn| ≤ ApK−pn+1. This plainly implies that

|{x ∈ Q(1) : dû/dn(x) 6= 0}| ≤ Ap
∑

K−pn+1.

As we chose Kn, εn satisfying condition (2) above, we get that

|Q(1) ∩ {x : (dû/dn)(x) = 0} ∩ {x : u(x) = 0} | > 0,

as desired, which concludes the result. We notice that this proof does not
yield immediately the stated regularity, but a more careful analysis of the
way we defined our sequence of functions gives us, in a fashion similar to [3],
that the limit u is in some C1+ε class.
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18 The 2D Calderón Problem - Talk 1: The

Calderón problem with L∞ conductivity

A summary written by Olli Saari

Abstract

Calderón’s inverse problem can be solved for conductivities with
no smoothness in the plane using quasiconformal methods. The higher
dimensional analogue is not known. This is summary of the exposition
of the solution to planar Calderón problem in [1]. The result was
originally due to Astala and Päivärinta [2].

18.1 Introduction

Let Ω ⊂ C be the unit disc. For σ > 0 with log σ ∈ L∞(C), the Dirichlet
problem

∇ · σ∇u = 0 in Ω, (1)

u|∂Ω = φ ∈ W 1/2,2

always admits a unique solution u ∈ W 1,2(Ω). Here W 1/2,2 is the class of
boundary traces of W 1,2(Ω) functions. We define the normal derivative of a
solution u through

〈σ∂u
∂ν
, ψ〉 =

ˆ
Ω

σ∇u · ∇ψ, ψ ∈ W 1,2(Ω),

and call σ the conductivity, φ the Dirichlet data (voltage) and σ
∂u

∂ν
the

Neumann data (current). The Dirichlet-to-Neumann map of σ is the operator

Λσ(φ) = σ
∂u

∂ν
. (2)

The inverse problem of Calderón consists in showing that given two con-
ductivities σ and σ̃ as above, the coincidence of Dirichlet-to-Neumann maps
Λσ = Λσ̃ implies σ = σ̃ almost everywhere in the sense of the Lebesgue
measure.
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When additional smoothness assumptions are imposed on σ, one may
expand the differential operator and reduce the problem to a Schrödinger
type equation

∆v − qv = 0, q = σ−1/2∆σ1/2.

Such a reduction is not possible under the mere assumption of boundedness,
and one has to choose another path. By exploiting quasiconformal methods,
Astala and Päivärinta solved Calderón’s problem in the plane.

Theorem 1 (Astala and Päivärinta [2]). Let σ, σ̃ > 0 be bounded from above
and from below. If Λσ = Λσ̃ as defined in (2), then σ = σ̃ almost everywhere.

18.2 Outline of the proof

18.2.1 Beltrami equation

We call solutions to (1) σ-harmonic. Every σ-harmonic u has a (1/σ-harmonic)
conjugate v such that f = u+ iv satisfies the R-linear Beltrami equation

∂zf = µ(z)fz,
1− σ
1 + σ

. (3)

Such an f is quasiregular. The proof aims at showing that the mappings f
corresponding to the conductivities coincide. The uniqueness of µ and σ will
then follow.

18.2.2 Complex geometric optics

There is a family of solutions to the Beltrami equation such that fµ(z, ξ) =
eiξzMµ(z, ξ) and Mµ(z, ξ)− 1 = O(z−1) as z →∞. They are called complex
geometric optics solutions (CGO) and for any given ξ the corresponding CGO
is unique. CGO for (3) give rise to corresponding CGO for (1).

18.2.3 Hilbert transform

The Hilbert transform (special to this problem) is defined as Hσ : u|∂Ω 7→
v|∂Ω −

´
∂Ω
v when v is the conjugate of u. Through integration by parts one

sees
∂TH(u) = Λσ(u)

so that Λσ determines the Hilbert transform uniquely. This information leads
to unique determination of CGOs outside the unit disc and the main part of
the problem is to extend this inside the disc.
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18.2.4 Nonlinear Fourier transfrom

The next step is to prove that CGOs depend smoothly on the parameter ξ.
Once this is known, one may differentiate a CGO for (1) with respect to ξ
parameter to obtain

∂ξuσ = −iτσ(ξ)e−iξz
(
1 +O(|z|−1)

)
.

Here the coefficient τ is independent of z so that e−iξz (1 +O(|z|−1)) part is
again a solution to σ-harmonic equation. It obeys the asymptotics of a CGO
so that it must be uσ itself. Hence

∂ξuσ(z, ξ) = −iτσ(ξ)uσ(z, ξ). (4)

The coefficient τ is called the nonlinear Fourier transform coming from σ and
it is determined by Λσ. In particular uσ and uσ̃ solve the same differential
equation in ξ.

18.2.5 Subexponential growth

The final passage of the proof consists in showing that the CGO’s uσ(z, ξ)
differ asymptoticaly from eiξz by a factor growing less than exponentially in
ξ. Hence its logarithm is continuous and close to a multiple of the identity for
z large, which implies surjectivity as a mapping z 7→ log uσ(z, ξ). The final
claim log uσ(z, ξ) = log uσ̃(z, ξ) follows from (4) and the argument principle.
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19 The Calderón problem with partial data -

Talk 2

A summary written by Gennady Uraltsev

Abstract

In this paper the authors show an L∞ potential on a smooth do-
main in dimension n ≥ 3 is uniquely determined by the boundary
values of the solutions to the Sch??dinger equation. They show that
this uniqueness holds for partial knowledge of the boundary data. In
particular if one considers solutions whose Dirichlet boundary values
u�∂Ω are supported on some open subsets ΓD ⊂ ∂Ω of the bound-
ary and the knowledge of the Neumann boundary values ∂νu�∂Ω is
restricted to an appropriate neighborhood ΓN ⊃ ∂Ω \ ΓD of the com-
plement of ΓD. Sufficient properties of such neighborhoods (ΓD,ΓN )
are given.

This result relies on studying the injectivity of a transform of the
potential associated to interactions with products of so-called com-
plex geometrical optics solutions constructed using Carleman esti-
mates with limiting Carleman weights.

19.1 Main results

Let n ≥ 3 and let Ω ⊂⊂ Rn be an open connected domain with compact
closure and C∞ boundary ∂Ω. Let ν(x) for x ∈ ∂Ω be the external normal
vector to Ω. Let ΓD,ΓN ⊂ ∂Ω be two open subsets of the boundary. The
partial Cauchy data for a potential q ∈ L∞(Ω) is the set

CΓD,ΓN
∆,q =

{
(u�∂Ω, ∂νu�ΓN ) : u ∈ H∆(Ω),

(−∆ + q)u = 0 on Ω

spt(u�∂Ω) ⊂ ΓD

}
(1)

where
H∆(Ω) = {u ∈ D′(Ω) : u ∈ L2(Ω), ∆u ∈ L2(Ω)} (2)

so that
CΓD,ΓN

∆,q ⊂ H−1/2(∂Ω)×H−3/2(∂Ω). (3)

For a given choice of ΓD and ΓN one would like to understand if q1, q2 ∈
L∞(Ω) and

CΓD,ΓN
∆,q1

= CΓD,ΓN
∆,q2
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implies that q1 = q2.
(†) We assume that the potential q ∈ L∞(Ω) is such that 0 is not an

eigenvalue of−∆+q seen as a compact perturbation of−∆ onH2(Ω)∩H1
0 (Ω).

Let x0 ∈ Rn \ ch(Ω) where ch(Ω) is the convex hull of Ω. Then the front,
back, and tangential points of ∂Ω with respect to x0 are given by

F (x0) = {x ∈ ∂Ω: (x− x0) · ν(x) < 0}
B(x0) = {x ∈ ∂Ω: (x− x0) · ν(x) > 0}
T (x0) = {x ∈ ∂Ω: (x− x0) · ν(x) = 0}.

The following result holds

Theorem 1 (Uniqueness with partial data). If ΓD ⊃ F (x0) ∪ T (x0) and
ΓN ⊃ B(x0) ∪ T (x0) are open subsets of ∂Ω and q1, q2 ∈ L∞(Ω) are two
potentials† if

CΓD,ΓN
q1

= CΓD,ΓN
q2

(4)

then q1 = q2 where CΓD,ΓN
q := CΓD,ΓN

∆,q ∩H1/2(Ω)×H−1/2(ΓN)

Notice that if Ω is convex then ΓD can be made arbitrarily small. Then
however ΓN consists of most of the boundary.

The assumption on the potential† imply [2] that CΓD,ΓN
q is the graph of

the restriction to ΓN of Dirichlet to Neumann map for −∆ + q given by

DN q : H1/2(Ω)→ H−1/2(Ω)

DN q(f) := ∂νu�∂Ω

where

{
(−∆ + q)u = 0 u ∈ H1(Ω)

u�∂Ω = f.
(5)

Green’s formula implies that DN ∗q = DN q̄ so the role of F (x0) and B(x0)
can be interchanged in the above statement. As a matter of fact, first the
authors obtain the following preliminary result

Theorem 2 (Full Dirichlet data case). If ΓN ⊃ F (x0) ∪ T(x0) is an open
subset of ∂Ω and for q1, q2 ∈ L∞(Ω) two potentials as above it holds that

DN q1(f)�ΓN −DN q2(f)�ΓN = 0 ∀f ∈ H1/2(Ω) (6)

then q1 = q2.

We will concentrate now on this statement. For simplicity let us suppose
that Ω ⊂⊂ Rn

+ := {x ∈ Rn, xn > 0} and that ΓN ⊃ F (0).
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19.2 Complex geometrical optics solutions

As seen in part 1, for any potential† q ∈ L∞(Ω) we are able to construct
the following family of functions, the so called “complex geometrical optics”
solutions,

v±,y,h(x) = e±
1
h

(φy(x)±iψy(x))(ay(x) + r±,y,h(x)) (7)

where φy(x) := ln |x− y| are instances of smooth on Ω limiting Carleman
weights, 0 < h� 1 is a small semi-classical parameter, and y ∈ Rn

− := {y ∈
Rn : yn < 0}.

Solutions (7) satisfy

• (−∆ + q)v±,y,h = 0,

• ∇φy ⊥ ∇ψ±,y and |∇φy| = |∇ψ±,y|,

• the function ay ∈ C∞(Ω) is non-vanishing,

• ‖r±,y,h‖H1(Ω) . h for h→ 0 locally uniformly in y

Only the correction terms r±,y,h depend on the potential† q and on the semi-
classical parameter h. Furthermore the choice of ay and ψy is not unique
but one has an analytic family of real analytic candidates for which the last
estimate above is locally uniform.

19.2.1 Integral testing

The following crucial integral testing condition holds for the above solutions

Proposition 3. For any two solutions v1,y,h = v−,y,h associated to q1 and
v2,y,h = v+,y,h associated to q2 it holds that

ˆ
Ω

(q1 − q2)v1,y,hv2,y,h = O(h) (8)

as h→ 0 locally uniformly for all y ∈ Rn
− such that F (y) ⊂ ΓN .

This result uses that CΩ,ΓN
q1

= CΩ,ΓN
q2

to construct a solution ṽ1,y,h ∈ H1(Ω)
satisfying

(−∆ + q1)ṽ1,y,h = 0

{
ṽ1,y,h = v2,y,h on ΓD = ∂Ω

∂ν ṽ1 = ∂νv2 on ΓN .
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As a matter of fact a straightforward integration by parts yields that
ˆ

Ω

(q1 − q2)v1v2 = −
ˆ
∂Ω\ΓN
v1,y,h∇(v2,y,h − ṽ1,y,h) · dν(x)

and the the right-hand side follows can be bound using Carleman estimates
due to the fact that ∇φy · ν(x) is positive and bounded away from 0 on
∂Ω \ ΓN .

The bounds on the remainders r1,y,h and r2,y,h allow us to then conclude
that ˆ

Ω

(q1(x)− q2(x))e−i
ψ1,y(x)−ψ2,y(x)

h a1,y(x)a2,y(x)dx = O(h). (9)

where we have a crucial amount of freedom when choosing ψ1,y, ψ2,y and
corresponding a1,y, a2,y

19.3 Injectivity of the complex geometrical optic trans-
form

Concluding the proof now relies on showing that the family of complex geo-
metrical optics solutions available is rich enough to be able to conclude from
(9) that q1 − q2 vanishes. The construction of complex geometrical optic
solutions shows that ψy(x) may be chosen to be

Ψ(y,ω)(x) := dSn−1

(
x− y
|x− y|

;ω

)
where dSn−1 is the geodesic distance on Sn−1 and ω ∈ Sn−1 is in the comple-
ment of the bi-cone generated by

By(Ω) = {λ(x− y) ∈ Rn : λ ∈ R, x ∈ Ω}.

If A1,y,ω(x) and A2,y,ω(x) are any two functions associated to φy(x) and
Ψy,ω(x) in the construction of the complex geometrical optic solution then it
follows from (9) that

ˆ
Ω

(q1(x)− q2(x))e−iλFy,ω,dω(x)A1,y,ω(x)A2,y,ω(x)dx = 0.

where Fy,ω,dω(x) = DωΨy,ω(x)[dω] where dω ∈ Rn−1 is any vector with dω ⊥
ω and λ ∈ R since Fy,ω,dω is linear in dω.
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Recall that A1,y,ω(x) and A2,y,ω(x) are non-vanishing and may be cho-
sen to depend analytically on (y, ω). Analytic micro-local analysis ([3], [4])
techniques that depend on appropriate non-degeneracy properties of F that
stem from the above geometric construction allow one to conclude that the
transform

q 7→
ˆ

Ω

q(x)e−iλFy,ω,dω(x)A1,y,ω(x)A2,y,ω(x)dx = 0. (10)

is injective on any set of parameters of the form

{(λ, y, ω, dω) : (y, ω) ∈ U(y0, ω0), λ ∈ R, dω ∈ TωSn−1}

where U(y0, ω0) ⊂ Rn
− × Sn−1 is any open neighborhood of (y0, ω0) with

ω0 /∈ By0(Ω).
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20 Counterexamples - Talk 1: Sharp coun-

terexamples in unique continuation for sec-

ond order elliptic equations

A summary written by Julian Weigt

Abstract

For n ≥ 3 and p < n
2 there is a function u ∈ C∞(Rn) with

nonempty compact support and ∆u
u 1u6=0 ∈ Lp(Rn). For n = 2 it

also holds for p = 1.

20.1 Main result

The existence of a nontrivial compactly supported function u with ∆u
u
1u6=0 ∈

Lp can be used to provide a counterexample to the unique continuation prop-
erty. A PDE

∆u = V u in Rn. (1)

with some potential V has said unique continuation property if every solution
that is 0 on a nonempty open set is 0 everywhere. This means that for any
solution u and any nonempty open set U , u is the only solution that equals
u on U . So, asking for which p every PDE (1) with V ∈ Lp has the unique
continuation property is equivalent to asking for which p there is a nontrivial
u which is 0 on a nonempty open set and ∆u

u
1u6=0 ∈ Lp.

Theorem 1. For each n ≥ 2, p < n
2

there exists a u ∈ C∞(Rn) with
nonempty compact support and

∆u

u
1u6=0 ∈ Lp(Rn).

Also for n = 2, p = 1 such a function exists.

The proof goes roughly as follows: Start with a smooth bump supported
on B(0, 2). Then redistribute the L1-mass of ∆u onto balls arranged in a
fine grid, where the radius of the balls is so tiny that that supp(∆u) becomes
small. Since the kernel K(x, y) of the Laplace equation tends to infinity
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for y → x, this means that also
∥∥∆u

u
1u6=0

∥∥
1

becomes small. The rate of
divergence of K determines the range of p in Theorem 1.

In [1] they prove a number of statements like Theorem 1. However the
functions that satisfy the respective statements are all constructed according
to the same scheme described above. For simplicity we also prove Theorem
1 only for n ≥ 3 here.

20.2 Inductive Construction

Take an increasing sequence of radii (rk)k that tends to 2, and a sequence of
thicknesses (ak)k with a0 = r0 and such that with

Ak := {x | rk − ak ≤ |x| ≤ rk}

we have
dist(Ak, Ak+1) = ak,

which means rk+1 = rk + ak + ak+1 and 2 − rk ≥ ak. Then take a sequence
of smooth functions (χk)k that are 1 for |x| ≤ rk − ak + δ

2
√
n
ak and 0 for

|x| ≥ rk − δ
2
√
n
ak with δ to be chosen later, and which for each α satisfy

‖∂αχk‖∞ . a
−|α|
k . (2)

Throughout the presentation the implicit constant in . and such may depend
only on n. We will produce u as the limit of the sequence (uk)k with u0 = χ1.
Given uk set gk := ∆uk. We will come up with some fk and define vk by

∆vk =

{
gk outside Ak

fk in Ak
,

vk = 0 on ∂B(0, rk+1),

and then set uk+1 := χk+1vk.
In order to define fk define the grid

Xk := Ak ∩ δakZn.

Note that |Xk| ∼n δ−na1−n
k . Then take positive smooth functions ϕ, ψ where

ϕ is supported on B(0, 1) and has integral 1, and ψ is supported on [−3
4
, 3

4
]n

and satisfies for all x that ∑
m∈Zn

ψ(x− z) = 1.
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Let (ϕzk)z∈Xk , (ψ
z
k)z∈Xk be versions of ϕ, ψ distributed along Xk according to

ϕzk(x) := ε−nk ϕ
(x− z
εk

)
,

ψzk(x) := ψ
(x− z
δak

)
,

for εk to be chosen later. Then on Ak we have∑
z∈Xk

ψzk = 1.

Now define the values

f zk :=

{´
ψzkgk |

´
ψzkgk| ≥ δn+1an−1

k 2−2k

δn+1an−1
k 2−2k otherwise

and set
fk :=

∑
z∈Xk

f zkϕ
z
k.

The following proposition provides the basic estimates for the sequence
(vk)k. We will not prove it here, but it follows from computations involving
the fundamental solution for the Laplacian on B(0, r) for n ≥ 3,

Kr(x, y) ∼ 1

|x− y|n−2
− |x|n−2

rn−2|x̄− y|n−2
,

where x̄ = r2 x
x2

.

Proposition 2. There are constants δ, C > 0 such that for all k the following
holds: Assume that vk−1 is harmonic in Ak and satisfies for |α| ≤ 1 that

|∂αvk−1| ≤ 2−2ka
1−|α|
k in Ak. (3)

Then

|gk| ≤ C2−2ka−1
k in Ak,

|f zk | ≤ C2−2kδnan−1
k for all z ∈ Xk, (4)

and whenever εk ≤ δak and |α| ≤ 1 we have

∂α(vk − vk−1)| ≤ 2−2(k+1)a
1−|α|
k in B(0, rk − 2ak), (5)

|∂αvk| ≤ 2−2(k+1)a
1−|α|
k+1 in Ak+1. (6)
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20.3 Convergence

Proposition 3. Assume that uk, vk, Xk, εk, f
z
k are chosen as in Proposition

2. Then there is a function u supported in B(0, 2) with ∆u ∈ L1 and

• ∆uk → ∆u in L1

• uk → u uniformly on sets with positive distance to ∂B(0, 2)

Proof.

∆uk+1 −∆uk =


fk − gk in Ak

gk+1 in Ak+1

0 else

.

Therefore by Proposition 2

‖∆uk+1 −∆uk‖1 . 2−2k

so that (∆uk)k converges in L1 to

f :=
∑
k

∑
z∈Xk

f zkϕ
z
k. (7)

Define u by ∆u = f , u = 0 on ∂B(0, 2). Because ∆uk+1 −∆uk is supported
outside of B(0, rk − ak) and rk − ak → 2, it is easy to see that uk converges
uniformly to u on B(0, ρ) for all ρ < 2.

20.4 Bounds on ∆u/u

Proposition 4. Let uk, vk, Xk, εk, f
z
k be chosen as in Proposition 2. If n ≥ 3

then on B(z, εk) with z ∈ Xk we have∣∣∆u
u

∣∣ . ε−2
k (8)

Proof. Recall that ∆u equals (7) and that ϕzk is supported on B(z, εk). We
have

|∆u| . |f zk |
1

εnk
.

The dominant contribution to u(x) is
ˆ
K2(x, y)f zkϕ

z
k(y)dy,
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all other contributions are negligible. For z ∈ Xk, x, y ∈ B(z, εk) we have

K2(x, y) &
1

|x− y|n−2
− |x|n−2

2n−2(2− |y|)n−2

&
1

εn−2
k

− |x|
n−2

(azk)
n−2

&
1

εn−2
k

,

and thus

|u(x)| & |f zk |
1

εn−2
k

so that (8) follows.

20.5 Conclusion

Proof of Theorem 1. Recall that |Xk| ∼ a1−n
k . Thus by Proposition 4∥∥∆u

u
1u6=0

∥∥p
p
.
∑
k

a1−n
k εn−2p

k . (9)

Since we assumed p < n
2

we can make (9) finite by taking (ak)k polynomially
decreasing and (εk)k polynomially decreasing fast enough.

In order to prove the smoothness of u we need to show that f is smooth
on Rn. Since by construction f is smooth on B(0, 2) it suffices to show that
for each α ∂αf(x) goes to 0 for |x| → 2 faster than linearly. Using (2) and
(4) we obtain

|∂αf(x)| . 2−2kδnan−1−m
k ε−nk (10)

for x ∈ Ak. And since (ak)k and (εk)k decrease polynomially in k, (10)
decreases exponentially in k. And since 2 − rk ≥ ak, this means that (10)
also decreases at least exponentially in (2− |x|)−1.
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21 LP Carleman estimates and the Oscula-

tion Techniques - Talk 3: Carleman esti-

mates and unique continuation for second-

order elliptic equations with nonsmooth

coefficients (SUCP, Talk 2)

A summary written by Immanuel Zachhuber

Abstract

This is the second talk about [1], where we present sections 5-7.

21.1 Introduction

We are interested in proving the strong unique continuation property(SUCP)
for solutions to PDEs of the form

∆u = V u+W1∇u+∇(W2u) (1)

for some suitable potentials V,W1,W2. In fact the main result is

Theorem 1 (Thm 1.1). Assume V ∈ c0(L
n
2 ) and W1,W2 ∈ l1w(Ln) hold.

Then SUCP holds at 0 for H1-solutions to (1).

Here we have used the notation lp(Lq) to mean Lq on dyadic annuli of size
2j and lq summation w.r.t. the j-parameter.
We briefly recall some notations from the previous sections, h : R → R is a
convex function which, in addition, satisfies

|h′′|+ dist(2h′,Z) ≥ 1

4
. (2)

For a function ϕ, which will be a perturbation of h, we define the space Xϕ

with norm
‖v‖Xϕ := ‖v‖Lp + ‖∇v‖L2+|∇ϕ|Lp

and its dual
X ′ϕ = Lp

′
+∇(L2 ∩ |∇ϕ|−1Lp

′
)
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Moreover we introduce the following spaces for τ > 0 and 0 < ε < 1 on the
“cylinder” R× Sn−1

X̃τ,ε := {v ∈ Lp ∩ τ−1/2(1 + ετ)−1/4L2,∇v ∈ (L2 + τLp) ∩ τ 1/2(1 + ετ)−1/4L2}

and by undoing the transformation x = esθ, we set

‖u‖Xτ,ε := ‖|x|
n−2
2 u‖X̃τ,ε (3)

for functions on Rn. We further define the dual spaces

X̃ ′τ,ε = Lp
′
+ τ 1/2(1 + ετ)1/4L2 +∇(L2 ∩ τ−1Lp

′
) + τ−1/2(1 + ετ)1/4∇L2

and correspondingly

‖g‖X′τ,ε := ‖|x|
n+2
2 g‖X̃′τ,ε (4)

Note that in the case |∇ϕ| ≈ τ these spaces are a refinement of the Xϕ in
the sense

Xτ,ε ⊂ Xϕ and X ′ϕ ⊂ X ′τ,ε.

With this notation in hand, we can state the main result of the paper which
implies Theorem 1 by a standard argument.

Theorem 2. [Thm. 3.2]For any τ > 0, W1,W2 ∈ l1w(Ln) and each function
u vanishing of infinite order at 0 and ∞, there exists a function ϕ satisfying

τ ≤ −r∂rϕ ≤ τ 2, |∂θϕ| ≤ |r∂rϕ|

so that

‖eϕu‖lp′ (Xϕ) +
‖eϕW1∇u‖Lp′
‖W1‖l1w(Ln)

+
‖eϕW2u‖|∇ϕ|−1Lp′

‖W2‖l1w(Ln)

. ‖eϕ∆u‖lp′ (X′ϕ)

21.2 A perturbation argument

In this section we extend the results of section 4 to suitable small pertur-
bations of the function h which is allowed to have a radial dependence. We
set

ϕ(x) = h(− ln |x|) + k(− ln |x|, θ).

The first result is analogous to Proposition 4.1, which did not include the k.
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Proposition 3 (Prop. 5.1). Let τ � 1. Consider a convex function h satis-
fying (2) and |h′| ∈ [τ, 2τ ]. Assume that k is s.t.

|k|+ |x||∇k| � 1.

Then
‖eϕu‖Xτ,0 . ‖eϕ∆u‖X′τ,0

for all functions u vanishing at infinite order at 0 and ∞.

We need a further refinement of this, the next result is similar to Prop. 4.2.

Proposition 4 (Prop.5.2). Let τ ≥ 1 and 0 < ε < 1 s.t. ετ > 1. Consider
h s.t.

|h′| ∈ [τ, 2τ ], h′′ ∈ [ετ, τ ], |h′′′| ≤ τ

in some interval I of length |I| . 1. Assume that

k + |x|2|∇2k| << ετ.

Then
‖eϕu‖Xτ,ε . ‖eϕ∆u‖X′τ,ε

for all functions u supported in {x : |x| ∈ e−I}.

21.3 The construction of h and global estimates

This part details the construction of the function h and the proof of a sharper
result than Theorem 3.1.

Lemma 5 (Lem. 6.1). Let (aj)j∈Z be a non-negative sequence s.t.

‖a‖l1w ≤
1

4

which is slowly varying, i.e.

1

2
≤ aj+1

aj
≤ 2 ∀j ∈ Z.

Then for any τ large there exists a function h : R→ R such that

1. τ ≤ ∂sh(s) ≤ τ 2.
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2. h′(s)aj ≤ h′′(s) ≤ 2h′(s)aj if j ≤ s ≤ j + 1 and aj ≥ Cτ−1.

3. dist(2h′(s),Z) ≥ 1
4

if j ≤ s ≤ j + 1 and aj ≤ Cτ−1.

4. |h′′′(s)| ≤ 4h′(s)aj if j ≤ s ≤ j + 1.

This gives us a specific function h which will be perturbed by a small function
k as above. The next theorem is the main global estimate and is a sharper
result than Thm. 3.1 in [1].

Theorem 6 (Thm. 6.2). Let (aj)j∈Z and h as above and let k satisfy

|x||∇k|+ |x|2|∇2k| � ajh
′(j) for s ∈ [j, j + 1].

Then the estimate
‖eϕu‖lp′Xh′,a . ‖e

ϕ∆u‖lp′Xh′,a
holds for all functions u vanishing at infinite order at 0 and ∞.

Here the spaces Xh′,a are defined as Xh′(j),aj on dyadic annuli 2j−1 ≤ |x| ≤ 2j

and then the lq norm is taken with respect to the parameter j.

21.4 Wolff’s lemma and the gradient term

In order to also treat the gradient terms and prove the bounds in Theorem 2
we need some additional ideas, since the Carleman-type estimates from the
previous sections are not enough. The strategy is to use the fact that we
still have some liberty in choosing the function ϕ. Roughly speaking, we will
construct a ϕ for which ‖eϕW1∇u‖p

′
and ‖eϕW2u‖p

′
are concentrated on a

“small” set so that they can be controlled by the ‖eϕu‖lp′Xϕ term.
We state the following result due to Wolff [2], which is needed to find the
exact form of the perturbation k s.t. ϕ(x) = h(|x|) + k(|x|, θ) does the job
and h is chosen as in Lemma 5 with a suitable sequence (aj).

Lemma 7 (Wolf,[2]). Let µ be a positive, compactly supported measure in
Rn. Define µk by dµk(x) := ek·xdµ(x). Suppose B is a convex set in Rn. Then
there exists a sequence {ki} ⊂ B and, for each i, a convex set Eki with

µki(Rd\Eki) ≤
1

2
‖µki‖
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such that the Eki are pairwise disjoint and∑
i

|Eki |−1 ≥ C|B|

for C > 0 depending only on the dimension and where |·| denotes the Lebesgue
measure.

We then apply this to the measure

dµ = χFj

∣∣∣|∇̃ϕ|eϕ(s,ϑ)W̃v
∣∣∣p′ dsdθ

where we have changed variables via x = esθ and Fj is some suitably chosen
compact set.
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22 CGO, Uniqueness and Limiting Carleman

Weights - Talk 1: A global uniqueness the-

orem for an inverse boundary value prob-

lem

A summary written by Wiktoria Zaton

Abstract

In this talk we shall see that the knowledge of the Dirichlet inte-
grals for any boundary data on a region Ω ⊆ Rn, n ≥ 3, associated to
the elliptic operator Lγ = ∇ · γ∇ is enough to determine the smooth
coefficient γ. The proof relies on the construction of complex geomet-
rical optics solutions.

22.1 Introduction

We work on a bounded domain Ω with smooth boundary and for a smooth
coefficient 0 < ε < γ ∈ C∞(Ω) consider the elliptic operator Lγ = ∇ · γ∇.
Let Qγ denote the associated Dirichlet integral

Qγ : H1/2(Rn) 3 f 7→
ˆ

Ω

γ|∇u|2 =

ˆ
∂Ω

fγ
∂u

∂ν
,

where u is the unique solution to

Lγu = 0 in Ω

u = f on ∂Ω.

The question is whether the knowledge of the values of Qγ for all boundary
data f enables us to determine the coefficient γ. For later use let us define
the Dirichlet to Neumann map Λγ : f 7→ γ∂νu|∂Ω. The following result we
saw last time gives an affirmative answer in case of real analytic coefficients.

Theorem 1 (R. Kohn, M. Vogelius). Let γ0, γ1 ∈ C∞(Ω) and x∗ ∈ ∂Ω.
Suppose there exists a neighbourhood B of x∗ in Ω such that Qγ0(f) = Qγ1(f)
holds for all f ∈ H1/2(∂Ω) supported in B. Then for any multiindex α ∈ Nn

∂αγ0(x∗) = ∂αγ1(x∗).
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In this talk we solve the problem for n ≥ 3 using the technique of com-
plex geometrical optics solutions, inspired by Calderón’s calculations (see the
survey [3]). For this we construct special solutions of Lγu = 0 of the form

ex·ξγ−1/2(1 + ψ(x, ξ)),

where ξ ∈ Cn is a parameter with ξ ·ξ = 0 and ψ(·, ξ)→ 0 for |ξ| → ∞. Those
functions are highly oscillatory for |ξ| large. We observe that if n ≥ 3 than
for any k ∈ Rn there are ξ1, ξ2 with ξj · ξj = 0 such that eix·k = eix·ξ1eix·ξ2

arises in the product of the two corresponding special solutions. We can
enforce |ξj| to be arbitrarily large and so hope to be able to gain information
about the Fourier transform of some function involving γ and thus about the
coefficient itself.

22.2 The main result

We postpone the construction of special solutions and explain first how they
are used in the main proof.

Theorem 2. Let n ≥ 3. Suppose γ0, γ1 ∈ C∞(Ω) satisfy γ0, γ1 > 0 in Ω
and Qγ0(f) = Qγ1(f) holds for all f ∈ H1/2(∂Ω). Then γ0 = γ1.

For γ0 and γ1 as above let us define γ = (1− t)γ0 + tγ1 for t ∈ [0, 1].

Proposition 3. Let s > n/2 and ξ ∈ Cn satisfy ξ · ξ = 0. There exist

constants C1 and C2 such that if |ξ| ≥ C1‖q‖Hs(Ω) for q = ∆γ1/2

γ1/2
then there

exists a solution u(x, ξ, t) of Lγ(t)u(·, ξ, t) = 0 of the form

u(x, ξ, t) = ex·ξγ−1/2(1 + ψ(x, ξ, t)),

for some ψ(·, ξ, t) ∈ Hs(Ω), t ∈ [0, 1], with ‖ψ(·, ξ, t)‖Hs(Ω) ≤ C2

ξ
‖q(t)‖Hs(Ω).

We have u(x, ξ, 0) = u(x, ξ, 1) on ∂Ω in the trace sense.

Theorem 2. As explained before given k ∈ Rn and r > 0 we can choose

ξ1 = i

(
k

2
+ rη

)
+ ζ and ξ2 = i

(
k

2
− rη

)
− ζ,

where η, ζ ∈ Rn satisfy 〈k, η〉 = 〈k, ζ〉 = 〈η, ζ〉 = 0, |η| = 1 and

|ζ|2 = |k|2
4

+r2, such that ξj ·ξj = 0 and |ξj| > r for j = 1, 2. The bilinear forms
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Qγ1 and Qγ2 coincide, thus, putting w(t) := u(·, ξ1, t) and v(t) := u(·, ξ2, t)

0 = Qγ0(w(0)|∂Ω, v(0)|∂Ω)−Qγ1(w(0)|∂Ω, v(0)|∂Ω)

= Qγ0(w(0)|∂Ω, v(0)|∂Ω)−Qγ1(w(1)|∂Ω, v(1)|∂Ω)

=

ˆ 1

0

(Qγt(w(t)|∂Ω, v(t)|∂Ω))′ dt

=

ˆ 1

0

[ˆ
Ω

γ′(t)∇w(t) · ∇v(t) +

ˆ
∂Ω

γ(t) (w′(t)∂νv(t) + v′(t)∂νw(t))

]
dt,

where we have used that the traces of v(0) and v(1), corresp. w(0) and w(1),
coincide, and that the map γ → Qγ is analytic (Calderón) with the Frechét
derivative at γ0 in the direction h given by dQγ0h(v, w) =

´
Ω
h∇w ·∇v. It can

be shown ([2] lemma 2.8) using integration by parts that the second double

integral in the sum vanishes and thus
´ 1

0

´
Ω
γ′(t)∇w(t) · ∇v(t)dt = 0. Now,

all derivatives of γ′ = γ1 − γ0 ∈ C∞(Ω) vanish on ∂Ω by theorem 1, so we
may extend it trivially by 0 to Rn. We use the product rule, integrate by
parts a few times using Lγv = 0, Lγw = 0 and arive at

0 =

ˆ 1

0

ˆ
Rn
Lγ

(
γ′

γ

)
vw

=

ˆ 1

0

dt

ˆ
Rn
dx Lγ

(
γ′

γ

)
1

γ
eix·k(1 + ψ(x, ξ1, t))(1 + ψ(x, ξ2, t)).

We now use the Hölder inequality together with the Sobolev norm estimate
for ψ and let r →∞. We are left with

0 =

ˆ
Rn
dx

ˆ 1

0

dt Lγ

(
γ′

γ

)
1

γ
eix·k.

Since k ∈ Rn was arbitrary, we conclude

0 =

ˆ 1

0

Lγ

(
γ′

γ

)
1

γ
dt.

We can calculate that the right hand side equals

∆(log γ1 − log γ0) +
1

2
∇(log γ1 + log γ0) · ∇(log γ1 − log γ0).

Combining this with the fact log γ1 = log γ0 on ∂Ω we conclude by the weak
maximum principle log γ1 = log γ0 in Ω.
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22.2.1 Existence of the special solutions

Proof. 3 Since all derivatives of γ0 and γ1 coincide on ∂Ω, we may extend
γ(t) = (1− t)γ0 + tγ1 smoothly to Rn and can assume that outside of a ball
around Ω, γ = 1. We plug a special solution into ∇ · γ∇u = 0 and see that
we need to solve

∆ψ + 2ξ · ∇ψ − qψ = q, where q =
∆γ1/2

γ1/2
. (1)

This is done by Fourier transform methods and weighted Sobolev spaces. For
m ∈ N let Hm

δ = Hm(Rn, (1 + |x|2)δdx). We first find solutions to

Lw = ∆w + 2ξ · ∇w = f in Rn, (2)

where f ∈ L2
δ+1 for some −1 < δ < 0. By change of coordinates we can

assume that 2ξ = s(e1 + ie2) and thus on the Fourier side (2) reads

l(η)ŵ = (−|η|2 − sη2 + isη1)ŵ = f̂ . (3)

Now M = {η ∈ Rn| l(η) = 0} is a codimension-2 sphere and we can in-
troduce a finite covering (Vj) of Rn (with a subordinate partition of unity
(ρj)) and new local (dual-)coordinates on the Vj’s so that (3) locally becomes

ŵj = (βj + iβ1)−1ρj f̂ . This Fourier multiplier is a bounded map from L2
δ+1

to L2
δ , which is seen in a direct calculation and we put ŵ =

∑
j ŵj. We have

‖w‖L2
δ
≤ Cδ
|ξ|
‖f‖L2

δ+1
and ‖w‖Hm

δ
≤ Cδ
|ξ|
‖f‖Hm

δ+1

by differentiation. This is a unique solution in L2
δ ([2] corollary 3.5) and so

we have proven the existence of the solution operator S : L2
δ+1 → L2

δ . We
turn our attention back to (1) and apply the solution operator to obtain

(I + S ◦M(−q))ψ = Sq, where M(−q)w := −qw. (4)

We need to invert the operator I + S ◦M(−q) on L2
δ . There exists a constant

C1 depending on Ω, n, s such that if s > n
2

and |ξ| ≥ C1‖q‖Hs the following
estimate is true

‖S ◦M(−q)ψ‖L2
δ
≤ Cδ
|ξ|
‖qψ‖L2

δ+1
≤ Cδ
|ξ|
‖(1 + |x|2)1/2q‖L∞‖ψ‖L2

δ
<

1

2
‖ψ‖L2

δ
,
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since by Sobolev embeddings and the compact support of q we can estimate
‖(1 + |x|2)1/2q‖L∞ ≤ CΩ‖q‖L∞ ≤ CΩ,n,s‖q‖Hs ≤ C|ξ| (the constant C varies).
Thus we may invert the operator by Neumann series. Similarly we obtain an
estimate of the Hs

δ -norm of ψ.
To complete the proof we need to show that for ξ as above

u(x, ξ, 0) = u(x, ξ, 1) on Rn \ Ω.

To this end let z ∈ H1(Ω) be the unique solution of

Lγ1z = 0 in Ω

z = u(x, ξ, 0) on ∂Ω.

Recall that we extended γ to Rn independently of t. In particular u(x, ξ, 0)
solves ∇ · γ1∇u = 0 in Rn \ Ω. We claim

w :=

{
z in Ω

u(x, ξ, 0) on Rn \ Ω

solves Lγ1w = 0 in Rn. Since γ1/2e−x·ξw − 1 satisfies the required Sobolev
estimates, we get w = u(x, ξ, 1) on Rn, thus u(x, ξ, 0) = u(x, ξ, 1) on Rn \Ω.
For our claim we only need to show ∂νz = ∂ν(u(x, ξ, 0)) on ∂Ω. Since the
Dirichlet forms Qγ0 and Qγ1 coincide, so do the Dirichlet to Neumann maps
Λγi , i = 0, 1. Thus, using Λγ0(u(x, ξ, 0)|∂Ω) = γ0∂νu(x, ξ, 0)|∂Ω

γ0∂νz|∂Ω = γ1∂νz|∂Ω = Λγ1(u(x, ξ, 0)|∂Ω) = γ0∂νu(x, ξ, 0)|∂Ω.

22.2.2 Remarks abd susbequent results

We refer to the survey [3] where further details and references can be found.
In a different work the authors proved theorem 1 for merely Lipschitz

continuous conductivities. Using this fact we can replace the smoothness
condition in the main theorem by γ being C2. However, this is not the
weakest possible assumption under which the result holds.

The main theorem is a consequence of a more general result. We have

γ−
1
2Lγ(γ

− 1
2 ) = ∆− q with q =

∆γ1/2

γ1/2

and the knowledge of the Cauchy data for the conductivity equation is enough
to determine the Cauchy data for the Schrödinger equation. It can be shown
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that in this case the boundary measurements are enough to determine any
merely bounded potential q. Surprisingly it is sufficient to do the measure-
ments on slightly more than half of the boundary only. The following theorem
is obtained as a corollary of this result.

Theorem 4 ([1]). For ξ ∈ Sn−1 and a bounded domain with C2 boundary
define ∂Ω−(ξ) = {x ∈ ∂Ω|〈ν(x), ξ〉 < 0}. Assume the potentials γi ∈ C2(Ω),
i = 1, 2 are strictly positive and that for some ξ ∈ Sn−1

Λγ1(f)|∂Ω−(ξ) = Λγ2|∂Ω−(ξ)(f)

holds for all f ∈ H−1/2(∂Ω). Then γ1 = γ2.

The assumptions above can be relaxed even further, as we will see in the
next talk.

Finally we wish to remark that in two dimensions the main theorem
holds even for L∞ conductivities. This case requires some new methods and
a different construction of complex geometrical optics solutions.
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23 A nonlinear Plancherel theorem with ap-

plications to global well-posedness for the

defocusing Davey-Stewartson equation and

to the inverse boundary value problem of

Calderón - Talk 3: section 6

A summary written by Pavel Zorin-Kranich

Abstract

We indicate how the Dirichlet-to-Neumann map for the Calderón
problem in dimension 2 with conductivity σ can be used to recover
the scattering transform of q = −1

2∂ log σ. By invertibility of the
scattering transform for L2 data this implies that σ can be recovered
from the Dirichlet-to-Neumann map assuming log σ ∈ Ḣ1.

Let Ω ⊂ R2 ∼= C be a simply connected domain with C1,1 boundary.
Denote the outside normal unit vector field by ν and the tangential vector
field by τ . Consider the Dirichlet problem

∇ · (σ∇u) = 0 in Ω, u|∂Ω = g. (1)

Here we interpret u as electrostatic potential, σ as conductivity,∇u as electric
field, and σ∇u as current density. Then the equation describes conservation
of charge and the boundary condition is an externally applied voltage. We
consider conductivities σ > 0 that satisfy

log σ ∈ Ḣ1(Ω), σ|∂Ω ≡ 1. (2)

Theorem 1 ([1, Theorem 1.7]). Assume (2). Then for every real-valued
g ∈ H1(∂Ω) there exists a unique solution to (1) with σ1/2∇u ∈ H1/2(Ω).
Also, ν · ∇u ∈ L2(∂Ω).

The existence of the solution does not follow from elliptic theory because
σ is not assumed to be bounded above or below. 1/2 derivative of ∇u is
necessary to define the trace on the boundary in L2.

The solutions of (1) are in one-to-one correspondence to solutions of

∂̄v − qv̄ = 0 in Ω, =(νv|∂Ω) = g0 (3)
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with data

q = −1

2
∂ log σ ∈ L2(Ω), g0 = −1

2

∂g

∂τ
∈ L2(∂Ω). (4)

Here ∂ = (∂x− i∂y)/2 and ∂̄ = (∂x + i∂y)/2. The correspondence is given by

v = σ1/2∂u. (5)

One can verify that (1) for u implies (3) for v. Conversely, suppose that (3)
holds for v. In order to find a real-valued function u such that (5) holds it
suffices to check that the vector field σ−1/2v is rotation-free, that is, that

=(∂̄(σ−1/2v)) = ∂y<(σ−1/2v) + ∂x=(σ−1/2v)

vanishes. This can be in turn checked using (3).

Theorem 2 ([1, Theorem 1.9]). Suppose q ∈ L2(Ω) is as in (4) with σ as
in (2) and g0 ∈ L2(∂Ω) is real-valued with integral 0. Then (3) has a unique
solution v with

‖v‖H1/2(Ω) + ‖v‖L2(∂Ω) ≤ C(q)‖g0‖L2(∂Ω).

In particular there is a bounded operator

Hq(g0) := <(νu|∂Ω) (6)

acting on L2(∂Ω). We do not claim that its norm is controlled by ‖g0‖L2 .
First we solve (3) in the case q = 0, that is,

∂̄v = 0 in Ω, =(νv|∂Ω) = g + c on ∂Ω.

To do this write v = ∂u and solve a boundary value problem for ∆u = 0.
The solution operator g0 7→ (v, c) is bounded from L2(∂Ω) to H1/2(Ω) × C.
Denote the first component of the solution operator by Bg0 := v.

Next consider the inhomogeneous problem

∂̄v = f0 in Ω, =(νv|∂Ω) = c on ∂Ω

with f0 ∈ L4/3(Ω). This can be solved by first solving ∆u = f0 on R2, then
v0 = ∂u ∈ W 1,4/3(R2), and presumably this space embeds into H1/2(Ω) ∩
L2(∂Ω). The possibly non-trivial boundary trace can be eliminated by setting
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v = v0−B(v0|∂Ω). The solution operator f0 7→ (v, c) is bounded from L4/3(Ω)
to H1/2(Ω)× C. Denote its first component by Tf0 = v.

The equation (3) can now be written as

v = T (qv̄) +B(g0), v ∈ H1/2(Ω) ∩ L2(∂Ω)

(a priori this equation has an additional constant term on the boundary that
cancels out eventually). The right-hand side makes sense because ‖qv̄‖L4/3 .
‖qv̄‖Ḣ−1/2 . ‖q‖L2‖v‖Ḣ1/2 . If q is smooth, then T (qv̄) has one more derivative
than v, so v 7→ T (qv̄) is a compact operator. Approximating q ∈ L2(Ω) by
smooth functions we see that v 7→ T (qv̄) is a norm limit of compact operators,
hence compact.

By Fredholm’s alternative existence (and also uniqueness) of solutions
will follow from absence of non-zero solutions of

v = T (qv̄). (7)

If ‖q‖L2 is sufficiently small, then the operator on the right-hand side of (7)
is strictly contractive on H1/2(Ω), and this implies v = 0. A general function
q ∈ L2(Ω) can be split as q = qsm + qer into a smooth part and an error part
with small L2 norm. Then starting with a solution of (7) we can construct a
solution of the same equation with q replaced by qer as for the equation on
the full space. That solution has to be 0, so that v = 0. This finishes the
proof of Theorem 2.

The Dirichlet-to-Neumann map for the problem (1) can be related to the
operator (6). Reconstructing σ from the Dirichlet-to-Neumann map is the
same as reconstructing q from (6). The next result tells that q is uniquely
determined by Hq.

Theorem 3 ([1, Theorem 1.10]). The map q 7→ Hq from the subset of L2(Ω)
given by (4) to the space of bounded operators on L2(∂Ω) is injective.

Proof. We will show that the scattering transform Sq is uniquely determined
by Hq, where we identify q with its extension by 0 outside Ω. Recall

Sq(k) =
1

2πi

ˆ
R2

ek(z)q(z)(m+(z, k) +m−(z, k))dz,

where m±(·, k) are the Jost solutions of the equation ∂̄m± = ±e−kqm± and

ek(z) = ei(zk+zk) (as in the 2nd talk on this article). Let k ∈ R2 be such that
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Mq̂(k) < ∞. Substituting the equation determining m± and using Stokes’s
theorem we obtain

Sq(k) =
1

2πi

ˆ
Ω

∂̄m+(z, k)− ∂̄m−(z, k)dz =
1

4πi

ˆ
∂Ω

ν̄(m+(z, k)−m−(z, k))dz.

Hence it suffices to show that m±(·, k)|∂Ω is uniquely determined by Hq. In
[1] this is done for m+.

Let ψ±(z) := eizkm±(z, k). Then ψ± satisfy

∂̄ψ± = eizk∂̄m± = ±eizke−kqm± = ±ei(zk−zk−zk)qm± = ±qm±eizk = ±qψ±.

In particular ψ+ satisfies (3) in Ω, and it follows that

<(νψ±|∂Ω) = H±q(=(νψ+|∂Ω)).

We also have

∂̄ψ± = 0 in C \ Ω, ψ±(z)e−izk − 1 ∈ L4(C \ Ω) ∩W 1,4/3
loc .

The last two displays only involve q via H±q. We claim that the last two
displays uniquely characterize ψ+ in C \ Ω. Let h1, h2 be functions with

<(νhj|∂Ω) = Hq(=(νhj|∂Ω)), ∂̄hj = 0 in C\Ω, hj(z)e−izk−1 ∈ L4(C\Ω)∩W 1,4/3
loc

for j = 1, 2. Then their difference h = h1 − h2 satisfies

<(νh|∂Ω) = Hq(=(νh|∂Ω)), ∂̄h = 0 in C\Ω, h(z)e−izk ∈ L4(C\Ω)∩W 1,4/3
loc .

We claim that h = 0. Indeed by Theorem 2 we can solve (3) with g0 =
=(νh|∂Ω). Then by definition of Hq we obtain <(νv|∂Ω) = <(νh|∂Ω). Extend
h to be the solution v inside Ω. Then

∂̄h = qh̄ on C,

so m = e−izkh ∈ L4(C) satisfies ∂̄m = e−izkqh̄ = e−kqm̄. The solution of this
problem is unique, so m = 0, hence h = 0. Hence ψ+ is uniquely determined
by Hq.
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