
1

1



T (1) and T (b) theorems and applications

Summer School, Kopp

Jul 21th - Jul 26th 2013

Organizers:

Diogo Oliveira e Silva, Universität Bonn

Christoph Thiele, Universität Bonn

Contents

1 Tb theorem on non-homogeneous spaces I 7
Polona Durcik, Universität Bonn . . . . . . . . . . . . . . . . . . . 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 BMO spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 BMOp
λ . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 RBMO . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Tb ∈ BMO . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Estimates of the regular part of the matrix . . . . . . . . . . . 10
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1 Tb theorem on non-homogeneous spaces I

after F. Nazarov, S. Treil and A. Volberg [1]
A summary written by Polona Durcik

Abstract

We discuss a Tb-theorem which extends the Tb-theorem by David,
Journé and Semmes for the Calderón-Zygmund operators on Rn to the
case of non-doubling measures.

1.1 Introduction

Let µ be a Borel measure on Rn and d a positive number. The measure µ may
be non-doubling, we assume only that µ(B(x, r)) ≤ rd for any ball B(x, r)
with radius r and center x. A Calderón-Zygmund kernel (of dimension d) is
a function K ∈ L1

loc(Rn × Rn \ {(x, y) : x = y}, µ) satisfying

(i) |K(s, t)| ≤ C|s− t|−d

(ii) There exists α > 0 and C > 0 such that whenever |t− s0| ≥ 2|s− s0|,

|K(s, t)−K(s0, t)|, |K(t, s)−K(t, s0)| ≤ C
|s− s0|α

|t− s0|d+α

We are interested in the Lp(µ) boundedness of a Calderón-Zygmund operator
T (integral operator with kernel K). Being an integral operator with kernel
K means that the bilinear form 〈Tf, g〉 of T (or 〈Tb1f, b2g〉 when talking
about b2Tb1) is well defined for some class of functions (say, C∞0 functions)
and that for compactly supported f, g with disjoint supports

〈Tf, g〉 =

ˆ ˆ
K(x, y)g(x)f(y)dµ(x)dµ(y) (1)

We call a bounded (complex valued) function b weakly accretive (with respect
to µ) if there exists a δ > 0 such that for any cube1 Q

µ(Q)−1

∣∣∣∣ˆ
Q

b(s)dµ(s)

∣∣∣∣ ≥ δ

This in particular implies |b| ≥ δ µ−a.e. The main result of [1] is

1By a cube we mean an object obtained from [0, 1)n by dilations and shifts.

7



Theorem 1 (Tb−theorem). Let 1 < p < ∞ and let b1, b2 be two weakly
accretive functions. A Calderón-Zygmund operator T is bounded on Lp(µ)
if and only if the operator b2Tb1 is weakly bounded and Tb1, T

∗b2 belong to
BMO(µ).

Moreover, the upper bound of the norm of T depends on n, d, p CZ con-
stants of the kernel K, ‖b‖∞, δ and the BMO norm of Tb.

This theorem should be seen as a meta-theorem. There are several in-
terpretations of weak boundedness which depend on the initial assumptions
on T . According to that we will state different (preciser) versions of the
theorem again. When we assume that T is well defined for compactly sup-
ported functions, one should think that instead of T we are given a family
(Tε)ε of truncated operators Tεf(x) :=

´
|x−y|>εK(x, y)f(y)dµ(y) and think

of boundedness of T as uniform boundedness of Tε.
As in the homogeneous case it suffices to show boundedness on L2(µ), for

this cf. [2] where weak 1 − 1 estimates for Calderón-Zygmund operators on
non-homogeneous spaces are proven.

1.2 BMO spaces

We also have to say what is the BMO space in the theorem. There are
many spaces which generalize the case when µ is a n−dimensional Lebesgue
measure in Rn and all of the definitions below then give the well known
classical BMO.

1.2.1 BMOp
λ

Let 1 ≤ p < ∞ and λ > 1. A function f ∈ L1
loc(µ) belongs to BMOp

λ(µ) if
there exists a constant C such that( ˆ

Q

|f −mQ(f)|pdµ
)1/p

≤ Cµ(λQ)1/p

for all cubes Q, where mQf = µ(Q)−1
´
Q
fdµ is the average of f over Q. The

best constant C is defined to be ‖f‖BMOpλ(µ). Here λQ means the cube Q
dilated λ times with respect to its center. In order to find the best general-
ization of the classical BMO, BMOp

λ(µ) has some disadvantages. It depends
on λ and p and one can show that the inclusions BMOp

λ(µ) ⊂ BMOp
Λ(µ) if

λ < Λ and BMOp2

λ (µ) ⊂ BMOp1

λ (µ) if p1 < p2 are proper. Also, BMOp
1(µ)
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is a wrong object for this theory, since boundedness of T on Lp(µ) does not
imply T1 ∈ BMOp

1(µ). The space RBMO of X. Tolsa turns out to be a more
natural analogue.

1.2.2 RBMO

Let ρ > 1. A function f ∈ L1
loc(µ) is in RBMO(µ) (regularized BMO) if for

each cube Q there exists a number fQ such that

ˆ
Q

|f − fQ| ≤ B1µ(ρQ)

and such that for all cubes Q, R with Q ⊂ R

|fR − fQ| ≤ B2

(
1 +

ˆ
2R\Q

dµ(x)

|x− cQ|d
)

where the constants B1, B2 do not depend on Q. The infimum of B1 + B2

is called the RBMO−norm of f .
The second regularization condition is crucial for better behaviour of

RBMO over BMOp
λ. It may seem that this space depends on the param-

eter ρ, but one can show that it does not. And most importantly, RBMO
has the John-Nirenberg property (unlike BMOp

λ):

Theorem 2. Let f ∈ RBMO, ρ > 1 and 1 ≤ p <∞. Then for any cube Q

ˆ
Q

|f − fQ|pdµ ≤ B(ρ, p, ‖f‖RBMO)µ(ρQ)

1.2.3 Tb ∈ BMO

Next we need to make sense of what it means that Tb belongs to a BMO
space for b ∈ L∞.

Let us suppose that the bilinear form 〈Tb1f, b2g〉 of the operator b2Tb1

is defined for f, g ∈ C∞0 . Let ϕ be an arbitrary smooth function supported
on a cube Q satisfying

´
b2ϕ = 0. Let ψ1 ∈ C∞0 , ψ1 ≡ 1 on 2Q with

0 ≤ ψ ≤ 1. Let ψ2 = 1 − ψ1. We define the expression 〈Tb1, ϕb2〉 to be
〈Tψ1b1, ϕb2〉 + 〈Tψ2b1, ϕb2〉. While the first term is defined by assumption,
for the second term we use an integral representation by analogy with (1).
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This representation does not depend on the choice of ψ1 and we can interpret
the condition Tb1 ∈ BMOp

λ by duality as

|〈Tb1, ϕb2〉| ≤ C‖ϕb2‖Lp′ (µ)µ(λQ)1/p

where 1/p+ 1/p′ = 1.
The condition Tb1 ∈ RBMO needs a different interpretation. Let us

suppose that the operator T is well defined on bounded compactly supported
functions. We say that f belongs to RBMO(G,µ) if the inequalities defining
RBMO hold for all cubes Q ⊂ R ⊂ G. We consider ϕ ∈ C∞0 , 0 ≤ ϕ ≤ 1
and ϕ ≡ 1 on the cube 10G. We say that Tb1 ∈ RBMO(G, µ) if Tb1ϕ ∈
RBMO(G, µ), which is independent of a cutoff ϕ. Finally, we say that Tb1 ∈
RBMO(µ) if Tb1 ∈ RBMO(G, µ) for all cubes Q with uniform estimates on
the norms.

Since RBMO has the John-Nirenberg property, if Tb1 ∈ RBMO(µ) then
Tb1 ∈ BMOp

λ(µ) for all p ∈ [1,∞), λ > 1.
The condition Tb1 ∈ RBMO may be sometimes hard to verify. But for our

theorem it does not matter, which BMO space we pick. If Tb1 ∈ BMOp
λ(µ)

for some p and b2Tb1 is weakly bounded in the sense that there exists Λ > 1
such that |〈Tb1χQ, b2χQ〉| ≤ Cµ(ΛQ) for all cubes Q, then Tb1 ∈ RBMO(µ).

1.3 Estimates of the regular part of the matrix

Fix two dyadic lattices D,D′ in Rn consisting of cubes of size 2k, k ∈ Z, where
one is shifted with respect to the other. One version of Theorem 1 (the ”if”
part) with a stronger weak boundedness assumption is the following:

Theorem 3. Let T be a Calderón-Zygmund operator which is bounded on
compactly supported functions, i.e. for compactly supported f, g

|〈Tf, g〉| ≤ C(A)‖f‖L2(µ)‖g‖L2(µ)

where A = max{diam(supp f), diam(supp g)}. Let b1, b2 be weakly accretive
functions and let Tb1, T b2 ∈ BMO2

λ(µ). Suppose also that T is weakly bounded
in the sense that

|〈Tb1χQ, b2χR〉| ≤ Cµ(Q)1/2µ(R)1/2

for cubes Q ∈ D, R ∈ D′ of comparable size which are close, i.e. Q,R such
that 1/2 ≤ `(Q)/`(R) ≤ 2 and dist(Q,R) ≤ min(`(Q), `(R)).

Then the operator T is bounded on L2(µ) with the upper bound of the
norm of T depending only on the constants as in Theorem 1.
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Let us sketch the proof. We want to estimate |〈Tf, g〉| ≤ C‖f‖L2(µ)‖g‖L2(µ)

for f, g ∈ L2(µ). First we decompose f and g into martingale differences:
For a weakly accretive function b we define

Eb
Qf(x) :=

(ˆ
Q

b dµ
)−1( ˆ

Q

fdµ
)
· b(x) · χQ(x)

and ∆b
Q := Eb

Q′ − Eb
Q, where Q′ ⊂ Q and `(Q′) = 1/2`(Q). Then for a fixed

k ∈ Z, any f ∈ L2(µ) can be decomposed as

f =
∑

Q∈D,`(Q)≤2k

∆b
Qf +

∑
Q∈D,`(Q)=2k

Eb
Qf (2)

where the series converges in L2(µ).
Let us call a pair of cubes Q,R with `(Q) ≤ `(R) singular if dist(Q, ∂R) ≤

`(Q)γ`(R)1−γ or dist(Q, ∂Rk) ≤ `(Q)γ`(Rk)
1−γ for some subcube Rk ⊂ R of

size `(R)/2, where γ is such that γd + γα = α/2. We call a singular pair
Q,R essentially singular, if in addition `(Q) < 2−r`(R) for some integer r to
be determined later. We say that a cube Q ∈ D is bad if there exists a bigger
cube R ∈ D′ such that the pair Q,R is essentially singular. Otherwise it is
called good. Let f ∈ L2(µ) be supported by a cube of size 2k. We call the
function f D−good if ∆b1

Qf = 0 for any bad cube Q ∈ D of size `(Q) < 2k. If
we replace D by D′ and b1 with b2 we get a definition for D′−good functions.

Fix r from the definition of singular pairs large enough such that 2r(1−γ) ≥
λ and 2r > 4λ. After decomposing f and g into martingale differences we
first estimate

∑
Q,R〈TϕQ, ψR〉 where ϕQ = ∆b1

Qf and ψR = ∆b2
R g. For now

we only treat the case when f is D−good and g is D′−good, so all entries in
〈TϕQ, ψR〉 corresponding to essentially singular pairs are zero. Then:

Case I: Q and R are ”far away” from each other
By this we mean that dist(Q,R) ≥ min(`(Q), `(R)) and 2−r`(R) ≤ `(Q) ≤
2r`(R), or that Q and R are disjoint, nonsingular and that (by symmetry)
`(Q) < 2−r`(R). In this case we can use (1) and estimate

|〈TϕQ, ψR〉| ≤ C
`(Q)α/2`(R)α/2

D(Q,R)α+d
µ(Q)1/2µ(R)1/2‖ϕQ‖L2(µ)‖ψQ‖L2(µ)

where D(Q,R) := dist(Q,R) + `(Q) + `(R). Then we show that the matrix
{TQ,R}Q∈D,Q′∈D′ defined via

TQ,R :=
`(Q)α/2`(R)α/2

D(Q,R)α+d
µ(Q)1/2µ(R)1/2
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generates a bounded operator on `2 and we are done.
Case II: Q ⊂ R and Q is not close to ∂R

We consider Q ⊂ R with `(Q) < 2−r`(R) where the pair is not singular.
First we define a paraproduct Π = ΠT ∗ by

Πf :=
∑
R∈D′

∑
Q∈D:`(Q)=2−r`(R)
dist(Q,∂R)≥λ`(Q)

(ERb2)−1 · ERf · (∆b1
Q )∗T ∗b2

Then we decompose

〈TϕQ, ψR〉 = 〈(T − Π∗)ϕQ, ψR〉+ 〈ϕQ,ΠψR〉
If T ∗b2 ∈ BMO2

λ(µ), Π is bounded on L2(µ). This can be shown using
a dyadic version of the Carleson embedding theorem. To estimate 〈(T −
Π∗)ϕQ, ψR〉 note that the function ψR is of the form

ψR(x) =
2n∑
i=1

Bi · χRi(x) · b2(x)

where Bi are some constants and Ri ∈ D′ are the dyadic cubes of size `(R)/2
contained in R. We also have 〈ϕQ,ΠψR〉 = 〈TϕQ, b2〉B1. This makes it
possible to estimate 〈(T − Π∗)ϕQ, ψR〉 in a similar way as in case I.

Case III: Q and R are close and of comparable size
This is the case when dist(Q,R) ≤ min(`(Q), `(R)) but Q and R are still of
comparable size, i.e. 2−r`(R) ≤ `(Q) ≤ 2r`(R). So the pair Q,R is singular
but not essentially singular. The claim can be now deduced by the weak
boundedness assumption.

Terms involving Ebi
Qf are treated similarly. What remains is to prove the

theorem for bad functions f and g, which is the harder part of this proof.
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2 Painlevé’s problem and the semiadditivity

of analytic capacity

after Xavier Tolsa [8]
A summary written by Daniel Girela-Sarrión

Abstract

We prove that, for E ⊂ C a compact set, γ(E) ≈ γ+(E), sol-
ving Painlevé’s problem. This result also implies the semiadditivity
of analytic capacity.

2.1 Introduction

Definition 1. A compact set E ⊂ C is said to be removable for bounded
analytic functions (or, simply, removable) if, whenever Ω is an open set con-
taining E, every bounded analytic function in Ω\E has an analytic extension
to the whole of Ω.

Painlevé [7] proved in 1888 that if a set has zero 1-dimensional Hausdorff
measure, then it is removable. The classical Painlevé problem consists in
giving a geometric/metric characterization of removable sets.

To study this problem, Ahlfors introduced the notion of analytic capacity.

Definition 2. Let E ⊂ C be a compact set. The analytic capacity of E,
denoted by γ(E), is defined by

γ(E) = sup{|f ′(∞)| : f ∈ Hol(C \ E), |f(z)| ≤ 1 for all z ∈ C \ E}.

Ahlfors [1] proved that a compact set E ⊂ C is removable for bounded
analytic functions if, and only if, γ(E) = 0.

Later, in the 1960s, the notion of analytic capacity was rediscovered by
Vitushkin [11], who used it for problems of rational approximation in compact
sets. Because of the applications to this type of problems, Vitushkin raised
the question of the semiadditivity of γ, i.e., whether there exists an absolute
constant c such that

γ(E ∪ F ) ≤ c(γ(E) + γ(F ))

for all compact sets E,F ⊂ C.
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2.2 Cauchy transforms and the capacity γ+.

Definition 3. If ν is a complex measure in C, the Cauchy transform of ν is
the function defined by

Cν(z) =

ˆ
1

ξ − z
dν(ξ),

whenever the integral makes sense.

Cauchy transforms can be considered as a tool for constructing analytic
functions. Indeed, in the conditions of the definition,

� Cν ∈ L1
loc(C).

� Cν is analytic in C \ supp(ν).

� Cν(∞) = 0, (Cν)′(∞) = −ν(C).

Definition 4. Given a compact set E ⊂ C, we define the capacity γ+ of E
by

γ+(E) = sup{µ(E) : supp(µ) ⊂ E, ||Cµ||L∞(C) ≤ 1}.

This capacity was introduced by Murai [5], only for sets supported in recti-
fiable curves, and he showed its relationship with the weak (1,1)-boundedness
of the Cauchy transform on these curves. It is immediate, from the previous
remarks, that γ+(E) ≤ γ(E).

The usefulness of this capacity γ+ stems from the fact that it can be
characterized in terms of L2-boundedness of Cauchy transforms, curvature
of measures or certain potentials. Let us introduce some notation to state
this characterizations.

If ν is a complex measure in C, the integral

ˆ
1

ξ − z
dν(ξ)

may not be convergent for z ∈ supp(ν). For this reason, one considers the
truncated Cauchy transform of ν, which is defined by

Cεν(z) =

ˆ
|z−ξ|>ε

1

ξ − z
dν(ξ)
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for all z ∈ C and all ε > 0. If µ is a fixed positive Radon measure in C, we
write Cµf = C(fµ) and Cµ,εf = Cε(fµ). We say that the Cauchy transform
is bounded in L2(µ) if all the Cµ,ε’s are bounded in L2(µ) uniformly on ε > 0,
and we set

||Cµ||L2(µ)→L2(µ) = sup
ε>0
||Cµ,ε||L2(µ)→L2(µ).

A positive Radon measure µ is said to have linear growth if there exists
a constant C such that

µ[B(x, r)] ≤ Cr

for all x ∈ C and all r > 0.

Given three pairwise different points x, y, z ∈ C, its Menger curvature is
defined by

c(x, y, z) =
1

R(x, y, z)
,

where R(x, y, z) is the radius of the circle passing through x, y, z. If µ is a
positive Radon measure, we set

c2
µ(x) =

¨
c(x, y, z)2dµ(y)dµ(z)

and we define the total curvature of µ by

c2(µ) =

ˆ
c2
µ(x)dµ(x) =

˚
c(x, y, z)2dµ(x)dµ(y)dµ(z).

Finally, the maximal radial Hardy-Littlewood operator is defined by

Mν(z) = sup
r>0

|ν|[B(z, r)]

r
, z ∈ C,

where ν is a complex measure in C.

With all this notation, we can characterize the capacity γ+ in many ways,
as the following theorem states.

Theorem 5. Let E ⊂ C be a compact set. We denote by Σ(E) the set of all
positive Radon measures µ supported on E and such that µ[B(x, r)] ≤ r for
all x ∈ C and r > 0. Also, if µ is a positive Radon measure supported on E,
we define

Uµ(x) = Mµ(x) + c2
µ(x)

1
2 .
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Finally, we set

M+(C) = {µ : µ is a positive Radon measure in C}.

Then, we have

γ+(E) ≈ sup{µ(E) : µ ∈ Σ(E), ||Cεµ||L∞(µ) ≤ 1 for all ε > 0}
≈ sup{µ(E) : µ ∈ Σ(E), ||Cεµ||2L2(µ) ≤ µ(E) for all ε > 0}
≈ sup{µ(E) : µ ∈ Σ(E), c2(µ) ≤ µ(E)}
≈ sup{µ(E) : ||Cµ||L2(µ)→L2(µ) ≤ 1}
≈ sup{µ(E) : supp(µ) ⊂ E,Uµ(x) ≤ 1 for all x ∈ E}
≈ sup{µ(E) : supp(µ) ⊂ E,Uµ(x) ≤ 1 for all x ∈ C}
≈ inf{||µ|| : µ ∈M+(C), Uµ(x) ≤ 1 for all x ∈ E}.

The semiadditivity of the capacity γ+ follows from this result.

Corollary 6. There exists an absolute constant C > 0 such that, for all
compact sets E,F ⊂ C,

γ+(E ∪ F ) ≤ C(γ+(E) + γ+(F )).

2.3 The comparability between γ and γ+ and the semi-
additivity of analytic capacity.

Since γ+ is semiadditive, the semiadditivity of γ would follow from the com-
parability between γ and γ+. Also, since the compact sets E with γ+(E) = 0
are easily characterized in a metric/geometric way (indeed, from Theorem 5,
γ+(E) = 0 if, and only if, E supports a non-zero positive Radon measure µ
with linear growth and finite curvature), this would also lead to a complete
solution of Painlevé problem.

The main tools to attack this problem have been the local T (b)-type
theorems for the Cauchy transform, originally due to Christ [2] in the setting
of homogeneous spaces, and its refinement in the non-homogeneous case due
to Nazarov, Treil and Volberg [6].

The first result in this setting is due to David [3].

Theorem 7. Let E ⊂ C be a compact set with finite length and γ(E) > 0.
Then, γ+(E) > 0.
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Later, Mateu, Verdera and Tolsa [4] obtained precise estimates for the
analytic capacity of a big class of planar Cantor sets, proving that γ and γ+

are comparable for these sets.

Finally, Tolsa [8] proved, in 2001, the following:

Theorem 8. There exists an absolute constant c > 0 such that for all com-
pact sets E ⊂ C,

γ(E) ≤ cγ+(E).

As we have stated before, this result yields to the solution of Painlevé’s
problem and to the semiadditivity of analytic capacity.
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3 The solution of the Kato square root prob-

lem for the second order elliptic operators

on Rn

after P. Auscher, S. Hofmann, M. Lacey, A. M cIntosh and P.
Tchamitchian [1]

A summary written by Ana Grau de la Herrán

Abstract

The Kato problem questions for which operators the estimate ‖
√
Lf‖2 ∼

‖∇f‖2 is satisfied. We will prove that it’s satisfied for uniformly com-
plex elliptic operators L = −div(A∇) with bounded measurable coef-
ficients in Rn in any dimension.

3.1 Introduction

Let us state the problem as it is stated in [1]. Let A = A(x) be a n×n matrix
of complex, L∞ coefficients, defined on Rn, and satisfying the ellipticity (or
“accretivity”) condition

λ|ξ|2 ≤ Re Aξ · ξ∗ and |Aξ · ζ∗| ≤ Λ|ξ||ζ|, (1)

for ξ, ζ ∈ Cn and for some λ,Λ such that 0 < λ ≤ Λ < ∞. Here, u · v =
u1v1 +···+unvn and u∗ is the complex conjugate of u so that u·v∗ is the usual
inner product in Cn and, therefore, Aξ · ζ∗ ≡

∑
j,k aj,k(x)ξkζ̄j. We define a

second order divergence form operator

Lf ≡ −div(A∇f). (2)

Let H1(Rn) be the Sobolev space and define the operator
√
L : H1(Rn)→

L2(Rn) as the linear operator that satisfies
√
L
√
L = L. We say that f ∈

H1(Rn) belongs to the domain of
√
L and denote it by f ∈ D(

√
L) if

‖
√
Lf‖2 ≤ C‖f‖H1 := ‖∇f‖2.

By [3] and since our hypotheses are stable under taking adjoints, it is
enough to prove that D(

√
L) = H1(Rn) to conclude that

‖
√
Lf‖2 ∼ ‖∇f‖2.
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Proposition 1.
√
Lf = a

ˆ ∞
0

(1 + t2L)−3t3L2f
dt

t
, (3)

where a−1 =
´∞

0
(1 + u2)−3u2du.

3.2 Reduction to a Carleson measure estimate

In this section we are going to follow a T (1) theorem (for square functions)
argument. That means that we are going to assume that

sup
Q

1

|Q|

ˆ
Q

ˆ `(Q)

0

|[(1 + t2L)−1tL]1(x)|2dtdx
t
≤ C (4)

and we are going to prove that, up to (4), ‖
√
Lf‖2 ≤ C‖∇f‖2.

3.2.1 Reduction to a quadratic estimate

Let g ∈ C∞0 with ‖g‖2 = 1, then by duality and Cauchy-Schwarz inequality,

| <
√
Lf, g > |2 = a2

[ˆ
Rn

ˆ ∞
0

(1 + t2L)−3t3L2f · gdtdx
t

]2

= a2

[ˆ
Rn

ˆ ∞
0

[(1 + t2L)−1tLf ] · [t2L∗(1 + t2L∗)−2g]
dtdx

t

]2

≤ a2

ˆ
Rn

ˆ ∞
0

|(1 + t2L)−1tLf(x)|2dtdx
t
·
ˆ
Rn

ˆ ∞
0

|t2L∗(1 + t2L∗)−2g(x)|2dtdx
t

We will bound the second integral in this subsection by using the stan-
dard orthogonality argument of Littlewood-Paley theory and treat
the first one separately in the next subsection.

Pick any Ψ ∈ C∞0 (Rn) with Ψ real-valued and
´

Ψ = 0 and define Qs as
the operator of convolution with 1

sn
Ψ(x

s
) for s > 0 and we normalize such

that ˆ ∞
0

ˆ
Rn
Qsg(x)

dxds

s
= ‖g‖2

2.

Lemma 2. Let Ut : L2(Rn)→ L2(Rn), t > 0, be a family of bounded opera-
tors with ‖Ut‖op ≤ 1. If ‖UtQs‖op ≤ (inf( t

s
, s
t
))α, for some α > 0, and some

family Qs, s > 0 as above, then for some constant C depending only on α,
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ˆ ∞
0

ˆ
Rn
|Utg(x)|2dxdt

t
≤ C‖g‖2.

This lemma is a consequence of Schur’s lemma and its proof follows the
same standard argument.

We apply the lemma to Ut = t2L∗(1 + t2L∗)−2 and we choose Qs in
the following manner. Let ψ = ∆φ with φ ∈ C∞0 (Rn), radial, so that, in
particular, Ψ = divh. This yields Qs = sdivRs with Rs uniformly bounded.

Therefore,ˆ
Rn

ˆ ∞
0

|t2L∗(1 + t2L∗)−2g(x)|2dtdx
t
≤ C‖g‖2 = C.

3.2.2 The T (1) Theorem argument

To simplify the notation let’s denote by Θtf(x) = (1 + t2L)−1tdivAf(x).
With this notation we are left to prove that

ˆ ∞
0

ˆ
Rn
|Θt∇f(x)|2dxdt

t
≤ C

ˆ
Rn
|∇f(x)|2dx.

In order to benefit ourselves again with Littlewood-Paley theory we intro-
duce Pt as a convolution operator with 1

tn
p(x

t
) where p is a smooth real-valued

function supported in the unit ball of Rn with
´
p = 1. By the linearity of

Θt,

|Θt∇f | ≤ |Θt1(x) · (P 2
t ∇f)(x)|+ |Θt1(x) · (P 2

t ∇f)(x)− (Θt∇f)(x)|
≤ |Θt1(x) · (P 2

t ∇f)(x)|+ |Θt1 · P 2
t ∇f −ΘtP

2
t ∇f |+ |Θt(P

2
t − I)∇f |

We apply a similar orthogonality argument as the previously described
to the second and third term of the integral with UtPtf(x) := Θt1(x) ·
(Pt(Ptf))(x) − ΘtPt(Ptf)(x) and Ut := Θt∇ respectively. For the first term
we apply the Carleson’s inequality which reads as follows.

Theorem 3. [2] Let µ be a non-negative measure, assume there exists a
constant A > 0 such that for all Q ∈ Rn µ(RQ) ≤ A|Q| where RQ :=
Q× (0, `(Q)) then

¨
Rn+1

+

|Ttf |2dµ(x, t) ≤ C · A ·
¨

Rn+1
+

|Ttf |2
dtdx

t
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We apply the above to µ(Q) :=
´
Q

´ `(Q)

0
|Θt1(x)|2 dtdx

t
, and define the

Carleson measure of µ as A := ‖µ‖C = supQ
1
|Q|

´
Q

´ `(Q)

0
|Θt1(x)|2 dtdx

t
so

we get the bound

ˆ
Rn

ˆ ∞
0

|Θt1(x) · (P 2
t ∇f)(x)|2dtdx

t
≤ C‖Θt1‖C

¨
Rn+1

+

|P 2
t ∇f |2

dtdx

t

≤ C

ˆ
Rn
|∇f |2dx

This concludes the proof up to (4).

3.3 The T (b) theorem argument

Fix a cube Q, ε ∈ (0, 1), a unit vector ω ∈ Cn and define a scalar-valued
function

bεQ,ω(x) = (1 + (ε`(Q))2L)−1(ΦQ(x) · ω∗) (5)

where, denoting by xQ the center of Q,

ΦQ(x) = x− xQ.

Definition 4. Fix a cube Q and denote D(Q) the dyadic decomposition of
the cube Q. We define the averaging operator on t ∈ (0, `(Q)) as

AQt f(x) =
1

|Q(x, t)|

ˆ
Q(x,t)

f(y)dy (6)

where Q(x, t) is the minimal cube in D(Q) such that x ∈ Q(x, t) and has side
length at least t.

The remaining part of the proof is resumed in the following lemmas.

Lemma 5. There exists an ε > 0 depending on n, λ, Λ and a finite set W
of unit vectors in Cn whose cardinality depends on ε and n, such that

sup
1

|Q|

ˆ
Q

ˆ `(Q)

0

|Θt1(x)|2dtdx
t
≤

≤ C
∑
ω∈W

sup
1

|Q|

ˆ
Q

ˆ `(Q)

0

|Θt1(x) · (AQt ∇bεQ,ω)(x)|2dtdx
t
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where C depends only on ε, n, λ, Λ. The supremum is taken over all cubes
Q.

Lemma 6. For C depending only on n, λ, Λ and ε > 0, we have

ˆ
Q

ˆ `(Q)

0

|Θt1(x) · (AQt ∇bεQ,ω)(x)|2dxdt
t
≤ C|Q|. (7)

Let’s brief a sketch of the proof of both lemmas.
For lemma 5 we use a stopping time decomposition argument. We

select cubes in D(Q) which are selected by being the maximal subcubes of Q
satisfying at least on the following properties

1

|Q′|

ˆ
Q′
Re(∇bεQ,ω(y) · ω)dy ≤ 3

4
(8)

1

|Q′|

ˆ
Q′
|∇bεQ,ω(y)|2dy ≥ (4ε)−2 (9)

We define S ′Q the collection of such non-overlapping subcubes of Q and
S”
Q the family of subcubes of Q such that are not contained or equal to any

cube of S ′Q. We also cover Cn with a finite family of cones Cω defined by

|u− (u · ω∗)ω| ≤ ε|u · ω∗|

whose cardinality depends only on ε and n so that

ˆ
Q

ˆ `(Q)

0

|Θt1(x)|2dtdx
t

=

=
∑
ω∈W

ˆ
Q

ˆ `(Q)

0

|Θt1(x) · 1Cω(Θt1(x))|2dtdx
t
.

Then Lemma 5 is a consequence of some geometrical arguments, and the
fact that

∑
Q′∈S′Q

|Q′| ≤ (1 − η)|Q| for some η ∈ (0, 1). Note that η will

depend on ε so we choose it small enough so this last condition is satisfied.
For Lemma 6 we pick a smooth cut-off function χ = χQ localized on 4Q

and equal to 1 on 2Q with ‖χ‖∞+ `(Q)‖∇χ‖∞ ≤ C(n) that we introduce as
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follows

(7) ≤ C

ˆ
Q

ˆ `(Q)

0

|Θt1(x) · ((AQt − P 2
t )∇(χbεQ,ω)(x)|2dtdx

t
+

+ C

ˆ
Q

ˆ `(Q)

0

|Θt1(x) · (P 2
t ∇(χbεQ,ω))(x)|2dtdx

t

≤ C

ˆ
Rn
|∇(χbQ,ω(x))|2dx+ C

ˆ
Q

ˆ `(Q)

0

|(Θt∇(χbεQ,ω))(x)|2dtdx
t

≤ C|Q|.

Finally we point out that the last two inequalities are not trivial and
require several technical computations that we will not include in this sum-
mary but are computed in more depth in the original paper [1, section 2 and
section 5].
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4 The Tb-theorem on non-homogeneous spaces

II

after F. Nazarov, S. Treil and A. Volberg [1]
A summary written by Shaoming Guo

Abstract

We discuss a Tb-theorem which extends the Tb-theorem by David,
Journé and Semmes for the Calderón-Zygmund operators on Rn to the
case of non-doubling measures.

This is the summary of the second part of the paper by Nazarov, Treil
and Volberg, following the one by Polona Durcik “the Tb theorem on non-
homogeneous spaces I”. The theorem we will present here is the following:

Theorem 1. Let 1 < p < ∞ and let b1, b2 be two weakly accretive func-
tions. A Calderón-Zygmund operator T is bounded on Lp(µ) if and only if
the operator b2Tb1 is weakly bounded and Tb1, T

∗b2 belong to BMO(µ).

For the definition of “weakly accretive functions” and the choice ofBMO(µ)
spaces, see the summary of part I. As soon as we have the right BMO space
to work with, the “only if” part of the above theorem follows from standard
argument.

For the “if” part, it suffices to prove the L2 boundedness, the Lp bound-
edness for general p will then follow from Calderon-Zygmund decomposition.
By duality, it suffices to prove that |〈Tf, g〉| . ‖f‖2‖g‖2. To estimate the
inner product, we first do martingale difference decomposition for f and g,
i.e. write

f =
∑
Q∈D

∆b1
Qf, g =

∑
R∈D′

∆b2
R g,

for the definition of ∆b
Q still see the summary of part I. By linearity, we have

〈Tf, g〉 =
∑

Q∈D,R∈D′
〈T∆b1

Qf,∆
b2
Qg〉 (1)

The whole point then is to have a good estimate for the term 〈T∆b1
Qf,∆

b2
Qg〉,

which we will explain now.
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Case I: Q and R are “far away” from each other, by which we
mean dist(Q,R) ≥ l(Q)γl(R)1−γ, for some γ > 0 to be chosen later.

Case II: Q ⊂ R, but Q is not close to the boundary of R, by which
we mean that dist(Q, ∂R) ≥ l(Q)γl(R)1−γ.

Case III: singular but not essentially singular part

“singular” means if we take two cubes Q,R, w.l.o.g. say l(Q) ≤ l(R),
then

dist(Q, ∂R) ≤ l(Q)γl(R)1−γ. (2)

For the definition of being “essentially singular” see below the case IV.
Roughly speaking, “singular but not essentially singular” means two cubes
are close to each other, and their sizes are also comparable.

Case IV: the essentially singular part

by “essentially singular” we mean

eqdist(Q, ∂R) ≤ l(Q)γl(R)1−γ, l(Q) ≤ 2−rl(R), (3)

for some r large number to be chosen later.

As in part I of the summary we have already seen the idea for the “regular”
part-case I and case II, and part of case III, I will then focus on the rest of
the “singular” part. The idea is to average over dyadic grids, “what should
we do about the ‘bad’ ones? The surprising answer is-nothing, just ignore
them! The point is that the ‘bad’ cubes are rare, so we don’t have to worry
about them.”

4.1 Proof of the theorem under a stronger weak bound-
edness assumption

The weak boundedness assumption we will use in this section is:

|〈Tb1χQ, b2χR〉| . µ
1/2
Q µ

1/2
R (4)

for all cubesQ,R with 1
2
l(R) ≤ l(Q) ≤ 2l(R) and dist(Q,R) ≤ min{l(Q), l(R)}.
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4.1.1 random dyadic lattice

We now want to construct a random variable ξ which is uniformly distributed
over the sample space consisting of all dyadic lattices, to be precise, take the
standard dyadic lattice D0, then the element in the sample space is like
D0 + C, where C runs through RN .

the construction of dyadic lattice over R: we just need to determine the
relative position of all dyadic intervals in this lattice, which is equivalent to
determine for all k ∈ Z the position of one single dyadic interval of length
2k.

Let Ω1 be some probability space and let x(ω) be a random variable uni-
formly distributed over the interval [0, 1). Let ξj(ω) be random variables
satisfying P{ξj = 1} = P{ξj = −1} = 1/2. Assume also that x(ω), ξj(ω) are
independent. Define the random lattice as follows:
i) let I0(ω) = [x(ω) − 1, x(ω)], which uniquely determines all intervals in
D(ω) of length 2k with k ≤ 0;
ii) the intervals Ik(ω) ∈ D(ω) of length 2k with k > 0 are determined induc-
tively: if Ik−1(ω) ∈ D(ω) is already chosen, (Ik(ω))+ = Ik−1(ω) if ξk(ω) = +1
and (Ik(ω))− = Ik−1(ω) if ξk(ω) = −1. In another word, in every step we
extend Ik−1(ω) to the left if ξk(ω) = +1 and to the right otherwise.

To get a dyadic random lattice in RN we just take a product of N inde-
pendent random lattices in R. It’s easy to see that the random lattice D(ω)
constructed in this way is uniformly distributed and satisfies

equidistribution property: for x ∈ RN , the probability that dist(x, ∂Q) ≥
εl(Q) is exactly (1− 2ε)N for all cubes Q.

4.1.2 bad cubes

Let D(ω) and D′(ω′) be two independent random dyadic lattices, we call a
cube Q ∈ D(ω) “bad” if there exists a cube R ∈ D′(ω′) of lenght l(R) ≥ l(Q)
such that Q,R are essentially singular. Otherwise we call the cube Q “good”.

Lemma 2. Let r, γ be from the definition of essentially singular pairs, then
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for any Q ∈ D(ω) we have

Pω′{Q is bad} ≤ 2N
2−rγ

1− 2−γ
(5)

the important thing here is that when we choose r large enough, the
probability will be small enough. In this sense we say that bad cubes are
rare.

4.1.3 with large probability “bad” parts are small

We want to splitt the function f =
∑

Q∈D∆b1
Qf into two parts fgood + fbad,

where the bad part takes care of the bad cubes defined above

fbad :=
∑

Q∈D,Q is bad

∆b1
Qf (6)

Lemma 3. for a given function f and dyadic lattice D(ω), we have the
following estimate on the mathematical expectation of L2 norm of the bad
parts

Eω′‖fbad‖2
2 ≤ 2NA2 2−rγ

1− 2−γ
‖f‖2

2, (7)

where A is some constant depending only on b1 and b2.

We take r large enough so that 2N 2−rγ

1−2−γ
≤ A−22−8. Then the probability

that
‖fbad‖2

2 ≥ 4 · 2−8‖f‖2
2 (8)

can’t be more than 1
4
, and therefore with probability 3

4
we have

‖fbad‖2
2 ≤ 2−6‖f‖2

2 (9)

4.1.4 pulling yourself up by the hair: final proof

For an operator T , consider the cut-off operator Tε, which has the trivial a
priori bound ‖Tε‖ ≤ C0(ε,D) < ∞, where D := diam(supp(f) ∪ supp(g)).
The point of this section is to show that the constant C0 can be actually
chosen independently of ε and D.

By definiton of operator norm, we could pick two L2 normalized functions
f, g such that |〈Tf, g〉| ≥ 1

2
C0(ε,D), splitt them into good and bad parts

f = fgood + fbad, g = ggood + gbad,
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in such a way that

‖fbad‖2 ≤ 2−3‖f‖2, ‖gbad‖2 ≤ 2−3‖g‖2.

This is always possible because we can always choose r large enough such
that with a large probability the bad parts are small.

Then

|〈Tf, g〉| ≤ |〈Tfgood, ggood〉|+ |〈Tfgood, gbad〉|+ |〈Tfbad, g〉|. (10)

In case I, II and III we have seen that there exists constant C such that

|〈Tfgood, ggood〉| ≤ C‖fgood‖2‖ggood‖2 ≤ C‖f‖2‖g‖2 ≤ C, (11)

By a priori bound assumption,

|〈Tfbad, g〉| ≤ 2−3C0(ε,D)‖fbad‖2‖g‖2 ≤ 2−3C0(ε,D), (12)

Similarly,

|〈Tfgood, gbad〉| ≤ 2−3C0(ε,D)‖fgood‖2‖gbad‖2 ≤ 2−3C0(ε,D). (13)

Notice that we have choosen f, g s.t. |〈Tf, g〉| ≥ 1
2
C0(ε,D), we then get

C0(ε,D) ≤ |〈Tf, g〉| ≤ C + 2 · 1

8
C0(ε,D). (14)

Therefore C0(ε,D) ≤ 4C, which is independent of ε and D, then we are
done.

4.2 proof of the full Tb theorem

4.2.1 weak boundedness on rectangular boxes

In this subsection let’s first consider a special case, which has the following
weak boundedness assumption:

|〈TχQb1, χQb2〉| . µ(Q),∀ rectangular boxes Q (15)

The difference from the previous section is that now we are not allowed to
control |〈Tfgood, ggood〉| by weak boundedness assumption any more, because
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the weak boundedness assumption is of the form of Q = R, but now we have
infinitely many terms with different Q and R of comparable size such that
Q ∩R 6= ∅.

The idea to handle this term is the same as what we did for the essentially
singular part, we will throw more “bad” parts from fgood, ggood, and try to
get an estimate of the form

|〈Tfgood, ggood〉| ≤
1

4
‖T‖+ C. (16)

To estimate |〈Tfgood, ggood〉| it’s enough to estimate the sum∑
Q,R

|〈T∆b1
Qf,∆

b2
R g〉|, (17)

over all cubes of comparable size 2−rl(Q) ≤ l(R) ≤ 2rl(Q).

The cancellation from ∆b1
Qf will not play any role here, so we just write it

as linear combination of characteristic functions, then it suffices to estimate
terms of the form |〈TχQb1, χRb2〉|, where again Q,R have comparable size.

In the above picture, the dark part Q∂∪R∂ will be the “bad” part that we
will throw away, this is always possible provided that we choose the thickness
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of the dark part to be small enough. For the rest, either we know that
Rsep, Qsep,∆ are seperated, for which we have good estimate, or we will use
the weak boundedness assumption to estimate the term 〈Tχ∆, χ∆〉, as ∆ is
a rectangular box.

4.2.2 proof of the full Tb theorem

In this section we will use the following weak boundedness assumption:

|〈TχQb1, χQb2〉| . µ(Q),∀ cubes Q (18)

The only difference with the last section “weak boundedness on rectangu-
lar boxes” is that, under the above weak boundedness assumption, we don’t
have an estimate for the term 〈Tχ∆, χ∆〉 directly as ∆ is just a rectangular
box instead of a cube.

The way out is pretty easy, although rectangular boxes are not cubes,
they can still be covered by cubes, there’s some problem near the boundary
of the rectangular boxes, but again ignore them because those cubes are
really rare!

In the above picture, the largest rectangular box is ∆ = Q ∩ R, the
dark part is the thin boundary of a dyadic lattice of fixed width, we can
take the thickness to be so small that f, g restricted on this part will have
“no” contribution. The rest is just a union of cubes, for two cubes in this
collection, they are either seperated, for which we have good estimate(with
constant apparently depending on the thickness of the dark part), or they
are the same, for which we could use weak boundedness assumption!
Shaoming Guo, Universität Bonn
email: shaoming@math.uni-bonn.de
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5 Sharp weighted estimates for dyadic shifts

and the A2 conjecture

after Tuomas Hytönen, Carlos Pérez, Sergei Treil, Alexander Volberg [1]
A summary written by Timo Hänninen

Abstract

We outline the proof of theA2 theorem given in the above-mentioned
paper.

5.1 Introduction

A weight is a strictly positive locally integrable function on Rd. The A2 char-
acteristic [w]A2 of a weight w is defined by [w]A2 := supQ is a cube〈w〉Q〈 1

w
〉Q.

The A2 class consists of all the weights w such that [w]A2 <∞.

Theorem 1 (A2 theorem). For each Calderón-Zygmund operator T there
exists a constant CT such that

‖T‖L2(w)→L2(w) ≤ CT [w]A2 for all weights w ∈ A2.

After many intermediate results by others, the A2 theorem in full generality
was first proven by Hytönen [2]. The paper [1], which we summarize here,
gives a simplified proof of the A2 theorem. For lecture notes on the proof,
see [4], and for a survey on further simplications of the proof, see [3].

The first step in the proof is to represent each Calderón-Zygmund op-
erator as a series of dyadic shifts and dyadic paraproducts averaged over
randomized dyadic systems. A dyadic shift SijD associated with non-negative
integers i and j and a collection of dyadic cubes D is an operator of the form

SijDf :=
∑
K∈D

AK :=
∑
K∈D

∑
I∈D,J∈D,I⊆K,J⊆K

`(I)=2−i`(K), `(J)=2−j`(K)

aIJK〈f, hI〉hJ

for Haar functions hI , which are L2-normalized, and for some coefficients aIJK

that satisfy the size condition |aIJK | ≤
√
|I||J |
|K| . The point of the size condition

is to ensure that |AKf | ≤ 1K〈|f |〉K . We say that the shift SijD is generalized
if we allow some of the functions hI to be of the form h0

I = |I|−1/21I . We say
the shift SijD has the complexity κ := max{i, j}+ 1.

There are 2d possible choices for the dyadic parent of a cube. By choosing
the parents at random, we can define the randomized dyadic systems Dω.
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Theorem 2 (Dyadic representation theorem). Let T be a Calderón-Zygmund
operator with the Hölder exponent α. Then there exist dyadic shifts SijDω and
a constant CT such that

〈g, Tf〉 = Eω

(
CT

∑
i≥0,j≥0

2−(i+j)/(2α)〈g, SijDωf〉+ 〈g,ΠDωT1 f〉+ 〈g, (ΠDωT ∗1)∗f〉

)

for all, say, f ∈ C1
c (Rd) and g ∈ C1

c (Rd). Moreover, the constant CT depends
only on the dimension, on the Hölder exponent, on the constant in the weak
boundedness property, and on the constants in the standard estimates for the
kernel.

The second step is a Sawyer-type characterization for the boundedness of
generalized dyadic shifts from a weighted L2 space to another. Let u and w
be weights. For the dual weight σ := u−1 of the weight u we have that

‖T‖L2(u)→L2(w) = ‖T ( ·σ)‖L2(σ)→L2(w)

and that the weights w and σ are interchanged by taking the adjoint: The
formal adjoint of the operator T ( ·σ) : L2(σ) → L2(w) is the operator
T ∗( ·w) : L2(w) → L2(σ). Note that in the special case of one weight we
have u = w, and hence σ = w−1.

Let SD be a generalized dyadic shift with complexity κ associated with a
dyadic system D. Let Dn denote the collection of all the dyadic cubes with
side length 2−n. We may separate the dyadic length scales by picking every
κth dyadic length scale: For each integer k with 0 ≤ k ≤ κ − 1 we define
Dk modκ :=

⋃
n∈ZDk+nκ.

We say that each dyadic shift SDk modκ
has its scales separated. Note that

SD =
∑κ−1

k=0 SDk modκ
. The point of separating scales is that AK is constant

on K ′ whenever K ′ ( K and `(K ′) = 2−κ`(K). In the series of the dyadic
representation theorem, to sum the termwise estimates we need that they
decay in the complexity fast enough. The motto is that the estimates for
dyadic shifts with scales separated are independent of the complexity.

Theorem 3 (Two weight testing conditions for generalized dyadic shifts).
Let S be a generalized dyadic shift with scales separated. Let w and σ be
weights. Suppose that for some constants [w, σ]A2, S, and S∗, we have that

〈w〉Q〈σ〉Q ≤ [w, σ]A2 for all dyadic cubes Q, and, moreover, that
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‖1QS(1Qσ)‖L2(w) ≤ Sσ(Q)1/2 and ‖1QS∗(1Qw)‖L2(σ) ≤ S∗w(Q)1/2

for all dyadic cubes Q. Then for some absolute constant C we have

‖S(fσ)‖L2(w) ≤ C
(
S + S∗ + [w, σ]

1/2
A2

)
‖f‖L2(σ) for all f ∈ L2(σ).

The third step is to verify the testing conditions, step which we shall not
discuss further in this summary.

Theorem 4 (Verification of the testing conditions). Let S be a generalized
dyadic shift with scales separated. Suppose that S is bounded on L2 with the
operator norm at most one. Let w be a weight. Let σ := w−1 be the dual
weight of w. Then for some constant Cd we have

‖1QS(1Qσ)‖L2(w) ≤ Cd[w, σ]A2σ(Q)1/2 for all dyadic cubes Q.

5.2 Proof of the dyadic representation theorem

In this section we outline the proof of Theorem 2. We fix a non-negative
integer r and a real number γ with 0 < γ < 1. We say that a dyadic cube
I ∈ D is good if the boundary of every much bigger cube lies far away from
it:

dist(I, ∂J) > (`(J)/`(I))(1−γ) `(I) for every J ∈ D with `(J) ≥ 2r`(I).

Let f ∈ L2 and g ∈ L2. By expanding the functions in the Haar basis and
splitting the summation, we obtain

〈g, Tf〉 =
∑

I∈D, J∈D:
the cube with
smaller side

length is good

〈g, hJ〉〈hJ , ThI〉〈f, hI〉+
∑

I∈D,J∈D:
the cube with
smaller side
length is bad

〈g, hJ〉〈hJ , ThI〉〈f, hI〉.

Let 〈g, Tf〉 =: 〈g, Tf〉Dgood + 〈g, Tf〉Dbad. The point of averaging over random
dyadic systems is that on average the bad part is comparable to the good
part.

Proposition 5. We have

Eω〈g, Tf〉D
ω

bad = Cr,γ,d Eω〈g, Tf〉D
ω

good for all f ∈ C1
c (Rd) and g ∈ C1

c (Rd).
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Hence it suffices to estimate the good part. Let I ∨J denote the minimal
dyadic cube that contains both I and J . By rearranging the summation, we
have

〈g, Tf〉Dgood =
∑
i≥j≥0

〈g, (
∑
K∈D

∑
I∈D,J∈D:I∨J=K,

`(I)=2−i`(K),`(J)=2−j`(K),
and I is good

〈hJ , ThI〉〈f, hI〉hJ)〉

+ (f and g interchanged, T and T ∗ interchanged).

We note that the operator in the round brackets has the form of a dyadic
shift. Hence it remains to prove that the size condition

|〈hJ , ThI〉| ≤ C2−α(i+j)/2

√
|I||J |
|I ∨ J |

holds whenever I is good, `(I) ≤ `(J), `(I) = 2−i`(K), and `(J) = 2−j`(K).
There are three alternative cases: I ( J , I = J , or I ∩ J = ∅. The case
‘I = J ’ is estimated by the weak boundedness property. The case ‘I∩J = ∅’
and, after separating the dyadic paraproducts, the case ‘I ( J ’ are estimated
by the standard estimates. The point of a good cube is that it stays away
from the boundaries of all other (much bigger) cubes. This, after quantifying
‘away’, has two consequences: In the case ‘I ( J ’ we have a lower bound for
dist(I, ∂J) and in the case ‘I ∩ J = ∅’ we have an upper bound for `(I ∨ J).
These bounds yield the exponential decay in (i+ j).

5.3 Proof of the two weight testing conditions

In this section we give a proof of Theorem 3, whose statement and proof vary
from the corresponding original theorem [1, Theorem 3.4.] in that we have
separated scales of dyadic shifts and of Haar projections. Let S := SDk modκ

be a generalized dyadic shift with scales separated and with complexity κ.
Throughout this section it is understood that all dyadic cubes that we are
considering belong to the collection Dk modκ. With this convention, the op-
erator AK has the following two crucial properties:

• AKf = 1KAK(1Kf) • AKf is constant on K ′ whenvever K ′ ( K.

Let f ∈ L2(σ). We use the notations σ(Q) :=
´
Q
σ and 〈f〉σQ := 1

σ(Q)

´
Q
fσ.

We define weighted Haar projections with scales separated by

Dσ
Qf :=

∑
Qi:Qi⊆Q and `(Qi)=2−κ`(Q)

1Qi〈f〉σQi − 1Q〈f〉σQ.
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The operator Dσ
Q has the following three crucial properties:

• Dσ
Qf = 1QD

σ
Q(1Qf) • 〈1Q, σDσ

Qf〉 = 0 • Dσ
Qf is constant on Q′

whenever Q′ ( Q.

We may assume that f can be expanded as f =
∑

QD
σ
Qf . We deal with

g ∈ L2(w) similarly. Let us consider the dual pairing

〈wg, S(σf)〉 =
∑
Q,R,K

〈wDw
Rg, AK(σDσ

Qf)〉.

By using the crucial properties of the operators AK , Dσ
Q, and Dw

R, we ob-
serve that 〈wDw

Rg, AK(σDσ
Qf)〉 = 0 unless we have one of the following four

alternative cases: K ⊆ Q ( R, K ⊆ R ( Q, Q = R = K, or K ( Q = R.
For further convenience, we define the operator SQ :=

∑
K⊆QAK .

First we check the case ‘K ⊆ Q ( R’. By the fact that Dw
Rg are can-

cellative on R and constant on the proper subcubes of R, by the expansion
g =

∑
RD

w
Rg, by the fact that Dσ

QD
σ
Q = Dσ

Q and (Dσ
Q)∗ = Dσ

Q, by the
Cauchy–Schwarz inequality applied twice, first to the weighted integral and
then to the summation over Q, and by Pythagoras’ theorem, we have

|
∑

Q,R,K:K⊆Q(R

〈wDw
Rg, AK(σDσ

Qf)〉| = |
∑
Q

〈
∑
R

Dw
Rg〉wQ〈Dσ

QS
∗
Q(1Qw), σDσ

Qf〉|

≤

(∑
Q

(〈|g|〉wQ)2‖Dσ
QS
∗
Q(w)‖2

L2(σ)

)1/2

‖f‖L2(σ).

We use the dyadic Carleson embedding theorem to estimate the quantity in
the round brackets. The key observation is that Dσ

Q′S
∗
Q′(w) = Dσ

Q′S
∗
Q(w)

whenever Q′ ⊆ Q, because 1Q′S
∗
Q(w) = 1Q′S

∗
Q′(w) + 1Q′

∑
K:Q⊇K)Q′ A

∗
K ,

where the second term is constant on Q′. Then the condition in the dyadic
Carleson embedding theorem is checked by using Pythagoras’ theorem, the
expansion 1QS

∗
Q(w) = 1Q〈S∗Q(w)〉σQ+

∑
Q′⊆QD

σ
Q′S

∗
Q(w), and the direct testing

condition. The case ‘K ⊆ R ( Q’ is checked in a similar way.
Next we check the case ‘K = R = Q’. By the estimate |AQf | ≤

1
|Q|‖f1Q‖L1 , by the Cauchy–Schwarz inequality applied to each of the weighted

integrals, and by the definition of the joint A2 characteristic [w, σ]A2 , we have

|〈wDw
Qg, AQ(σDσ

Qf)〉| ≤ 1

|Q|
‖Dw

Qg‖L1(w)‖Dσ
Qf‖L1(σ)

≤ w(Q)1/2σ(Q)1/2

|Q|
‖Dw

Qg‖L2(w)‖Dσ
Qf‖L2(σ) ≤ [w, σ]

1/2
A2
‖Dw

Qg‖L2(w)‖Dσ
Qf‖L2(σ).

36



By summing over the dyadic cubes Q, applying the Cauchy–Schwarz inequal-
ity to the summation, and using Pythagoras’ theorem, we conclude the case.

Next we check the case ‘K ( Q = R’. Let Qk be the maximal, and
hence pairwise disjoint, dyadic cubes strictly contained in Q. By expanding∑

K(QAK =
∑

Qk
SQk , D

σ
Qf =

∑
Qi
〈f〉σQi1Qi , and Dw

Qg =
∑

Qj
〈g〉wQj1Qj ,

using the fact that Qi are pairwise disjoint, applying the Cauchy–Schwarz
inequality to the weighted integral, using the direct testing condition (or,
alternatively, the dual testing condition) and the joint A2 condition to obtain

the estimate ‖SQk(σ)‖L2(w) ≤ (S+ [w, σ]
1/2
A2

)σ(Qk)
1/2, applying the Cauchy–

Schwarz inequality to the summation over Qk, and using the definition of the
integral, we obtain

|〈wDw
Qg,

∑
K(Q

AK(σDσ
Qf)〉| ≤

∑
Qk

|〈Dw
Qg〉wQk | |〈D

σ
Qf〉σQk |‖1Qk‖L2(w)‖SQk(σ)‖L2(w)

≤
(
S + [w, σ]

1/2
A2

)
‖Dw

Qg‖L2(w)‖Dσ
Qf‖L2(σ).

By summing over the dyadic cubes Q, applying the Cauchy–Schwarz inequal-
ity to the summation, and using Pythagoras’ theorem, we conclude the case.
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6 Wavelet method for Cauchy integral and

Kato conjecture

after Ph. Tchamitchian [6], P. Auscher and Ph. Tchamitchian [1]
A summary written by Yi Huang

Abstract

We give a brief survey on the wavelet methods used in re-proving
the boundedness of Cauchy integral along lipschitz curves [6] and in
re-solving the one dimension Kato conjecture [1]. If time permits, we
shall also connect the wavelet objects with the T(b) scheme.

6.1 Introduction

Let the lipschitz curve Γ be the graph of a real-valued function A, which is
assumed to be defined on R, differentiable almost everywhere and with A′

bounded. The Cauchy integral along the lipschitz curve Γ is defined as

CAf(x) = p.v.
1

πi

ˆ
R

f(y)

x− y + i(A(x)− A(y))
(1 + iA′(y))dy. (1)

The celebrated theorem of Coifman-McIntosh-Meyer [3] affirms that

CA is bounded on L2(R).

In 1964, A. P. Calderón [2] used for the first time the following transform

∀ f ∈ L2(R), f =

ˆ
R+

ˆ
R
〈f, ψa,b〉ψa,b

dbda

a
, (2)

where ψa,b(x) = a1/2ψ(ax− b) and ψ ∈ L2(R) with
ˆ
R+

|ψ̂(aξ)|2da
a

= 2π, ∀ ξ 6= 0.

This kind of decomposition has been employed to study the boundedness
of singular integral operators of Calderón-Zygmund type, in particular, the
Cauchy integral on lipschitz curves as in [3]. The discrete version of (2) is

f =
∑
j,k

〈f, ψj,k〉ψj,k, (3)
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where ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z, and ψ is properly chosen.
Just like its continuous version, (3) can also be used to study the bound-

edness of singular integral operators, say for example, the re-proof in [6] for
Cauchy integral on lipschitz curves. Moreover, (3) enables us to construct
the bases of L2(R) and many other function spaces, and this is the main idea
taken in [1] to re-solve the one dimension Kato conjecture.

6.2 Wavelets and Cauchy integral on lipschitz curves

Let b(x) = 1 + iA′(x), and define the bilinear symmetric form B by

B(f, g) =

ˆ
R
f(x)g(x)b(x)dx.

The boundedness of CA on L2(R) arrives as a corollary of the following result.

Theorem 1 ([6]). There exist a family of b-wavelets Θj,k, j, k ∈ Z, and two
constants C, α > 0, such that the following properties hold true

|Θj,k(x)| ≤ C2j/2e−α|2
jx−k|, (4)

|Θ′j,k(x)| ≤ C23j/2e−α|2
jx−k|, (5)ˆ

R
Θj,k(x)b(x)dx = 0, (6)

B(Θj,k,Θj′,k′) = δ(j,k),(j′,k′), (7)

∀ f ∈ L2(R),

ˆ
R
|f |2 '

∑
j,k

|B(f,Θj,k)|2. (8)

Here, the expression “family of b-wavelets” means that the wavelets are adapted
to b, and that there exists Θ(x) such that Θj,k(x) = 2j/2Θ(2jx− k).

6.3 Wavelets and Kato conjecture in one dimension

Let the complex-valued function a(x) ∈ L∞(R), with Re a(x) ≥ 1 almost
everywhere. Denote by D = −i d/dx the differentiation operator and by A
the pointwise multiplication by a(x). Consider the sesquilinear form

J(f, g) =

ˆ
R
a(x)Df(x)Dg(x)dx,
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which is defined on the Sobolev space H1(R). Thus we have

Re J(f, f) ≥ ‖Df‖2
2.

It was shown by T. Kato in [4] that the form J defines a maximal accretive
operator T , which we write as D∗AD, where the domain D(T ) is the largest
subspace in H1(R) and is consisted by those functions f such that

J(f, g) = 〈Tf, g〉, ∀ g ∈ H1(R).

The square root of T is then defined by the functional calculus of T. Kato,
and the conjecture of Kato is to determinate the exact domain of T 1/2.

The difficulty comes from the fact that a(x) is not regular. Indeed, D(T )
coincides with the set of functions f ∈ H1(R) such that a(x)Df(x) ∈ H1(R).
But this space is not classical and in particular is not realized in the scale of
Sobolev spaces H1+ε(R), ε > 0. The Kato conjecture (in one dimension) was
solved in 1982 by R. Coifman, A. McIntosh and Y. Meyer [3]:

The domain of T 1/2 is the space H1(R) (with the equivalence of norms).

Basing on the wavelet method in [6] in reproving the boundedness of CA,
the authors in [1] characterized D(T ) by an appropriate wavelet basis.

Theorem 2 ([1]). Denote by Λ the set of dyadic intervals of R. There exists
a family of lipschitz functions τλ(x), λ ∈ Λ, which belong to D(T ) and form
an unconditional base of each of the spaces L2(R), H1(R) and D(T ).

Moreover, the respective membership of
∑
αλτλ(x) in each of these spaces

are characterized by {αλ} ∈ l2(Λ), {αλ} ∈ l2(Λ, ω) and {αλ} ∈ l2(Λ, ω2).
Here, ω is a certain positive weight defined on Λ.

Once the above theorem is established, we arrive at the solution of one
dimension Kato conjecture by using a result of J.L. Lions.

Lemma 3 ([4]). If T is an operator with domain D(T ) in a Hilbert space H,
and T is maximal accretive, then the domain of the square root of T is the
space of complex interpolation at the mid-point between D(T ) and H.

To complete the proof of Theorem 2, the following result is needed, and
it is essentially in the same spirit of [6] (see Theorem 1 above).
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Lemma 4 ([1]). There exist two constants C, γ > 0 and a family of complex-
valued C2 functions {θλ(x)}λ∈Λ, such that if λ = [k2−j, (k+ 1)2−j), k, j ∈ Z,
we have

|θλ(x)| ≤ C2j/2e−γ|2
jx−k|, (9)

|Dθλ(x)| ≤ C23j/2e−γ|2
jx−k|, (10)

|D2θλ(x)| ≤ C25j/2e−γ|2
jx−k|, (11)ˆ

R
θλ(x)b(x)dx = 0, (12)

ˆ
R
xθλ(x)b(x)dx = 0, (13)

where b(x) = 1/a(x), a(x), D and Λ are as before. Moreover, we have

ˆ
R
θλ(x)θµ(x)b(x)dx = δλ,µ, λ ∈ Λ, µ ∈ Λ. (14)

The collection of all these functions constitutes an unconditional base of
L2(R): all the function f(x) can be written uniquely as f(x) =

∑
αλθλ(x)

with {αλ} ∈ l2(Λ). Moreover, ‖f‖2 and (
∑
|αλ|2)1/2 are two equivalent

norms. In the end, for all λ ∈ Λ,

αλ =

ˆ
R
f(x)θλ(x)b(x)dx. (15)
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7 A new proof of Moser’s Parabolic Harnack

Inequality using the old ideas of Nash

after E. B. Fabes and D. W. Stroock [5]
A summary written by Sukjung Hwang

Abstract

We revisit Nash’s idea to show a Harnack inequality, quantitative
relations between the values of solutions at different points, of second
order parabolic differential equations in divergence form.

7.1 Introduction

We introduce second order elliptic and parabolic operators of the form

Le =
n∑

i,j=1

Dxi

(
aeij(x)Dxj

)
(1)

L =
n∑

i,j=1

Dxi

(
aij(t, x)Dxj

)
−Dt (2)

where t is a real number and x = (x1, . . . , xn) ∈ Rn. Basic assumptions on
the matrix are symmetry, i.e. aeij = aeji and aij = aji, and the existence of a
number λ ∈ (0, 1] such that for all (t, x) ∈ Rn+1 and all nonzero ξ ∈ Rn

λ|ξ|2 ≤
n∑

i,j=1

aeij(x)ξiξj ≤ λ−1|ξ|2,

and

λ|ξ|2 ≤
n∑

i,j=1

aij(t, x)ξiξj ≤ λ−1|ξ|2, (3)

which is so called uniform ellipticity and boundeness of the coefficient matrix.
Before DeGiorgi-Nash-Moser, the regularity theory in partial differen-

tial equations is studied based on perturbation type of arguments such as
Schauder’s estimate obtaining a priori estimates depends on the smootheness
of coefficients and the boundary. Assuming only measurability, uniform el-
lipticity, and boundedness of the coefficients, DeGiorgi (1957,[4]) gives the
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Hölder continuity of weak solutions satisfying Leu = 0 by taking iteration
that a certain integral quantity of u decays in between two different sized
balls, yielding a proper relation of the oscillations like Lemma 1. Later,
Moser (1961 [6] for Le (1) and 1964 [7] for L) introduces another itera-
tion scheme to control the power of Lp norm of weak solutions leading to
a Harnack inequality. Those two powerful techniques are adopted and ex-
tended by many mathematicians (Aronson, Chen, DiBenedetto, Kurihara,
Ladyženskaja, Serrin, Trudinger, Ural’ceva, etc.).

In 1958, Nash [8] approaches the regularity theory of the parabolic op-
erator L with physical intuition and regards the elliptic operator Le as a
specialization typically the steady state of parabolic equations. However,
the complexity and difficulty of his proof does not permit one to sharpen his
results easily. In the paper [5], a Harnack inequality is given by combining
Nash’s idea and techniques developed later in a simper way.

7.2 The upper and lower bounds

We may assume that the matrix a(t, x) ≡ aij(t, x) of the parabolic operator L
(2) is smooth; however, we emphasize that all quantitative estimates (a priori
constants) are only allowed to depend on n and λ, from (3). For x, y, ξ ∈ Rn

and t, s, r ∈ R, let Γ(t, x; s, y) ≡ Γa(t, x; s, y) denote the fundamental solution
of the parabolic operator L, in (2). The purpose of this paper is to use the
ideas of Nash [8] to obtain the following estimates: for s < t

exp
{
−C|x−y|2

t−s

}
C(t− s)n/2

≤ Γ(t, x; s, y) ≤
C exp

{
− |x−y|

2

C(t−s)

}
(t− s)n/2

(4)

where C depends only on n and λ.

The upper bound (described as ‘the moment bound’ in Nash’s paper,
Part I on [8]) is given applying techniques by Davies [3]. First, define

ft(x) = exp(−ψ(x))

ˆ
f(y)Γ(t, x; 0, y) exp(ψ(y)) dy,

where f ∈ S(Rn; (0,∞)), a positive function from the Schwartz test func-
tion space, and ψ(x) = α · x with a fixed element α ∈ Rn. From various
inequalities, one provides that for any p ∈ [1,∞), t ≥ 0, and some ε > 0

d

dt
‖ft‖2p ≤ −

ε

2p
‖ft‖1+4p/n

2p ‖ft‖−4p/n
p +

|α|2p
λ
‖ft‖2p.

44



For each δ > 0, the above inequality implies that there is a constant K =
K(ε, δ) <∞ such that for t ≥ 0

‖ft‖2p ≤ (Kp2)n/4p‖ft‖peδα
2t/λptn(1−p)/4p.

In particular, we also obtain for t ≥ 0

‖ft‖2 ≤ e|α|
2t/λ‖f‖2.

By setting pk = 2k and wk = max{sn(pk−2)/4pk‖ft‖pk : 0 ≤ s ≤ t}, if ‖f‖2 = 1
and u1(t) ≤ eα

2t/λ, then we have

wk+1(t)

wk(t)
≤ (4kK)n/4·2

k

exp

(
δα2t

λ2k

)
and there is a constant C <∞, depending only on n, λ and δ > 0, such that

sup
k
wk(t) ≤ C exp

[
(1 + δ)αt

λ

]
.

Therefore, by taking k →∞, it follows

‖ft‖∞ ≤ Ct−n/4 exp

[
(1 + δ)αt

λ

]
.

By using the adjoint operator and the duality, it allows us to have

Γa(2t, x; 0, y) ≤ C

tn/2
exp

(
4|α|2t/λ+ α · (x− y)

)
and the upper bound, the right-hand side of (4), is provided by choosing
α = λ

8t
(y − x).

The lower bound, the left-hand side of (4), is obtained by combining
Nash’s idea (‘The G Bound’, Part II of [8]) with Aronson and Serrin’s
work ([1] and [2]). Set u(s, y) = Γa1(s, y; 0, x), in particular Γa(1, x; 0, y) =
Γa1(s, y; 0, x) where at = a(t− ·, ·). Consider

G(s) =

ˆ
e−π|y|

2

log u(s, y) dy,

which is sensitive to areas where |y| is not large and u is small. Note that´
u(s, y) dy = 1 and G(s) < 0. Roughly speaking, we obtain a result limiting
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the extent to which a fundamental solution can be very small over a large
volume of space near its source point, y in Γ(t, x; s, y). With additional
restrictions on the solution that

sup
1/2≤s≤1

u(x, y) ≤ K

with an absolute constant K and the existence of Rλ depending only on λ
satisfying

sup
1/2≤s≤1

ˆ
|y|>Rλ

u(s, y) dy ≤ 1

2
,

the lower bound for G(1) is given that there is a constant B <∞ depending
only on λ such that for all |x| ≤ 1

ˆ
e−π|y|

2

log Γa(1, x; 0, y) dy ≥ −B.

By taking s = 0 and t = 2, we write (Kolmogorov identity)

Γa(2, x; 0, y) =

ˆ
Γa(1, ξ; 0, y)Γã(1, x; 0, ξ) dξ

where ã = a(· + 1, ·). We overlap two fundamental solutions with nearby
sources, and then there exists a constant C depending only on λ such that

Γa(t, x; s, y) ≥ 1

C(t− s)n/2

for all x and y satisfying |x− y| ≤
√
t− s. The lower bound is obtained, for

any x, y ∈ Rn and t, s ∈ R, by repeatedly applying the previous techniques
after taking subdivision of the region properly.

7.3 Consequences of the lower and upper bounds

From the lower and upper bounds (4), we derive Nash’s theorem on the
continuity of weak solutions and Moser’s Harnack inequality. First, define

osc u(s, ξ, R) = sup
{
|u(t, x)− u(t′, x′)| : s, s′ ∈ B(ξ, R), s−R2 ≤ t, t′ ≤ s

}
.
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Lemma 1. For each δ ∈ (0, 1), there is a ρ = ρ(n, λ, δ) ∈ (0, 1) such that
for all (s, ξ) ∈ R×Rn and R > 0:

osc u(s, ξ, δR) ≤ ρ osc u(s, ξ, R)

whenever u ∈ C∞([s − R2, s] × B̄(ξ, R)) satisfies Lu = 0 in (s − R2, s) ×
B(ξ, R).

Lemma 1 is a key to show following theorems, Theorems 2 and 3.

Theorem 2. (NASH) For each δ ∈ (0, 1), there are constants C = C(n, λ, δ) <
∞ and β = β(n, λ, δ) ∈ (0, 1) such that for all (s, ξ) ∈ R×Rn and R > 0:

|u(t, x)− u(t′, x′)| ≤ C‖u‖Cb([s−R2,s]×B̄(ξ,R))

(
|t− t′|1/2 + |x− x′|

R

)β
for (t, x), (t′, x′) ∈ [s− (1− δ2)R2, s]× B̄(ξ, (1− δ)R) whenever u ∈ C∞([s−
R2, s]× B̄(ξ, R)) satisfies Lu = 0 in (s−R2, s)×B(ξ, R))

Theorem 3. (Harnack inequality) Let 0 < α < β < 1 and γ ∈ (0, 1) be given.
Then there is an M = M(n, λ, α, β, γ) <∞ such that for all (s, x) ∈ R×Rn,
all R > 0, and all non-negative u ∈ C∞([s − R2, s] × B̄(ξ, R)) satisfying
Lu = 0, one has

u(t, y) ≤Mu(s, x) (5)

for all (t, y) ∈ [s− βR2, s− αR2]× B̄(x, δR).

We also mention a Harnack inequality from Moser’s paper (Theorem 1
on [7]) which is equivalent to Theorem 3.

Theorem 4. If u is a non-negative weak solution satisfying Lu = 0 in
Q(t, x) = (t, t+ τ)×Bx,R for some constants τ > 0 and R > 0, then

max(s,y)∈Q− u(s, y) ≤ γ min(s,y)∈Q+ u(s, y), (6)

where γ > 1 is a constant which depends on n, λ and six geometrical constants
R,R′, τ, τ−1 , τ

−
2 , τ

+ and

Q− = (τ−1 , τ
−
2 )×Bx,R′ , Q+ = (τ+, τ)×Bx,R′

with 0 < R′ < R and 0 < τ−1 < τ−2 < τ+ < τ .

At the end of paper [8], Nash describes a Harnack inequality as

u(t, x2) ≥ F (u(t, x1)/B, |x1 − x2|/
√
t− t0),

provided 0 ≤ u ≤ B for t ≥ t0. F is an a priori function that is a more
general function than a linear function on u. From Theorem 3, it is not
possible to obtain Nash’s Harnack inequality.
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8 Two Weight Inequality for the Hilbert Trans-

form

after Michael T. Lacey [1]
A summary written by Vjekoslav Kovač

Abstract

Consider all pairs of weights (w, σ) without common point masses.
The problem is to characterize those pairs for which the Hilbert trans-
form satisfies the estimate ‖H(σf)‖L2(w) ≤ C‖f‖L2(σ). The paper in
question contains a “real-variable characterization”: the one in terms
of the Poisson A2 condition and the Sawyer-type testing conditions.

8.1 A bibliographical note

The study of Hilbert transform estimates with two different weights was first
suggested by Benjamin Muckenhoupt and Richard L. Wheeden. The char-
acterization was conjectured by Fedor Nazarov, Sergei Treil, and Alexander
Volberg, who had also verified it in the case of doubling measures. The origi-
nal paper by Michael T. Lacey claiming the result has been transformed into
[2], a sequel to a previous paper [3]. Therefore, the complete proof of the
two-weight characterization is distributed to the following pair of articles:

Part I, by Michael T. Lacey, Eric T. Sawyer, Chun-Yen Shen, and Ignacio
Uriarte-Tuero, [3];

Part II, by Michael T. Lacey, [2].

A unified and self-contained exposition collecting material of both papers
was given by Lacey [1]. Here we always refer to that paper.

8.2 Introduction and formulation of the main result

8.2.1 On individual two-weight problems

Let T be a given operator acting on one-dimensional functions. One can ask
to determine for which weights w and σ the L2 estimate

‖T (σf)‖L2(w) ≤ N‖f‖L2(σ) (1)
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holds with a finite constant N independent of f . Here by a weight we simply
mean a nonnegative locally finite Borel measure on R, so the “weighted” L2

norm is simply the Lebesgue norm with respect to that measure, i.e.

‖f‖L2(σ) :=
(ˆ

R
|f |2dσ

)1/2

.

The “product” σf is interpreted as the signed measure ν defined by dν = fdσ
and the expression T (σf) should make sense. One can further ask to quantify
the dependence of the best possible constant N in (1) on the weights w, σ.

Let us quickly explain how Estimate (1) is motivated by the most classical
weighted inequality for T , namely

‖Tf‖L2(w) ≤ N‖f‖L2(w), (2)

where this time w is a strictly positive locally integrable function on R and we
can understand it as a Radon-Nikodym derivative of some positive measure.
It is a classical idea of Eric T. Sawyer to write σ = 1

w
and substitute g =

wf = f
σ
, so that

‖f‖2
L2(w) =

ˆ
R
|f(x)|2w(x)dx =

ˆ
R
|g(x)|2σ(x)dx = ‖g‖2

L2(σ)

and (2) becomes (1) with f replaced with g. It is then natural to try to omit
the pointwise constraint wσ = 1 and relax any conditions on w (such as the
Muckenhoupt A2 condition) to their joint variants in both w and σ. Finally,
one does not have to confine themselves to absolutely continuous measures.
We will also comment on the need for discussing general measures in the last
section.

The two-weight problem was previously resolved for several classical op-
erators:

• for the Hardy operator by Muckenhoupt,

• for the maximal function, the Poisson integral, and fractional integrals by
Sawyer,

• for certain non-positive dyadic operators by Nazarov, Treil, and Volberg.

The discussed paper of Lacey establishes such a characterization for the
Hilbert transform. This result is particularly interesting because the Hilbert
transform is the first non-positive “continuous-type” operator for which this
task is accomplished.

50



8.2.2 Characterization for the Hilbert transform

For any 0 < τ < 1 we consider the truncated Hilbert transform acting on a
signed Borel measure ν by the formula

(Hτν)(x) :=

ˆ
{y : τ<|y−x|<τ−1}

ν(dy)

y − x
. (3)

One certainly recovers the usual definition of Hτf when ν is absolutely con-
tinuous and dν = fdλ, where λ denotes the Lebesgue measure. We never
attempt to study the limiting behavior as τ → 0, because the limit of (3)
need not exist in our setting, and because pointwise convergence is typically
a more difficult problem than boundedness itself. We only take care that the
inequality we investigate is uniform in τ , i.e. we are actually characterizing
the bound

sup
0<τ<1

‖Hτ (σf)‖L2(w) ≤ N‖f‖L2(σ). (4)

Let N ∈ [0,∞] be the smallest constant such that (4) is satisfied. We
suppress the dependence of Hτ on τ in the notation.

A convenient way of measuring size of the Poisson extension of σ to the
upper half-plane is via the quantity

P(σ, I) :=

ˆ
R

|I|(
|I|+ dist(x, I)

)2 σ(dx),

defined for any bounded interval I. Define

A2 := sup
I

P(σ, I)P(w, I) ∈ [0,∞], (5)

where the supremum is taken over all bounded intervals I. Quantity (5) is
called the Poisson A2 characteristic. It is related to the Muckenhoupt A2

characteristic

[w]A2 := sup
I

( 1

|I|

ˆ
I

1

w

)( 1

|I|

ˆ
I

w
)

by [w]A2.A2. [w]2A2
when w is a locally integrable function and σ = 1

w
. In

general one only has the trivial estimate

A2 ≥ sup
I

σ(I)w(I)

|I|2
,
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showing that the Poisson A2 condition A2 < ∞ is indeed stronger than the
two weight Muckenhoupt A2 condition.

Let T ∈ [0,∞] denote the smallest constant such that
ˆ
I

(
H(σ1I)

)2
dw ≤ T 2σ(I) and

ˆ
I

(
H(w1I)

)2
dσ ≤ T 2w(I) (6)

hold for all bounded intervals I. Conditions (6) are called the Sawyer-type
testing conditions. It follows from Stefanie Petermichl’s representation of
H as an average of dyadic shifts that T . [w]A2 holds in the previously
mentioned case σ = 1

w
.

Finally, let us say that measures σ and w do not share a common point
mass if σ({x})w({x}) = 0 for each x ∈ R. We can now formulate the main
result of the paper in question.

Theorem 1 (M. T. Lacey, 2013). If two weights σ and w do not share a
common point mass, then

N ' A1/2
2 + T ,

i.e. the two quantities are comparable.

8.2.3 On counterexamples

Even though it had initially been suspected that already the two weight
Muckenhoupt A2 condition might be sufficient for (4), it was soon shown by
Muckenhoupt and Wheeden that this is not the case. Much later Nazarov
gave a proof that the Poisson A2 condition alone is not enough for having (4),
answering negatively to the conjecture of Donald Sarason. A more advanced
counterexample that also satisfies one of the two sets of testing conditions
(6) was given by Nazarov and Volberg.

8.3 Proving the main theorem

A basic line of approach to this type of problems was invented by Nazarov,
Treil, and Volberg. In order to keep this summary concise, we only comment
on a couple of entirely novel ideas of Lacey, both of which can only be adapted
to the case of the Hilbert transform. One can say (rather vaguely) that these
novel ideas exploit the positivity, as the derivative of the Hilbert kernel is
positive, d

dx
1

y−x = 1
(y−x)2 > 0.
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For any bounded interval I let I− and I+ denote the left and right halves
of I respectively. The associated Haar function is chosen depending on a
weight σ and defined to be

hσI :=
(σ(I−)σ(I+)

σ(I)

)1/2( 1I+
σ(I+)

−
1I−
σ(I−)

)
.

This choice is convenient because hσI is normalized in L2(σ), its integral with
respect to σ is 0, and its L2(σ) inner product with ι : R → R, ι(x) := x is
nonnegative.

8.3.1 The monotonicity principle

This ingredient turns certain “off-diagonal” estimates for H into estimates
for the Poisson integrals.

Lemma 2. If a positive measure µ and a signed measure ν are such that
|ν| ≤ µ, both measures are supported outside an interval I ∈ D, and none of
µ, ν, w has a point mass at an endpoint of I, then

P(µ, I)
〈 ι

|I|
, g
〉
w
. 〈Hµ, g〉w

for any g ∈ L2(J, w) such that
´
J
gdw = 0.

Here
g 7→ g :=

∑
J ′∈D

|〈g, hwJ ′〉w| hwJ ′

is a Haar multiplier with respect to a dyadic grid in question.

8.3.2 The energy inequality

The following auxiliary result fundamentally uses both the A2 condition and
the testing conditions. The energy of w with respect to an interval I from a
dyadic grid D is defined to be

E(w, I) :=
(
|I|−2

∑
J∈D:J⊆I

〈ι, hwJ 〉2w
)1/2

.
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Lemma 3. For an interval I0 ∈ D and its partition P into intervals such that
neither σ nor w have point masses at their endpoints one has the estimate∑

I∈P

P(σ, I)2E(w, I)2w(I) . (A2 + T 2)σ(I0).

There is also a more advanced functional energy inequality, which also
crucially depends on positivity.

8.4 Applications and connections with other problems

The two weight problem for the Hilbert transform is connected with a number
of diverse problems, such as composition of Toeplitz operators, model spaces,
and de Branges spaces. We only shortly comment on the first topic.

Let H2(D) denote the complex Hardy space on the unit disk and let
P+ : L2(T) → H2(D) denote the Riesz projection. A Toeplitz operator with
symbol g ∈ L2(T) is a map Tg defined by

Tgf := P+(gf).

Finally, let

P(|g|2)(z) :=

ˆ
T

1− |z|2

|1− zθ|2
|g(θ)|2dθ for z ∈ D

denote the Poisson extension of |g|2 to the unit disk.

Conjecture 4 (D. Sarason, 1994). For two outer functions g, h ∈ H2(D) the
composition TgTh is bounded on H2(D) if and only if

sup
z∈D

P(|g|2)(z)P(|h|2)(z) <∞. (7)

It was observed by Treil that (7) is a necessary condition for boundedness,
which motivated the conjecture. However, the previously mentioned result
by Nazarov shows that (7) is not sufficient, so Sarason’s conjecture is actually
false.

However, the problem of characterizing all pairs (g, h) for which TgTh is
bounded on H2(D) remains interesting. It is equivalent to boundedness of
MgP+Mh, where Mg denotes the multiplication by g. Using the structure of
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outer functions one can further reformulate it as boundedness of M|g|P+M|h|
on L2(T). Since∥∥M|g|P+M|h|

∥∥
L2→L2 =

∥∥P+(|h|·)
∥∥

L2→L2(|g|2dλ)
=
∥∥P+(|h|2·)

∥∥
L2(|h|2dλ)→L2(|g|2dλ)

we arrive precisely at the two weight inequality for P+, with weights |g|2dλ
and |h|2dλ. By writing P+ = I − π

i
H it becomes possible to apply the

characterization of Theorem 1.
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9 Lp theory for outer measures and two themes

of Lennart Carleson united

after Y. Do and C. Thiele [1]
A summary written by Mariusz Mirek

Abstract

We will develop a theory of Lp spaces based on outer measures
instead of measures. With the aid of this theory we illustrate Lp

boundedness of bilinear Hilbert transform.

9.1 Introduction

The time–frequency analysis provides some tools/techniques which allows us
to bound various operators (multilinear operators) corresponding with model
sums of the form

Λ(f1, . . . , fn) =
∑
P∈P

cP

n∏
j=1

aP (fj),

where the summation index runs through a discrete set P, typically a col-
lection of rectangles (tiles) in the phase plane and the coefficients cP are
inherent to the multilinear form. One of the most important example of the
sequences (aP (fj))P∈P is

aP (fj) = 〈fj, φP 〉,

where
φP (x) = 2−kφ(2−kx− n)e2πi2−kxl,

is L1 normalized wave packet with a suitably chosen Schwartz function φ
and integers k, l, n which parameterize the space P. For more examples of
sequences (aP (fj))P∈P we refer to [3].

The main idea of Yen Do and Christoph Thiele in [1] is based on a brilliant
observation that the bound on Λ is a Hölder’s inequality with respect to an
outer measure on the space P

|Λ(f1, . . . , fn)| ≤ C

n∏
j=1

‖aP (fj)‖Lpjj (P,...)
,
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where . . . stands for the explicit outer measure structure which will be dis-
cussed later. Our principal examples will be paraproducts and the bilinear
Hilbert transform. However, after the general use of Hölder’s inequality the
main work is carried over into the following estimate

‖aP (fj)‖Lpjj (P,...)
≤ C‖fj‖Lpj (R),

for each 1 ≤ j ≤ n separately. Such kind of estimate will be called a gener-
alized Carleson embedding theorem. Employing these ideas we will reprove
the following theorem of Michael Lacey and Christoph Thiele [2].

Theorem 1. Let β = (β1, β2, β3) be a vector in R3 with pairwise distinct
entries. For three Schwartz functions f1, f2, f3 on the real line we define

Λβ(f1, f2, f3) = p.v.

ˆ
R

ˆ
R

3∏
j=1

fj(x− βjt)
dt

t
dx.

Then for any 2 < p1, p2, p3 < ∞ with
∑3

j=1
1
pj

= 1 there is a finite constant

C > 0 such that for all Schwartz functions f1, f2, f3 we have

|Λβ(f1, f2, f3)| ≤ C
3∏
j=1

‖fj‖Lpj (R).

Before we prove this theorem let us recall that outer measures are sub-
additive set function. Some outer measures produce interesting measures by
restriction to Caratheodory measurable sets, the best known example is clas-
sical Lebesgue theory. The outer measures which will occur in time–frequency
analysis give rise only to trivial Caratheodory measurable sets.

Outer measures do not satisfy additivity for disjoint collections of sets
and we do not have a linear theory of integrals with respect to outer mea-
sures. Even though, we are led to a non–linear theory and instead of linear
functionals we have to consider norms, the Lp theory of outer measure spaces
is quite parallel to the standard theory of Lp spaces.

9.2 Lp theory of outer measure spaces

In many cases it is convenient to generate an outer measure by a concrete
premeasure. It is possible due to the following.
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Proposition 2. Let X be a set and E be a collection of subsets of X. Let σ
be a function from E to [0,∞). Define for an arbitrary subset E of X

µ(E) = inf
E′

∑
E′∈E′

σ(E ′),

where the infimum is taken over all subcollections E′ of E which cover E.
Then µ is an outer measure. Moreover, if for every set E ∈ E and every
cover of E by a subcollection E′ of E we have

σ(E) ≤
∑
E′∈E′

σ(E ′),

then µ(E) = σ(E) for every E ∈ E.

9.2.1 Examples of outer measures

Example 1. Lebesgue measure via dyadic cubes. Let X be the Euclidean
space Rd for some d ≥ 1 and let E be the set of all dyadic cubes Q of
the form

Q = [2kn1, 2
k(n1 + 1))× . . .× [2knd, 2

k(nd + 1)),

where k, n1, . . . , nd ∈ Z. For each dyadic cube Q we set σ(Q) = 2kd.
Then σ generates an outer measure µ which is the classical outer mea-
sure on Rd and we have σ(Q) = µ(Q) for any Q ∈ E.

Example 2. Lebesgue measure via balls. Let X = Rd be as above and E be
the set of all open balls Br(x) with radius r > 0 and canter x ∈ Qd.
Let σ(Br(x)) = rd for any Br(x) ∈ E. Then σ generates a multiple of
Lebesgue outer measure µ and again σ = µ|E.

Example 3. Outer measure generated by tents. Let X = R× (0,∞) be the
open upper half plane and let E be the set of all open isosceles triangles
of the form

T (x, s) = {(y, t) ∈ R× (0,∞) : t < s, |x− y| < s− t},

for some pair (x, s) ∈ R × (0,∞) which is the tip of the tent. Define
σ(E) = s for any T (x, s) ∈ E. One can easily see that σ generates
an outer measure µ on X which coincides with σ on the collection E.
Moreover, the Caratheodory’s σ–algebra M is trivial, i.e. M = {∅, X}.
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9.2.2 Size, essential supremum and super level measure

To avoid too abstract settings we shall assume that X is a metric space and
every set of the collection E is Borel. Finally B(X) will denote the set of all
Borel measurable functions on X.

Definition 3. Let X be a metric space. Let σ be a function on a collection
E of Borel subsets of X and let µ be the outer measure generated by σ such
that σ = µ|E. A size map is a map S : B(X) 7→ [0,∞]E satisfying for every
f, g ∈ B(X) and every E ∈ E the following properties:

1. Monotonicity: if |f | ≤ |g|, then S(f)(E) ≤ S(g)(E).

2. Scaling: S(λf)(E) = |λ|S(f)(E), for every λ ∈ C.

3. Quasi–subadditivity: S(f + g)(E) ≤ C(S(f)(E) + S(g)(E)), for some
finite constant C > 0 depending only on S but not on f, g, E.

Now we discuss sizes for the examples from previous subsection. In the
Example 1, we define for every f ∈ B(X) and every cube Q ∈ E

S(f)(Q) = µ(Q)−1

ˆ
Q

|f(x)|dx,

where the integral is in the Lebesgue sense. In the Example 2 we may define
size in a similar way as above taking open balls instead of cubes.

In the Example 3 for every F ∈ B(R× (0,∞)) and every tent T (x, s) ∈ E
we define

S(F )(T (x, s)) =
1

s

ˆ
T (x,s)

|F (y, t)|dydt
t
.

In the literature one often works with the class of Borel measures ν on X
rather than the class of Borel measurable functions and defines

S(ν)(T (x, s)) = s−1|ν|(T (x, s)).

If S(ν) is bounded, the measure ν is called a Carleson measure on X.
Finally, we introduce the definition of outer essential supremum and super

level measure which allow us to build up theory of outer Lp spaces in the
next subsection.
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Definition 4. Assume that (X,µ, S) is an outer measure space with a size
map S. Given a Borel subset F of X we define the outer essential supremum
of f ∈ B(X) on F to be

outsupFS(f) = sup
E∈E

S(F1F )(E).

The use of the outer essential supremum is the main subtle point in the
following.

Definition 5. Assume that (X,µ, S) is an outer measure space with a size
map S. Let f ∈ B(X) and λ > 0 and define the super level measure to be

µ(S(f) > λ) = inf{µ(F ) : F ∈ E and outsupF cS(f) ≤ λ}.

We emphasize that in general µ(S(f) > λ) is not the outer measure of
the Borel set where |f | is larger that λ.

9.2.3 Outer Lp spaces

The definition of outer Lp space is straightforward using outer essential supre-
mum and super level measure. We will follow in the same way as in the
classical theory.

Definition 6. Let (X,µ, S) be an outer measure space with a size map S.
Then for any 0 < p ≤ ∞ we define the spaces

L∞(X,µ, S) = {f ∈ B(X) : ‖f‖L∞(X,µ,S) = outsupXS(f) <∞},

Lp(X,µ, S) = {f ∈ B(X) : ‖f‖Lp(X,µ,S) =

( ˆ ∞
0

pλp−1µ(S(f) > λ)dλ

)1/p

<∞},

Lp,∞(X,µ, S) = {f ∈ B(X) : ‖f‖Lp,∞(X,µ,S) =
(

sup
λ>0

λpµ(S(f) > λ)
)1/p

<∞}.

Proposition 7. Assume that (X,µ, S) is an outer measure space with a size
map S and let f, g ∈ B(X). Then for every 0 < p ≤ ∞ we have

1. Monotonicity: if |f | ≤ |g|, then ‖f‖Lp(X,µ,S) ≤ ‖g‖Lp(X,µ,S).

2. Scaling: ‖λf‖Lp(X,µ,S) = |λ|‖f‖Lp(X,µ,S), for every λ ∈ C.

60



3. Quasi–subadditivity: ‖f + g‖Lp(X,µ,S) ≤ C(‖f‖Lp(X,µ,S) + ‖g‖Lp(X,µ,S)),
for some finite constant C > 0 depending only on S but not on f, g, E.

The same type of estimates hold for the spaces Lp,∞(X,µ, S). Moreover,
‖f‖Lp,∞(X,µ,S) ≤ ‖f‖Lp(X,µ,S) for any f ∈ Lp(X,µ, S).

Now we have the following generalization of Hölder’s inequality.

Proposition 8. Assume that (X,µ, S) is an outer measure space with a
size map S and there are two sizes S1, S2 such that for any E ∈ E and
f1, f2 ∈ B(X) we have

S(f1f2)(E) ≤ S1(f1)(E)S2(f2)(E).

Then for any p, p1, p2 ∈ (0,∞] such that 1/p = 1/p1 + 1/p2 we have

‖f1f2‖Lp(X,µ,S) ≤ 2‖f1‖Lp1 (X,µ,S)‖f2‖Lp2 (X,µ,S).

9.2.4 Paraproducts and Carleson embedding theorem

Now we are at the place where we can show how this theory works in practise.
Let X = R× (0,∞) be the upper half plane and E be the collection of tents
as in the Example 3. For 1 ≤ p <∞, define sizes

Sp(F )(T (x, s)) =

(
1

s

ˆ
T (x,s)

|F (y, t)|pdydt
t

)1/p

,

and S∞(F )(T (x, s)) = sup(y,t)∈T (x,s) |F (y, t)|, where F ∈ B(R× (0,∞)).
For f ∈ L∞(R) consider the function Fφ(f) on X defined as follows

Fφ(f)(y, t) =

ˆ
X

f(z)t−1φ(t−1(y − z))dz,

where φ is a Schwartz function such that
´
R f(x)dx = 0. It is well known

that |Fφ(f)(y, t)|2 is a Carleson measure. The mapping f 7→ Fφ(f) is an em-
bedding of a space of functions on the real line into a space of functions in the
upper half plane reminiscent of Carleson embeddings. Therefore, Carleson
embedding theorem can be rephrased in the following way.
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Proposition 9. Let 1 < p ≤ ∞ and φ be a Schwartz function as above.
Then

‖Fφ(f)‖Lp(X,µ,S∞) ≤ Cφ,p‖f‖Lp(R),

and in addition if
´
R φ(x)dx = 0, then

‖Fφ(f)‖Lp(X,µ,S2) ≤ Cφ,p‖f‖Lp(R).

This proposition will be the main tool in the estimates for paraproducts.
A classical paraproduct is a bilinear operator, which after pairing with a
third function becomes a trilinear form which is essentially of the type

Λ(f1, f2, f3) =

ˆ ∞
0

ˆ
R

3∏
j=1

Fφj(fj)(x, t)dx
dt

t
,

where φ1, φ2, φ3 are Schwartz functions such that
´
R φk(x)dx = 0, for k = 1, 2,

whereas the third one does not necessarily have mean zero. Now one can see
that Hölder’s inequality combined with Carleson emmbeding theorem yield
that

|Λ(f1, f2, f3)| ≤ C

∥∥∥∥ 3∏
j=1

Fφj(fj)

∥∥∥∥
L1(X,µ,S1)

≤ C‖Fφ1(f1)‖Lp1 (X,µ,S2)‖Fφ2(f2)‖Lp2 (X,µ,S2)‖Fφ3(f3)‖Lp3 (X,µ,S∞)

≤ C‖f1‖Lp1 (R)‖f2‖Lp2 (R)‖f3‖Lp3 (R),

for any 1 < p1, p2, p3 <∞ such that
∑3

j=1 1/pj = 1.

9.2.5 Boundedness of the bilinear Hilbert transform

Exploring the same ideas as for Λ from the previous subsection we will be
able to prove similar estimates for Λβ from Theorem 1. For this purpose we
have to consider the space X = R×R× (0,∞) and define generalized tents

TB(x, ξ, s) = {(y, η, t) ∈ X : t ≤ s, |x− y| ≤ s− t, |ξ − η| ≤ Bt−1},

for B > 0. Let 0 < b < 1 < B and for F ∈ B(X) define the size map by
setting

Sb,B(F )(T (x, ξ, s)) =

max

{(ˆ
TB(x,ξ,s)\T b(x,ξ,s)

|F (y, η, t)|2dydηdt
)1/2

, sup
(y,η,t)∈TB(x,ξ,s)

|F (y, η, t)|
}
,
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and σ(Sb,B(F )(T (x, ξ, s))) = s. The main ingredient in the proof of Theorem
1 and the novelty in the time–frequency analysis is the following generalized
Carleson theorem.

Theorem 10. Let B ≥ 10b, 2 ≤ p ≤ ∞ and define for f ∈ Lp(R) the
function

F (y, η, t) = sup
φ∈Φ

∣∣∣∣ ˆ
R
f(x)eiη(y−x)t−1φ(t−1(y − x))dx

∣∣∣∣,
where the supremum is taken over the class Φ of all functions φ ∈ L2(R)

such that φ̂ is supported in (−b/2, b/2) and |φ(x)| ≤ 1/b(1 + |x/b|)−3 and
|φ′(x)| ≤ 1/b(1 + |x/b|)−2 for all x ∈ R. Then for any 2 < p ≤ ∞ we have

‖Fφ(f)‖Lp(X,µ,S∞) ≤ Cp,b,B‖f‖Lp(R),

and
‖Fφ(f)‖L2,∞(X,µ,S∞) ≤ Cb,B‖f‖L2(R).
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10 Rectifiable sets and the Traveling Sales-

man Problem

after P. Jones [3]
A summary written by Mart́ı Prats

Abstract
We present the so-called Peter Jones betas and we use them to

give a necessary and sufficient condition for a set to be rectifiable.

10.1 Introduction

A salesman wants to visit a number of villages during a certain period and
then go back home. Which is the best order to spend the minimal time
traveling? Of course we seek the shortest cycle through all this places. If
we represent each village with a point in the plane, let’s call this set E, we
can use the so-called greedy algorithm to find a spanning tree G of minimal
length with vertices in all the points in E, and one such minimal tree will be
contained in any minimal tour T with segment end-points in the points in
E. A minimal connected set K connecting all those villages may not have
segment endpoints in the points of E, but

`(K) ≤ `(G) < `(T ) ≤ 2`(K)

and, thus, the minimal connected set bounds the distance that a clever sales-
man must drive (as long as he can travel in helicopter).

When it comes to a non-finite set E, the Traveling Salesman Problem
consists in finding a minimal rectifiable curve Γ ⊃ E. This will be possible
only when the set is rectifiable, that is, when the set is contained in the image
of a finite interval by a Lipschitz function. One necessary condition for E to
be rectifiable is that the Hausdorff one-dimensional (outer) measure of the
set, H1(E), is finite, but it is not sufficient unless E is connected.

Let ∆k be the canonical dyadic grid of cubes which have side-length 2−k

and ∆ =
⋃
k ∆k the whole dyadic mesh. We will give a characterization of

rectifiable sets in terms of the next coefficients:

Definition 1. Let Q be a (dyadic) square of side `(Q). We write 3Q for the
concentric square with triple side-length, and call

βE(Q) =
2

`(3Q)
inf{ sup

E∩3Q
dist(z, L) : L is any line}.
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Then βE(Q)`(3Q) is the width of the narrowest strip containing E ∩ 3Q.
Notice that βE(Q) < 1.

Definition 2. Given a set E, we associate to it the coefficient

β2(E) = diam(E) +
∑
Q∈∆

`(Q)≤diam(E)

β2
E(Q)`(Q).

The main result of this paper is the next theorem:

Theorem 3. Suppose E ⊂ C is a bounded set. Then E is contained in a
rectifiable curve if and only if β2(E) is finite. Moreover, there are constants
c1, c2 such that

c1β
2(E) ≤ inf

Γ⊃E
H1(Γ) ≤ c2β

2(E). (1)

Notice that, even though we do not find the best path for the salesman,
we bound the distance the salesman must travel if he designs his route wisely.

We follow the proof of the book by Garnett and Marshall [2], which is
mostly inspired by the original Peter Jones’ paper [3]. The argument of the
left-hand side inequality in (1) is mainly of complex analysis. In [4], Kate
Okikiolu gives a more general proof valid in Rn.

10.2 Right-hand inequality: finding a good route

Sketch of the proof. Breaking a rectangle into two
We start giving a construction to iterate. Consider a given rectangle S with
side-lengths L and βL with β < 1 whose four sides intersect E. We find
two new rectangles S0 and S1 with long sides L0 and L1 with minimal width
which contain E∩S and separate the left and right thirds of S. If the middle
third of the rectangle is empty, we add a segment T . Otherwise, we ensure
the new rectangles have at least one common point and it is in E.

One can see using the Pythagorean Theorem that in both cases we have

L0 + L1 ≤ (1 + 5β2)L (2)

and
|T | ≤ (1 + β2)L (3)

Covering E
Assume E ⊂ Q0 ∈ ∆0 and let S0 be a rectangle containing E, meeting E
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at its four sides and with minimal shortest side. Write its side-lengths as L0

and βL0. Notice that β ≤ CβE(Q0). Iterate the process described above.
After n steps we have 2n rectangles SI , with I ∈ {0, 1}n and, if case 2

is applied to SI , we get a segment TI . One can see that, after 25 steps the
diameter of SI will drop by at least 1/2.
Bounds for the length
Let Rn be the sum of the diameters of the rectangles at stage n. From (2)
we have

L0 + L1 ≤ L+ Cβ2
E(Q)`(Q) (4)

for any Q such that Q ∩ E ∩ S 6= ∅ and diam(S) ≤ `(Q) < 2diam(S). As
noted before, each such cube can occur at most a certain number of times
during iterations, so that Rn ≤ Cβ2(E).

It only remains to bound the sum of the lengths of all the segments.
Note that, if case 2 is applied and L0 +L1 ≥ 0.9L, then the original rectangle
couldn’t be flat, so β ≥ β0 for a fixed β0, and so, using (3) we get

|T | ≤ Cβ2
E(Q)`(Q).

Thus, the sum of lengths of all the segments created from a rectangle with
β ≥ β0 is at most Cβ2(E).

Now write Rn = In + IIn where In is the sum of the lengths of the
rectangles at stage n to which case 1 will be applied or for which β ≥ β0 and
IIn the sum of the lengths of the remaining rectangles. Notice that in the
second case, L0 + L1 < 0.9L. Let Tn+1 be the sum of the segments created
at stage n with β < β0. Then, it can be seen using the previous bounds that

n∑
j=1

0.1Tj ≤ Rn −R0 + C
∑

Q∈∆:Q⊂Q0

β2
E(Q)`(Q) ≤ Cβ2(E).

Glue rectangles of stage n with all the segments created and take limit.

10.3 The route cannot be improved much

10.3.1 The left-hand inequality for Lipschitz graphs

Let Γ be the graph of a Lipschitz function. Then (1) holds for all E ⊂ Γ.

Sketch of the proof. We assume that Γ = {0 ≤ x ≤ 1, y = f(x)}, where
f(0) = f(1) and f is Lipschitz with constant M .
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It is enough to show the case E = Γ. Let Inj be the jth dyadic interval
of length 2−n, call its image graph Γnj and let Jnj be the segment uniting the

endpoints of Γnj . Then Jn+1
2j , Jn+1

2j+1 and Jnj are the three sides of a triangle
and call δn,j its height times 2n. Using the Pythagorean Theorem, one gets

2−nδ2
n,j . `(Jn+1

2j ) + `(Jn+1
2j+1)− `(Jnj )

with constant depending on the Lipschitz constant M . This implies∑
m,k

c2−mδ2
m,k ≤ 2`(Γ).

Now, by the triangular inequality,

βn,j := 2n sup{dist(z, Jnj ) : z ∈ Γnj } ≤
∞∑
m=n

2n−m sup{δm,k : Imk ⊂ Inj }.

Using Hölder inequalities and other standard arguments for series, one gets∑
n,j

2−nβn,j .
∑
m,k

2−mδ2
m,k . 2`(Γ).

Finally we extend the function periodically and obtain some translated
coefficients βn,j(t) related to Γ(t) = (Id × f)([t, 1 + t]) ⊂ C verifying the
last inequality as well. Then, for a cube Q with `(Q) = 2−n−2, 3Q will have
projection contained in the translation of an interval In,j(t) with probability
1/4 with respect to the Lebesgue measure on t, so∑

`(Q)=2−n−2

β2
Γ(Q) .

ˆ 1

−1

∑
j

βn,j(t)
2dt.

Summing with respect to n proofs the claim for Lipschitz periodic functions.

10.3.2 The general case: a decomposition theorem

We call an M -Lipschitz domain to a simply connected domain whose bound-
ary can be expressed as {r(θ)eiθ : 0 ≤ θ < 2π} (i.e. it is starlike with
respect to the origin), with r a Lipschitz function of coefficient M and

1
M+1

≤ r(θ) ≤ 1.
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In the previous section we have established (1) for boundaries of M-
Lipschitz domains, so we need to extend the result to general sets E of
finite length. The key point is to find E ⊂

⋃
Γj being each Γj the boundary

of an M-Lipschitz domain Dj. We need to do this in such a way that we keep
control on the total length and on the relations between the original betas
and

∑
Q

∑
Γj
β2

Γj
(Q). The latter is a rather technical lemma we skip here

for the sake of brevity. Using this lemma relating the betas, Theorem 3 gets
reduced to the next one:

Theorem 4. There exists a constant M < ∞ such that if Γ is a connected
plane set with H1(Γ) <∞, then there exists a connected plane set Γ̃ ⊃ Γ such

that H1(Γ̃) ≤MH1(Γ), the bounded components Dj of C\ Γ̃ are M-Lipschitz
domains with Γ ⊂

⋃
∂Dj, and the boundary of the unbounded component D0

of C \ Γ̃ is a circle at least 3
√

2H1(Γ) units from Γ.

Outline of the proof. We may proof the case of Γ being the boundary of a
simply connected domain Ω. Otherwise, we could apply this particular result
to each bounded component of the original set united to a circle big enough
by a segment.

We will apply a corona construction to a disk, related to Ω through a
Riemann mapping ϕ. We will make the division in the disk in such a way
that, using the properties of ϕ we can ensure that the images of the domains
in D are also M-Lipschitz domains.

Write F =
√
ϕ′ and g = log(ϕ′). Using Bieberbach’s Theorem one can

see that g is in the Bloch space with seminorm

‖g‖B ≤ 6 (5)

i.e. ϕ′′(z)
ϕ′(z)

≤ 6
1−|z|2 for all z ∈ D.

Thanks to a result due to Alexander (see [1]) we can see that ϕ′ ∈ H1,
and ‖ϕ′‖H1 ≤ 2H1(∂Ω). With this result and the Littlewood-Paley formula
for Hardy spaces, one can see thatˆ ˆ

D
|ϕ′(z)||g′(z)|2 log

1

|z|
dm(z) ≤ 4H1(∂Ω). (6)

Set D0 = {|z| ≤ 1/2} and U0 = ϕ(D0). By the growth theorem and the
distortion theorem for univalent functions (see [2, Theorem I.4.5]), one can
see that U0 is an M -Lipschitz domain. Since ϕ ∈ H1 we also have

H1(∂U0) ≤ H1(∂Ω). (7)
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Next form the dyadic Carleson boxes

Q =
{
reiθ : 1− 2−n ≤ r < 1, πj2−(n+1) ≤ θ < π(j + 1)2−(n+1)

}
for 0 ≤ j < 2n+2, and consider their top halves T (Q) = {z ∈ Q : |z| <
1− 2−(n+1)}. Write zQ for the center of T (Q). We choose the domains by a
stoping time argument. Fix ε to be determined later and consider a Carleson
box Q as big as possible.

Define G(Q) to be the set of maximal boxes Q′ ⊂ Q for which

sup
T (Q′)

|g(z)− g(zQ)| ≥ ε (8)

and define D(Q) =
(
Q \

⋃
G(Q) Q

′
)
∪ T (Q).

Keep finding D(Q) for the successive remaining maximal cubes. Then,
the family {Dj}j≥0 is pairwise disjoint. Write Uj = ϕ(Dj).

To bound the lengths one must distinguish three types of domains and
use different techniques for each one of them. We refer the reader to [2] or
[3] for the details. We obtain∑

H1(∂Uj) ≤ CH1(∂Ω).

The last step is to divide the original domains into smaller ones which
are M -Lipschitz. Here one uses a Cantor-type construction and uses again
complex analysis techniques to keep the previous bound.
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11 The Cauchy integral, analytic capacity, and

uniform rectifiability

after P. Mattila, M.S. Melnikov, and J. Verdera [3]
A summary written by Joris Roos

Abstract

We discuss a necessary and sufficient condition for L2 boundedness
of the Cauchy integral on Ahlfors-David regular sets. This will imply a
characterization of Ahlfors-David regular sets with vanishing analytic
capacity.

11.1 Introduction

The analytic capacity of a compact setE ⊂ C is defined as γ(E) = sup{|f ′(∞)| :
f ∈ ME} where ME denotes the set of bounded holomorphic functions on
C\E such that ‖f‖∞ ≤ 1 and f(∞) = 0. Hence f ′(∞) = limz→∞ zf(z) for
f ∈ ME. As was proven by Ahlfors, we have γ(E) = 0 if and only if E
is removable in the sense that every bounded analytic function on C\E is
constant. It was a well known conjecture that for E of Hausdorff dimension
1 and H1(E) > 0, γ(E) = 0 holds if and only if E is purely unrectifiable,
i.e. H1(Γ ∩ E) = 0 for every rectifiable curve Γ. Here, H1 denotes the
1-dimensional Hausdorff measure. The presented article proves this in the
special case that H1(E) <∞ and E satisfies the regularity condition

M−1r ≤ H1(E ∩B(z, r)) ≤Mr (1)

for some constant M > 0, z ∈ E and 0 < r < diam(E), where B(z, r) is the
closed ball of radius r around z. If condition (1) is satisfied, we will refer to
E as being Ahlfors-David regular (AD-regular).

Let E ⊂ C be s.t. 0 < H1(E) < ∞. The Cauchy integral operator,
symbolically given by

CEf(z) =

ˆ
E

f(ζ)

ζ − z
dµ(ζ),

is defined to be the canonical singular integral operator associated to the
kernel K(z, w) = (z − w)−1 as discussed in [1]. Here we have set µ = H1.
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Note that condition (1) implies that (E, µ) is a space of homogenous type
in the sense of Christ. CE is bounded in L2(E) = L2(E, µ) iff the family of
truncated operators (CE,ε)ε>0,

CE,εf(z) =

ˆ
E\B(z,ε)

f(ζ)

ζ − z
dµ(ζ),

is uniformly bounded in L2(E), i.e. with a constant independent of ε. The
main result from the presented article [3] is

Theorem 1 (MMV). Let E ⊂ C be AD-regular. Then

(a) CE is bounded in L2 if and only if E is uniformly rectifiable, and

(b) γ(E) = 0 if and only if E is purely unrectifiable.

By saying that E is uniformly rectifiable we mean that it is contained in
an AD-regular curve. The converse of (a) follows from the T(b) theorem of
Christ [1]. Regarding part (b) it suffices to show that γ(E) > 0 implies that E
is not purely unrectifiable, since the other direction is already known (follows
from the solution of Denjoy’s conjecture). If on the other hand γ(E) > 0,
then Theorem 29 in [1] and (a) imply that E is not purely unrectifiable.
Hence it only remains to prove that E is uniformly rectifiable provided that
CE is bounded in L2. We will sketch the proof of this below. The main idea
is to introduce a curvature-type quantity corresponding to the measure µ
using an elementary geometric insight. In [4] this was also used to prove the
L2 boundedness of the Cauchy integral on Lipschitz curves, a special case of
Theorem 1 (a).

11.2 The curvature of a measure

In case z1, z2, z3 ∈ C do not all lie on the same line, we define c(z1, z2, z3) =
1/R where R is the radius of the circle passing through z1, z2, z3. Otherwise
we set c(z1, z2, z3) = 0. This quantity is called the Menger curvature of the
triple (z1, z2, z3).

Lemma 2. Let z ∈ C, r > 0 and z1, z2, z3 ∈ B(z, r) pairwise different. Then

c(z1, z2, z3) =
4S(z1, z2, z3)

|z1 − z2||z1 − z3||z2 − z3|
, (2)
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c(z1, z2, z3)2 =
∑
σ∈S3

1

(zσ(2) − zσ(1))(zσ(3) − zσ(1))
, and (3)

dist(z1, Lz2,z3) ≤ 2r2c(z1, z2, z3) (4)

where S(z1, z2, z3) denotes the area of the triangle with edges z1, z2, z3, Lz,w
is the line passing through z 6= w ∈ C, and dist(z, L) = infw∈L |z − w| for
L ⊂ C.

The first identity follows from elementary triangle geometry and the sec-
ond can be validated by a simple computation, see [4]. Identity (2) implies
(4). We turn now to the crucial lemma.

Lemma 3. Let E ⊂ C be AD-regular and suppose that CE is bounded in L2.
Then ˚

(E∩B)3

c(z1, z2, z3)2 dµ(z1)dµ(z2) dµ(z3) ≤Mr (5)

for some constant M > 0 and B a ball of radius r.

The idea is here to apply the L2 boundedness in the case f = 1E and then
use Fubini and (3). Let us illustrate this by a purely symbolical calculation:

ˆ ∣∣∣∣ˆ 1

ζ − z

∣∣∣∣2 =

˚
1

(z2 − z1)(z3 − z1)

=
1

6

∑
σ∈S(3)

˚
1

(zσ(2) − zσ(1))(zσ(3) − zσ(1))

=
1

6

˚
c(z1, z2, z3)2 (6)

where all the integrals are with respect to dµ. The quantity on the right in (6)
can be interpreted as the curvature of the measure µ. Making this calculation
rigorous using truncations and carefully manipulating the regions over which
we integrate, one obtains a proof of the lemma. It is noteworthy that the
converse of Lemma 3 also holds. This can be seen from the T(1) theorem.
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11.3 Sketch of the proof

Let E ⊂ C AD-regular and assume that CE is bounded in L2. We want
to prove that E is uniformly rectifiable. To achieve this, a result by David
and Semmes [2] comes in handy, which characterizes uniform rectifiability in
terms of a certain quantity β2(z, r). Define

β2(z, r) =

(
inf
L
r−3

ˆ
E∩B(z,r)

dist(w,L)2 dµ(w)

) 1
2

for z ∈ C and r > 0. where the infimum is taken over all lines in the complex
plane. David and Semmes proved the following result in [2].

Theorem 4. Let E ⊂ C be AD-regular. Then E is uniformly rectifiable if
and only if there is M > 0 such thatˆ R

0

ˆ
E∩B(z,R)

r−1β2(w, r)2 dµ(w)dr ≤MR (7)

for all z ∈ E and 0 < R < diam(E).

Mattila, Melnikov and Verdera now deduce the inequality (7) from (5).
The first step is to apply (4) to estimate

r−1β2(z1, r)
2 ≤ r−4

ˆ
E∩B(z1,r)

dist(z2, Lz1,z3)2dµ(z2)

≤ 4λ2

ˆ
E∩B(z,2r)

c(z1, z2, z3)2dµ(z2)

for z1 ∈ B(z, r) and z3 ∈ B(z, λr)\B(z, 2r) for some constant λ > 2. The
restriction on z3 stems from the fact that we must avoid it to be equal to z1.
Integrating with respect to z1, z3 now givesˆ

E∩B(z,r)

β2(z1, r)
2dµ(z1) ≤ 4λ2

˚

Ω

c(z1, z2, z3)2dµ(z1)dµ(z2)dµ(z3)

where Ω = E3 ∩ (B(z, r) × B(z, 2r) × B(z, λr)\B(z, 2r)). After integrating
from 0 to R with respect to r, this would already look a lot like the inequality
we need, except for the cumbersome domain of integration on the right.
However, this can be dealt with by decomposing with respect to a Vitali-type
covering on E ∩B(z,R), c.f. [3, Theorem 3.6].

Actually the inequalities (7) and (5) are even equivalent, as was remarked
before.

73



References

[1] Christ, M., A T(b) theorem with remarks on analytic capacity and the
Cauchy integral, Colloq. Math. 60/61 (1990), 601–628;

[2] David, G., and Semmes, S., Singular integrals and rectifiable sets in Rn,
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12 A T(b) theorem with remarks on analytic

capacity and the Cauchy integral

after M. Christ [1]
A summary written by Sebastian Stahlhut

Abstract

The aim of M. Christ’s article is to discuss testing conditions for
the L2-boundedness of singular integral operators on spaces of homo-
geneous type. The comparision with previous theorems by different
authors as well as the case of antisymmetric kernels is in the scope of
M. Christ’s article. In particular, this allows applications to analytic
capacity and the Cauchy integral.

12.1 Definitions

Before we start to discuss the main theorem of Michael Christ’s article we
need several definitions. The setting for Michael Christ’s theorem are spaces
of homogeneous type, or more precisely quasi-metric doubling spaces. By a
quasi-metric ρ on a set X we mean a function ρ : X × X → [0,∞) which
satisfies:

ρ (x, y) = 0 iff x = y,

ρ (x, y) = ρ (y, x) ∀x, y ∈ X,
ρ (x, y) ≤ A0 (ρ (x, z) + ρ (z, y)) ∀x, y, z ∈ X,

where A0 < ∞ is independent of x,y,z. The related balls are defined by
B (x, r) := {y ∈ X : ρ (x, y) < r}. Then a space of homogeneous type is a
set X equipped with a quasi-metric ρ such that the associated balls B (x, r)
are open and equipped with a nonnegative Borel measure µ satisfying the
doubling condition

µ (B (x, 2r)) ≤ A1µ (B (x, r)) ∀x ∈ X, r > 0.

Here, let us also remark that the function λ (x, y) := µ (B (x, ρ (x, y))) will be
important later on. The testing conditions under consideration are in terms
of para-accretive functions or pseudo-accretive systems.
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Definition 1 (Para-accretive functions). b ∈ L∞ (X) is said to be para-
accretive if there exists δ > 0 such that for all x ∈ X and all r > 0, there
exists x′ ∈ B (x, r) and r′ ∈ [δr, r] such that∣∣∣∣ˆ

B(x′,r′)

b (y) dµ (y)

∣∣∣∣ ≥ δµ (B (x′, r′)) .

By [3] the Lebesgue differentiation theorem is valid on spaces of homo-
geneous type. Thus there exists ε > 0 such that |b| ≥ ε, which is important
to know for the definition of singular integral operators later on. There is a
weaker notion for testing conditions for singular integrals on spaces of homo-
geneous type.

Definition 2 (Pseudo-accretive systems). A pseudo-accretive system is a
collection of L∞-functions bB, one for each ball B = B (x, r) ⊂ X, satisfying
for some C <∞, δ > 0

||bB||L∞ ≤ C ∀B, and

∣∣∣∣ˆ
B

bB (y) dµ (y)

∣∣∣∣ ≥ δµ (B) ∀B.

In fact, one observes that the functions functions bB may vary here. In
the following we denote by Dα the space of Hölder continuous functions of
order α ∈ (0, 1] with compact support. Whenever b ∈ L∞ (X) satisfies |b| ≥ ε
µ-a.e. there exists an isomorphism from bDα to Dα. Moreover, by (bDα)′ one
denotes the dual space of bDα.

Definition 3 (Singular integral operator). A singular integral operator T on
a space of homogeneous type X is a continuous linear operator from b1Dα to
(b2Dα)′ for some α ∈ (0, 1] and some b1, b2 ∈ L∞ (X) satisfying |b1|, |b2| ≥
δ > 0 µ − a.e., which is associated to a standard kernel, i.e. there exists a
function K : X ×X\ {x = y} → C and ε, δ > 0, C <∞ such that

|K (x, y) | ≤ C

λ (x, y)

for all distinct x, y ∈ X and such that

|K (x, y)−K (x′, y) |+ |K (y, x)−K (y, x′) | ≤ C

(
ρ (x, x′)

ρ (x, y)

)ε
1

λ (x, y)
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whenever ρ (x, x′) ≤ δρ (x, y) and the relation between operator and kernel is
given by

〈Tf, g〉(b2Dα)′,b2Dα
=

ˆ ˆ
K (x, y) f (y) g (x) dµ (x) dµ (x)

for all f ∈ b1Dα and g ∈ b2Dα.

One observes that the quantities in the definition of singular integral
operators are invariant by the isomorphism from biDα to Dα, i.e. to every
singular integral operator T : b1Dα → (b2Dα)′ associated to a kernel K there
exists by the isomorphism a unique corresponding singular integral operator
T̃ : Dα → D′α associated to a kernel K̃. Often it is useful to conclude
L2-boundedness of singular integral operators via truncations.

Definition 4 (Truncated singular integral operator). Let T be a singular
integral operator associated to a kernel K. Then we define the truncated
singular integral operator T ε : Dα → (Dα)′ for any α by

T εf (x) =

ˆ
ρ(x,y)>ε

K (x, y) f (y) dµ (y)

Besides testing conditions via para-accretive functions we will also need
a weak boundedness condition. It will be a remarkable point that the weak
boundedness condition is not needed in Christ’s T (b)-theorem below.

Definition 5. A continuous linear transformation T : b1Dα → (b2Dα)′ is
weakly bounded (with respect to b1, b2) if there exists C <∞ such that for all
x0 ∈ X, r > 0 and all ϕ1, ϕ2 ∈ Bα,x0,r holds

| 〈T (b1ϕ1) , b2ϕ2〉 | ≤ Cµ (B (x0, r)) .

Here, we denote by Bα,x0,r the set of all f ∈ Dα such that suppf ⊂ {y : ρ (x0, y) ≤ r},
||f ||L∞ ≤ 1 and |f (x)− f (y) | ≤ r−αρ (x, y)α for all x, y ∈ X.

12.2 The main theorem and comparision to previous
results

Now, we are in position to state Christ’s theorem and to compare it to a
former version by David, Journé and Semmes.
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Theorem 6 (Christ’s Tb theorem). Let X be a space of homogeneous type
and T be a truncated singular integral operator. Suppose there exists C <∞
and pseudo-accretive systems {b1

B} and {b2
B} on X such that for all B,

||T
(
b1
B

)
||L∞ ≤ C, ||T t

(
b2
B

)
||L∞ ≤ C.

Then T is bounded on L2 (X,µ), with an operator norm not exceeding a bound
which depends only on A0, A1, on the bounds in the standard estimates for
K, on the constants in the definition for {biB}, and on C.

In comparision one has

Theorem 7 (DJS-Theorem). Suppose that b1, b2 are para-accretive functions
and that T is a singular integral operator on a space X of homogeneous
type. Suppose that T is weakly bounded from b1Dα to (b2Dα)′, that α is
sufficiently small, and that T (b1) , T t (b2) ∈ BMO. Then T extends to a
bounded operator on L2 (X,µ).

As already remarked before Christ’s theorem does not need to require a
weak boundedness condition. Christ’s theorem permits pseudo-accretive sys-
tems instead of a single para-accretive function and it can be shown that the
existence of a good pseudo-accretive system is necessary for L2-boundedness.
But, one might think that the formulation of Christ’s theorem via truncated
singular integrals is a disadvantage. In fact, that isn’t the case. If there
is a pseudo-accretive system {bB} such that T (bB) ∈ L∞ uniformly then
this pseudo-accretive system works simultanously for all truncations T ε, i.e.
T ε (bB) ∈ L∞ uniformly in B for all ε > 0. The consequence is that we
can deduce L2-boundedness of T by uniform L2-boundedness of the trun-
cations T ε taking the limit ε → 0. The only disadvantage in relation to
DJS-Theorem is that Christ’s theorem requires T (b1

B) , T t (b2
B) ∈ L∞ instead

of T (b1) , T t (b2) ∈ BMO.
An interesting case in applications is whenever the kernel is antisymmetric,
i.e. K (x, y) = −K (y, x). In this case the singular integral operator T can
be defined for ϕ1, ϕ2 ∈ Dα, b1 = b2 = b ∈ L∞ via

〈T (bϕ1) , bϕ2〉 =
1

2

ˆ ˆ
K (x, y) b (x) b (y) [ϕ1 (y)ϕ2 (x)− ϕ1 (x)ϕ2 (y)] dµ (x) dµ (y)

and the integral converges absolutely as consequence of standard estimates
and Hölder continuity of ϕ1, ϕ2 ∈ Dα. In this case of antisymmetric kernels
one can always deduce L2-boundedness of T by uniform L2-boundedness of
the truncations. So, in the case of antisymmetric kernels we get
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Theorem 8 (Christ’s Theorem for antisymmetric kernels). Let X be a space
of homogeneous type and T be a singular integral operator associated to an
antisymmetric kernel. Suppose there exists a pseudo-accrteive system {bB}
on X such that ||T (bB) ||L∞ ≤ C <∞ for all balls B. Then T is bounded on
L2 (X).

and

Theorem 9 (DJS for antisymmetric kernels). Suppose b is an para-accretive
function and T is a singular integral operator on a space X of homogeneous
type . Suppose T (b) ∈ BMO. Then T is bounded on L2 (X).

The reader observes that in Christ’s theorem for antisymmetric kernels
we have a singular integral operator instead of a truncated singular integral
operator and in DJS-Thoerem for antisymmetric kernels we are allowed to
drop the weak-boundedness condition as it is automatically satisfied. This
case is interesting in particular for the Cachy integral and analytic capacity.
For more details we refer the reader to [1] and turn to the proof of Christ’s
theorem.

12.3 Dyadic cubes and the proof of Christ’s theorem

The core of the proof is the following analogue of Dyadic cubes on spaces of
homogeneous type.

Theorem 10 (Christ’s dyadic cubes). There exists a collection of open sub-
sets

{
Qk
α ⊂ X : k ∈ C, α ∈ Ik

}
, and constants δ ∈ (0, 1), a0 > 0, η > 0 and

C1, C2 <∞ such that

1. µ
(
X\
⋃
αQ

k
α

)
= 0 for all k.

2. If l ≥ k then either Ql
β ⊂ Qk

α or Ql
β ∩Qk

α 6= ∅.

3. For each (k, α) and each l < k there is a unique β such that Qk
α ⊂ Ql

β.

4. Diameter
(
Qk
α

)
≤ C1δ

k.

5. Each Qk
α contains some ball B

(
zkα, a0δ

k
)
.

6. µ
{
x ∈ Qk

α : ρ
(
x,X\Qk

α

)
≤ tδk

}
≤ C2t

ηµ
(
Qk
α

)
for all k, α and all t >

0.

79



Indeed this analogue of dyadic cubes allows to generalize Coifman-Jones-
Semmes theorem to the setting of spaces of homogeneous type. That is

Theorem 11 (CJS-Theorem). Suppose that b1, b2 are dyadic para-accretive
functions, that T : b1D → (b2D)

′
is weakly bounded singular integral operator,

and that T (b1) , T t (b2) ∈ BMO (dyadic). Then T is bounded on L2.

This allows us to reduce Christ’s theorem to CJS-theorem. That means
having the dyadic cubes in hand one proves the following proposition.

Proposition 12 (The reduction). Let X be a SHT, let Q be a system of
dyadic cubes on X and suppose that X itself is an element of Q. Let T be a
truncated singular integral operator. Suppose there exists a pseudo-accretive
systems {b1

B}, {b2
B} such that T (b1

B) , T t (b2
B) ∈ L∞ uniformly in B. Then

there exists dyadic para-accretive functions b1, b2 such that T (b1) , T t (b2) ∈
BMO (dyadic) and T : b1Dα → (b2Dα)′ is weakly bounded for any α > 0.
Moreover, b1, b2, T (b1) , T t (b2) and the constant in the weak boundedness in-
equality satisfy bounds depending only on A0, A1, on the constants in the stan-
dard estimates for K, on the constants in the definition of pseudo-accretivity
for biB, and on supB ||T (b1

B) ||∞ + supB ||T (b1
B) ||∞.
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13 The local T (b) theorem with rough test

functions

after T. Hytönen and F. Nazarov [1]
A summary written by P. Villarroya

Abstract
The authors of [1] prove a version of the local T (b) theorem under

minimal integrability assumptions.

13.1 Introduction

We present an outline of the current most general version of a local Tb the-
orem. The result solves a question posed by Hofmann in 2008 with possible
applications to free boundary theory (see [3]) and stated below.

Definition 1. (Accretive and buffered accretive systems) Let p, q ∈ [1,∞].
A (p, q) accretive system for an operator T is a family of functions (bQ)Q∈D

indexed by dyadic cubes such that

supp bQ ⊆ Q ,

 
Q

bQ = 1 ,
(  

Q

|bQ|p
)1/p

. 1 (1)

and (  
Q

|TbQ|q
)1/q

. 1 (2)

A buffered (p, q) accretive system for an operator T is a family of functions
(bQ)Q∈D satisfying the conditions in (1), and (2) changed by(  

2Q

|TbQ|q
)1/q

. 1 (3)

The expression that b1
Q&b2

Q is a (p, q)&(r, s) accretive system (or buffered
accretive system) for T1&T2 has the obvious meaning.

Theorem 2. (Solution to Hofmann’s problem). Let T be an operator asso-
ciated with a C-Z kernel such that for some p, q ∈ (1,∞) there exist b1

Q&b2
Q

a buffered (p, q′)&(q, p′) accretive system for T&T ∗.
Then, ‖T‖L2→L2 is bounded with constant depending only on the constants

of the C-Z kernel and the constants in (1) and (3).

Remark 3. Whether the word ’buffered’ can be removed from the statement
remains open for exponents such that 1/p+ 1/q > 1.
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13.2 Definitions and statements of the results

The authors’ approach is based on the technique of suppressed operators
used in the solution to the quantitative Vitushkin conjecture (see [2]).

Definition 4. The suppressed singular integral operator is defined by

TΦf(x) =

ˆ
KΦ(x, y)f(y)dy , KΦ(x, y) =

K(x, y)

1 +
(Φ(x)Φ(y)
|x−y|2

)m
for a suitable non-negative Lipschitz function Φ.

Definition 5. Let the maximal truncated operator be defined by

T#f(x) = sup
ε>0
|Tεf(x)| , Tεf(x) =

ˆ
|x−y|>ε

K(x, y)f(y)dy

The idea is to prove, via the operator T#, a classical local T (b) theorem
for TΦ and then to extrapolate boundedness to T . More explicitely: Cotlar’s
inequality T#f . Mq′(Tf) + Mv′f and the bound |TΦf | . T#f + Mf allow
to transfer the hypotheses from T to TΦ, while the fact that TΦ(f) = T (f)
when supp f ⊂ {Φ = 0} allows to transfer the thesis from TΦ to T .

Definition 6. (Ample collection; Sparse collection) We say that D is an
ample collection of dyadic subcubes of a given cube Q with exceptional fraction
σ ∈ (0, 1) if the maximal subcubes Q̃ ⊂ Q with Q̃ /∈ D satisfy

∑
|Q̃| ≤ σ|Q|.

We say that D is a sparse collection of dyadic subcubes of a given cube
Q0 if it contains Q0 and for some τ > 0 and all Q ∈ D we have that the

subcubes Q̃ ∈ D with Q̃ ( Q satisfy
∣∣∣⋃ Q̃

∣∣∣ ≤ (1− τ)|Q|.
Remark 7. D is a sparse collection with parameter τ if for all Q ∈ D the
family DQ = {Q} ∪ {Q′ ( Q : Q′ /∈ D} is an ample collection of Q with
exceptional fraction 1− τ .

The cubes in a sparse collection will be often referred as stopping cubes.

Definition 8. (Off-diagonal estimates) An accretive system (bQ)Q∈D for T
satisfies off-diagonal estimates if for all σ > 0, there exist Cσ > 0 so that 

Q′
|T (1(3Q′)cbQ)| ≤ Cσ (4)

for all cubes Q and all Q′ in an ample collection of dyadic subcubes of Q with
exceptional fraction σ.
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Hoffman’s conjecture is an immediate consequence of this stronger result:

Theorem 9. (Main theorem). Let T be an operator with C-Z kernel such
that for some p ∈ (1,∞) there exist b1

Q&b2
Q a (p, p)&(p, p) accretive system

for T#&(T ∗)# with off-diagonal estimates.
Then, ‖T‖L2→L2 is bounded with constants depending only on the C-Z

constants of the kernel and the constants in (1), (2) and (4).
If T is antisymmetric, then the hypothesis ’with off-diagonal estimates’

can be dropped.

Proposition 10. Suppose there exists bQ a (p, p) accretive system for T#.
Then, for a fixed ρ ∈ (0, 1) and a fixed cube Q there exists a non-negative
function Φ with Lipschitz constant 1 such that |{Φ > 0}| ≤ ρ|Q| and there
exists bΦ

Q an (∞, p) accretive system for TΦ on sparse sub-cubes of Q.

Definition 11. (Accretive system on a sparse family) Let p, q ∈ [1,∞] and
Q0 be a given cube. A (p, q) accretive system for an operator T on a sparse
collection D of subcubes of Q0 is a family of functions (bQ)Q∈D such that

supp bQ ⊆ Q ,

 
Q′
bQ & 1 ,

( 
Q′
|bQ|p

)1/p

. 1 (5)

and ( 
Q′
|TbQ|q

)1/q

. 1 (6)

for all Q ∈ D and all Q′ ⊆ Q such that Q′ is not contained in any Q̃ ( Q
with Q̃ ∈ D .

If D is sparse with parameter τ ∈ (0, 1), then the described cubes Q′ form
an ample collection of subcubes of Q with exceptional fraction 1− τ .

Proposition 12. (Baby Tb theorem) Let T be an operator with C-Z kernel,
Q0 be a cube and b1

Q&b2
Q be a (∞, t)&(∞, t) accretive system for T&T ∗ on

D1&D2, two sparse collections of subcubes of Q0.
We also assume that T satisfies the following weak boundedness condition:

|〈T (1Qb
1
Qa,1), 1Qb

2
Qa,2〉| . |Q| (7)

for all Q dyadic subcubes of Q0 where Qa,i is the minimal member of Di

containing Q.
Then, for s′ ∈ (max{t′, 2},∞] and all f, g ∈ Ls′(Q0), we have

|〈T (f), g〉| . ‖f‖s′‖g‖s′ |Q0|1−2/s′
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13.3 Proofs

13.3.1 Proof of Proposition 10: construction of an (∞, u) accretive
system and the Lipschitz function Φ.

Two stopping conditions. Let Q0 be an arbitrary fixed cube. Let also
δ, ε, σ, η ∈ (0, 1) be fixed parameters to be chosen later. Then,

a) We call b-stopping cubes to the maximal dyadic subcubes Q ⊆ Q0

with
ffl
Q
|b1
Q0
|p ≥ Cδ−1 and denote B1 = B1(Q0) the collection of these cubes.

Let b̃1
Q0

be the good part of the usual Calderón-Zygmund decomposition.

We also define the function e1
Q0

(x) =
∑

Q∈B1(Q0)(1 + `(Q)−1|x− cQ|)−(d+α).

b) We call Tb-stopping cubes to the maximal dyadic subcubes Q ⊆ Q0

satisfying either
ffl
Q
|T#b

1
Q0

+ Mb1
Q0

+ e1
Q0
|p ≥ ε−1, or

ffl
Q
T#(1(3Q)cb

1
Q0

) > Cσ,

or
∣∣ ffl

Q
b̃1
Q0

∣∣ ≤ η. We denote by T1 = T1(Q0) the collection of these cubes.

Iterating the stopping conditions. We assume that Bk and Tk are
constructed. For every Q ∈ Tk, we use the function b1

Q to choose the b-

stopping cubes in Q, B1(Q), which we use to construct the functions b̃1
Q and

e1
Q. Then, using b1

Q, b̃1
Q and e1

Q, we choose the Tb-stopping cubes in Q, T1(Q).
We iteratively define Bk+1 =

⋃
Q∈Tk

B1(Q) and Tk+1 =
⋃
Q∈Tk

T1(Q)

These sets satisfy
∑∞

k=1

∑
Q∈Bk(Q0) |Q| ≤

∑∞
k=1 δ(1− τ)k−1|Q0| ≤ δ

τ
|Q0| with

τ ≈ (1− η)p
′

and the latter value is smaller than 1 for ε, σ, η small enough.

Finally, we define Φ(x) = sup{dist(x, (3Q)c) : Q ∈
⋃∞
k=1 Bk} which sat-

isfies |{Φ > 0}| ≤ ρ|Q0| with ρ = δ/τ arbitrarily small for δ small enough.
Moreover, b̃1

Q is a (∞, p) accretive system for TΦ on sparse subcubes of Q.

13.3.2 Proof of the baby Tb theorem (Proposition 12).

Let Q0 be a fixed cube and bQ an accretive system on D a sparse family of
Q0. For every Q ⊂ Q0, let Qa be the minimal element in D containing Q
and let Qi be the collection of dyadic children of Q. We define

EbQ(f) =
〈f〉Q
〈bQa〉Q

1QbQa , Db
Q(f) =

2d∑
i=1

EbQi(f)− EbQ(f)

to be the expectation and difference operators. The latter satisfies, for some
bounded functions φQ,i, the equality

Db
Q(f) = (Db

Q)2(f) + ωQ〈f〉Q =
2d∑
i=0

φQ,i〈Db
Q,if〉Qi (8)
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with Db
Q,if = Db

Qf for 1 ≤ i ≤ 2d, Db
Q,if = 〈f〉Q when i = 0 and Q has a

stopping child and Db
Q,if = 0 when i = 0 and Q does not have stopping child.

By the properties of the selected functions bQa , we have for s ∈ (1,∞)( ∑
Q⊆Q0

‖Db
Q,if‖2

2

)1/2

. ‖f‖2 and
∥∥∥( ∑

Q⊆Q0

|Db
Q,if |2

)1/2∥∥∥
Ls
. ‖f‖s (9)

Moreover, since f =
∑

Q⊂Q0 Db
Q(f), we write

〈T (f), g〉 =
( ∑

Q,R ⊆ Q0

`(Q) ≤ `(R)

+
∑

Q,R ⊆ Q0

`(R) < `(Q)

)
〈TDb1

Qf,Db2

R g〉

By symmetry, we just need to study the first term, which we parametrize as∑
k=0

∑
m∈Zd

∑
R⊆Q0

〈TDb1,k
S f,Db2

R g〉 (10)

with S = R +m`(R), Db1,k
S f =

∑
Q ⊂ S

`(Q) = 2−k`(S)

Db1

Qf . We analyse (10) in separate cases.

1. Disjoint cubes. This case assumes |m| ≥ 1 and so, we can write

〈TDb1,k
S f,Db2

R g〉 =
∑
i,j

ˆ
R×S

Db1,k
S,i f(y)Ki,j;k

R,S (x, y)Db2,k
R,j g(x)dydx

with

Ki,j;k
R,S (x, y) =

∑
Q ⊂ S

`(Q) = 2−k`(S)

1Qi(y)

|Qi|
〈Tφ1

Q,i, φ
2
R,j〉

1Rj(x)

|Rj|

It is proved that ‖Ki,j;k
R,S ‖L2(Rd×Rd) . 2−kmin{α,1/2}(1 + k)δα,1/2|m|−(d+α) with

δα,1/2 the Kronecker’s delta. This estimate suffices to bound the correspond-
ing terms in (10) by C‖f‖2‖g‖2.

2. Nested cubes. In this case, m = 0 and we perform the decomposition

∞∑
k=0

∑
R

〈TDb1,k
R f,Db2

R g〉 =
∑
R

〈TDb1

R f,Db2

R g〉+
∑
R

∑
Q(R

〈TDb1

Qf,Db2

R g〉 = D+ND

2.1. The non-diagonal part is proved to satisfy the decomposition

ND=
∑
Q

〈TDb1Q f, b2Qa,2〉〈g〉Q
〈b2
Qa,2
〉Q

+

∞∑
k=0

∑
R

∑
S ⊂ R

`(S) = `(R)/2

2d∑
j=0

〈TDb
1,k
S f, 1Scψ

b2

R,j;S〉〈Db
2

R,jg〉Rj=P+NP
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for some bounded functions ψb
2

R,j;S. The second term can be treated with
the same ideas as the disjoint cubes (case 1).

On the other hand, the paraproduct is dealt with (8) and an Ls version
of the Carleson embedding theorem:

P .
∑
R⊆Q0

〈Db1

R f, (Db1

R )∗T ∗b2
Ra,2〉〈g〉R|+

∑
R⊆Q0

|〈Db1

R,0f, ω
1
RT
∗b2
Ra,2〉〈g〉R|

.
∥∥∥( ∑

R⊆Q0

|Db1

R f |2
)1/2∥∥∥

Ls′

∥∥∥( ∑
R⊆Q0

|(Db1

R )∗ T ∗(b2
Ra,2)〈g〉R|2

)1/2∥∥∥
Ls

+ ST

. ‖f‖Ls′‖g‖Ls sup
S⊆Q0

|S|−1/s
∥∥∥(∑

R⊆S

|(Db1

R )∗ T ∗(b2
Ra,2)|2

)1/2∥∥∥
Ls

+ ST ′

where the terms ST and ST ′ are similar to their preceding ones (changing
(Db1

R )∗ by ωR, and Db1

R f by Db1

R,0f) and can be bounded using similar ideas.
Now, we decompose all subcubes P ⊆ S into k-th generations of maximal

subcubes so that P = P a,2, which we denote by Pk(S). Then, by disjointness
of the elements in Pk(S) and (9), the ‖‖Ls-norm is bounded by

∞∑
k=0

( ∑
P∈Pk(S)

∥∥∥( ∑
R ⊆ P

Ra,2 = Pa,2

|(Db1

R )∗ T ∗(b2
Ra,2)|2

)1/2∥∥∥s
Ls

)1/s

.
∞∑
k=0

( ∑
P∈Pk(S)

‖1PT ∗b2
Pa,2‖sLs

)1/s

.
∞∑
k=0

( ∑
P∈Pk(S)

|P |
)1/s

.
∞∑
k=0

(
(1− τ)k−1|S|

)1/s
. |S|1/s

ending this case.

2.2. For the diagonal term, since Db1

R =
∑2d

i=1 1RiDb1

R , we have that

D .
∑
R

∑
i,j:i 6=j

‖1RiDb1

R f‖2‖1RjDb2

R g‖2 +
∑
R

2d∑
j=1

|〈T (1RjDb1

R f), 1RjDb2

R g〉| (11)

where the first term follows from Hardy’s inequality and it is easily bounded
by C‖f‖2‖g‖2. To deal with the last part, it is first proved that

|〈T (1RjD
b1

R f), 1RjD
b2

R g〉| .
∑

i,h∈{0,j}

|〈T (1Rjb
1
Ra,1i

), 1Rjb
1
Ra,1h
〉|

∑
i,h∈{0,j}

|〈Db2R,if〉Ri ||〈Db
1

R,hg〉Rh |

By the weak boundedness property (7), the first factor is dominated by |R|.
Then, with inequality |R|1/2|〈Db1

R,if〉Ri | ≤ ‖Db1

R,if‖2 and (9), the second term
in (11) is bounded by C‖f‖2‖g‖2. This finishes the proof of Proposition 12.
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13.3.3 Proof of the main result (Theorem 9).

The hypotheses and Cotlar’s inequality imply the existence of b1
Q&b2

Q a
(p, p)&(p, p) accretive system for T#&(T#)∗ satisfying the hypotheses of Propo-
sition 10. Then, there exist a Lipschitz function Φ and b̃1

Q&b̃2
Q a (∞, p)&(∞, p)

accretive system for TΦ&(TΦ)∗ on sparse cubes of Q0 satisfying the hypothe-
ses of Proposition 12. This implies that for s′ ∈ (p′,∞] and all f, g ∈ Ls′(Q0),

|〈TΦ(f), g〉| . ‖f‖s′‖g‖s′ |Q0|1−2/s′ (12)

Let bQ0 = |Q0|
|Q0∩{Φ=0}|1Q0∩{Φ=0} which satisfies:

ffl
Q0
bQ0 = 1, ‖bQ0‖∞ . 1.

Moreover, supp bQ0 ⊂ {Φ = 0} and so, TΦbQ0 = TbQ0 and T ∗ΦbQ0 = T ∗bQ0 .
Applying (12) to f = bQ0 and an arbitrary g with ‖g‖Ls′ (Q0) = 1, we get(ˆ

Q0

|TbQ0|s
)1/s

. |Q0|1/s

and similar for T ∗ (choosing g = bQ0 and an arbitrary f with ‖f‖Ls′ (Q0) = 1).
Then, bQ0&bQ0 is a (∞, s)&(∞, s) accretive system for T&T ∗. By a

standard stopping time construction, for every cube Q0 we can extract a
(∞, s)&(∞, s) accretive system for T&T ∗ on sparse subcubes of Q0.

By Proposition 12 again, for r′ ∈ (max{r′, 2},∞] and all f, g ∈ Lr′(Q0),

|〈T (f), g〉| . ‖f‖r′‖g‖r′|Q0|1−2/r′ (13)

Now, using (13) first for f = 1Q0 and an arbitrary g with ‖g‖Ls′ (Q0) = 1 and
later for g = 1Q0 and an arbitrary f with ‖f‖Ls′ (Q0) = 1, we deduce(ˆ

Q0

|T1Q0|r
)1/r

. |Q0|1/r ,
(ˆ

Q0

|T ∗1Q0|r
)1/r

. |Q0|1/r

Finally, the standard local T (1) theorem proves the ‖T‖L2→L2 boundedness.
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14 Two short proofs of L2 boundedness for

the Cauchy integral operator on Lipschitz

curves

after R. R. Coifman, Peter W. Jones, and Stephen Semmes [1]
A summary written by Marco Vitturi

Abstract

We give two short proofs of the L2 → L2 boundedness of the
Cauchy integral operator on Lipschitz curves. The two proofs are
similar in spirit but rely on different techniques, the first one using
complex analysis, the second one using a suitably modified Haar basis.
The second proof can be modified to yield the proof of a T (b) theorem.

14.1 Introduction

Let Γ be a Lipschitz graph embedded in C, that is Γ = {x+ iA(x) : x ∈ R},
where A is a Lipschitz function. The Cauchy integral is defined for functions
f : C → C and points z ∈ Ω+ := {x + iA(x) + iy : x ∈ R, y > 0} (the
epigraph) as

Cf(z) :=
1

2πi

ˆ
Γ

f(ζ)

z − ζ
dζ.

From this, one defines it for points on Γ itself by taking the limit

Cf(z) := lim
δ→0+

1

2πi

ˆ
Γ

f(ζ)

z + iδ − ζ
dζ z ∈ Γ.

Formally, going back to real variables, one can write

Cf(x) =
1

2πi

ˆ
R

[f(y)(1 + iA′(y))]

(x+ iA(x))− (y + iA(y))
dx,

where the integral is to be interpreted carefully.
The Cauchy integral is interesting because it’s an example (probably the
naivest one) of a singular integral operator - satisfying the so-called standard
estimates - which is not a convolution operator. Its L2 → L2 boundedness
was first addressed by Calderón in [2], where it was proven under the weaker
condition that the Lipschitz constant ‖A′‖L∞ be small.

The theorem addressed in the paper is
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Theorem 1. Let Γ be a Lipschitz curve in C as defined before and let f be a
function in L2(Γ, ds),where ds is the arc length. Then there exists a constant
C > 0 such that

‖Cf‖L2(Γ,ds) ≤ C‖f‖L2(Γ,ds) (1)

for every such f . Moreover, the constant C only depends on ‖A′‖L∞.

As stated in the abstract, the article provides two different proofs - al-
though similar in spirit. We outline them in the next sections.

14.2 First proof: complex analysis

It is based on two lemmas. We first introduce a norm ‖ · ‖Ω+ induced by an
hermitian product on the measurable C-valued functions on Ω+:

‖f‖Ω+ :=

ˆ
Ω+

|f(z)|2d(z) dx dy,

where d(z) = dist(z,Γ) and x, y are real and imaginary part of z. The
associated Hilbert space is denoted by H(Ω+).

Lemma 2. Let F be a holomorphic function in Ω+ such that F → 0 at
infinity. Then

‖F‖L2(Γ) . ‖A′‖L∞‖F ′‖Ω+ (2)

Allowing the control of a certain L2 “boundary” norm of a function
through its derivative, this lemma is in the spirit of Littlewood-Paley the-
ory. To prove it, one notices that Ω+ is conformally equivalent to H+ (the
upper half-plane) via a conformal map Φ, and then uses this Φ for a change
of variables. Köbe’s and Schwarz’s complex analysis lemmas also come into
play yielding useful estimates.

Lemma 3. Let T be the operator

Tg(z) :=

ˆ
Ω+

g(ζ)d(ζ)

(z − ζ)2
dx dy.

Then T is H(Ω+)→ L2(Γ) bounded:

‖Tg‖L2(Γ) . ‖A′‖L∞‖g‖Ω+ . (3)
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The proof of this lemma is just tecnical, but it’s worth mentioning it’s
obtained via Schur’s test.
With these two lemmas one can easily prove theorem 1, as follows.

‖Cf‖L2(Γ) . ‖A′‖L∞‖(Cf)′‖Ω+ = ‖A′‖L∞ sup
‖g‖Ω+≤1

|〈(Cf)′, g〉Ω+ |,

by lemma 2, and

|〈(Cf)′, g〉Ω+ | =
∣∣∣∣ˆ

Ω+

(Cf)′(z)g(z)d(z) dx dy

∣∣∣∣ =

∣∣∣∣∣
ˆ

Ω+

ˆ
Γ

f(ζ)g(z)

(z − ζ)2
d(z) dζ dx dy

∣∣∣∣∣
=

∣∣∣∣ˆ
Γ

f(ζ)Tg(ζ) dζ

∣∣∣∣ ≤ ‖f‖L2(Γ)‖Tg‖L2(Γ) . ‖A′‖L∞‖f‖L2(Γ)‖g‖Ω+ .A′ ‖f‖L2(Γ),

by lemma 3, where we used Fubini and Cauchy-Schwarz in the end.

14.3 Second proof: Haar-like basis

This proof is again based on two lemmas. Using the parametrization of Γ
one reduces to study operator

Tf(y) = lim
δ→0+

ˆ
R

f(x)

z(y) + iδ − z(x)
z′(x) dx,

where z(x) is assumed to be an arc-length parametrization of Γ. With I ∈ F,
the collection of dyadic intervals, one introduces the modified wavelets

ψI(x) :=
1

|I|1/2

(
m`
Im

r
I

mI

)1/2 (
χ`I(x)

m`
I

− χrI(x)

mr
I

)
,

where mI := |I|−1
´
I
z′(x) dx and I`, Ir are respectively the left and right

halves of I. Then one introduces the bilinear product

〈f, g〉Γ :=

ˆ
R
f(x)g(x) z′(x) dx

and proves

Lemma 4. {ψI}I∈F is an orthonormal basis for (L2(R), 〈·, ·〉Γ) and∑
I∈F

|〈f, ψI〉Γ|
2 ∼ ‖f‖L2(R).
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Again this falls within Littlewood-Paley theory. The proof requires the
introduction of an expectation operator E with respect to the complex mea-
sure z′(x) dx,

Ejf(x) :=
1

|I|mI

ˆ
I

fz′ dy when x ∈ I,|I| = 2−j,

and the difference operator

∆jf(x) := Ej+1f(x)− Ejf(x).

Then one proves that ∆j =
∑

I∈F,|I|=2−j 〈ψI , ·〉Γ ψI (a projection), so that

I L2

=
∑

j∈Z ∆j (I is the identity). An application of Carleson’s theorem on
Carleson measures yields the size equivalence.

Lemma 5. With T as above, one has

sup
I∈F

∑
J∈F

(|〈TψI , ψJ〉Γ|+ |〈TψJ , ψI〉Γ|) <∞.

This is nothing but an adapted Schur’s test. It’s proven by scaling (so
that one can take I = [0, 1] and remove the supremum) and by carefully
estimating the contribution of every term through elementary estimates on
the size of |T (ψI)(x)| when x is far from I itself, and when it’s close or within
it. Alternatively, one can exploit the property ∆2

j = ∆j ⇒ I =
∑

j∈Z ∆2
j ,

writing T =
∑

j,k∈Z ∆k (∆kT∆j) ∆j and reducing to estimate instead

sup
j∈Z

∑
k∈Z

‖∆kT∆j‖L2→L2 + sup
k∈Z

∑
j∈Z

‖∆kT∆j‖L2→L2 .

14.4 Remarks on a T (b) theorem

Let b be a dyadic pseudo-accretive function, i.e. there exists δ > 0 s.t.∣∣∣∣ 1

|I|

ˆ
I

b dx

∣∣∣∣ ≥ δ for every I ∈ F.

If the standard operator T satysfies the weak boundedness property and
T (b) = T t(b) = 0, then one can prove it is L2 → L2 bounded by writing

T =
∑
j,k∈Z

∆k (∆kTMb∆j) ∆jM
−1
b ,
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with Mbf := b · f , and doing an analogue of what outlined at the end of the
previous section. If b is (dyadic) para-accretive only, i.e. there exists δ, ε > 0
s.t. for every I there exists I ′ ⊂ I s.t. |I ′| ≥ ε|I| and∣∣∣∣ 1

|I ′|

ˆ
I′
b dx

∣∣∣∣ ≥ δ,

then one has to change accordingly the σ-algebra relative to which the con-
ditional expectation Ej is taken (it was the one generated by dyadic intervals
of length 2−j before) in order for the above machinery to work in this case
as well.
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15 Boundedness of the twisted paraproduct

after V. Kovac [1]
A summary written by Michal Warchalski

Abstract

We prove Lp estimates for a two-dimensional bilinear dyadic and
continous operator of paraproduct type.

15.1 Introduction and notation

We denote dyadic martingale averages and differences by

Ekf =
∑
|I|=2−k

(
1

|I|

ˆ
I

f

)
1I , ∆k = Ek+1 − Ek, k ∈ Z

and the sum is taken over dyadic intervals I ⊂ R of length 2−k. When we
apply operator of two-dimensional function in only one variable, we mark
that variable in the superscript. For instance,

(E(1)
k F )(x, y) := (EkF (·, y))(x).

Then we can define the dyadic twisted paraproduct as

Td(F,G) =
∑
k∈Z

(E(1)
k F )(∆

(2)
k G).

For two functions ϕ, ψ ∈ C1(R) satisfying

|∂jϕ(x)| . (1 + |x|)−3, |∂jψ(x)| . (1 + |x|)−3, for j = 0, 1,

supp(ψ̂) ⊂
{
ξ ∈ R :

1

2
≤ |ξ| ≤ 2

}
we define the continous twisted paraproduct as

Tc(F,G) =
∑
k∈Z

(PϕkF )(PψkG),

where Pϕf = f ∗ ϕ.
The main result of the paper is the following theorem.
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Theorem 1. (a) Operators Td and Tc satisfy the strong bound

‖T (F,G)‖Lpq/(p+q)(R2) .p,q ‖F‖Lp(R2)‖G‖Lq(R2),

if 1 < p, q <∞, 1
p

+ 1
q
> 1

2
.

(b) Operators Td and Tc satisfy the weak bound

α

∣∣∣∣{(x, y) ∈ R2 : |T (F,G)(x, y)| > α

}∣∣∣∣(p+q)/pq .p,q ‖F‖Lp(R2)‖G‖Lq(R2),

if p = 1, 1 ≤ q <∞ or q = 1, 1 ≤ p <∞.

(c) The weak estimate fails for p =∞ or q =∞.

Our strategy is to prove (a) for operator Td for p, q > 2 and then extend
the range of exponents proving the weak estimate (b) and using real multi-
linear interpolation. We establish bounds for Tc relating Tc to Td. In the final
step we discuss counterexample for (c). Since we dualize, we are concerned
with the proper trilinear form

Λd(F,G,H) :=

ˆ
R2

Td(F,G)(x, y)H(x, y)dxdy.

For a dyadic interval I we denote the Haar scaling function and the Haar
wavelet by

ϕdI := |I|−1/2
1I , ψdI := |I|−1/2(1Ileft − 1Iright)

respectively. We can rewrite martingale averages and differences in the Haar
basis as

Ekf =
∑
|I|=2−k

(ˆ
R
fϕdI

)
ϕdI , ∆kf =

∑
|I|=2−k

( ˆ
R
fψdI

)
ψdI .

Thus, we can rewrite the twisted paraproduct and the trilinear form as

Td(F,G) =
∑
I×J∈C

ˆ
R2

F (u, y)G(x, v)ϕdI(u)ϕdI(x)ψdJ(v)ψdJ(y)dudv,
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Λd(F,G,H) =
∑
I×J∈C

ˆ
R4

F (u, y)G(x, v)H(x, y)

ϕdI(u)ϕdI(x)ψdJ(v)ψdJ(y)dudxdvdy,

where C denotes the collection of all dyadic squares. We also introduce the
Gowers box inner-product for functions F1, F2, F3, F4 and a dyadic square
Q = I × J as

[F1, F2, F3, F4]�(Q) :=
1

|Q|2

ˆ
I

ˆ
I

ˆ
J

ˆ
J

F1(u, v)F2(x, v)

F3(u, y)F4(x, y)dudxdvdy,

which induces the Gowers box norm

‖F‖�(Q) := [F, F, F, F ]
1/4
�(Q).

15.2 Telescoping identities over trees

As mentioned above, we start by proving (a) for a certain range of exponents.
We also reduce our argument to show the bound for nonnegative dyadic step
functions.

We call a tree a subset T of dyadic squares C if it satisfies the following
condition: there exists QT ∈ T , called the root of T that satisfies Q ⊂ QT
for any Q ∈ T . A tree is convex if for every Q1, Q3 ∈ T the inclusions
Q1 ⊂ Q2 ⊂ Q3 imply Q2 ∈ T . A leaf is a square which is not an element of
T , but its parent is. We denote by L(T ) the collection of leaves of a tree T .
For any tree T we have corresponding version of the form Λd

ΛT (F,G,H) =
∑

I×J∈T

ˆ
R4

F (u, y)G(x, v)H(x, y)

ϕdI(u)ϕdI(x)ψdJ(v)ψdJ(y)dudxdvdy.

It is more convenient to introduce quadrilinear forms
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Θ
(2)
T (F1, F2, F3, F4) :=

∑
I×J∈T

ˆ
R4

F1(u, v)F2(x, v)F3(u, y)F4(x, y)

ϕdI(u)ϕdI(x)ψdJ(v)ψdJ(y)dudvdxdy,

Θ
(1)
T (F1, F2, F3, F4) :=

∑
I×J∈T

∑
j∈{left,right}

ˆ
R4

F1(u, v)F2(x, v)F3(u, y)F4(x, y)

ψdI (u)ψdI (x)ϕdJj(v)ϕdJj(y)dudvdxdy.

Note that ΛT (F,G,H) := Θ
(2)
T (1, G, F,H). We also denote for any F ⊂ C:

ΞF(F1, F2, F3, F4) :=
∑

I×J∈F

ˆ
R4

F1(u, v)F2(x, v)F3(u, y)F4(x, y)

ϕdI(u)ϕdI(x)ϕdJ(v)ϕdJ(y)dudvdxdy =
∑
Q∈F

|Q|[F1, F2, F3, F4]�(Q).

After introducing essential definitions we can formulate the following
lemma which is crucial for the proof.

Lemma 2. (Telescoping identity) For any finite convex tree T with root QT
we have

Θ
(1)
T (F1, F2, F3, F4) + Θ

(2)
T (F1, F2, F3, F4)

= ΞL(T )(F1, F2, F3, F4)− ΞQT (F1, F2, F3, F4).

The telescoping identity leads to the so-called single tree estimate:

Proposition 3. For any finite convex tree T we have

|Θ(2)
T (F1, F2, F3, F4)| ≤ 2|QT |

4∏
j=1

max
Q∈L(T )

‖Fj‖�(Q).

In particular

|ΛT (F,G,H)| ≤ 2|QT | max
Q∈L(T )

‖F‖�(Q) max
Q∈L(T )

‖G‖�(Q) max
Q∈L(T )

‖H‖�(Q).
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Using this proposition we are able to derive the point (a) of the theorem for
2 < p, q <∞. Next, we use one-dimensional Cálderon-Zygmund decomposi-
tion for F (·, y), G(x, ·) for every x, y ∈ R to obtain the bound

‖T (F,G)‖Lp/(p+1),∞(R2) .p ‖F‖Lp(R2)‖G‖L1(R2),

what is exactly the point (b) of the theorem for the operator Td. Finally, we
interpolate to get (a) in the whole range 1

p
+ 1

q
> 1

2
, 1 < p, q <∞.

15.3 The continous case

The key tool of the transition to the continous case is the following result
due to Jones, Seeger and Wright[2].

Proposition 4. Let the function ϕ be as in the beginning and additionally
let

´
R ϕ = 1. The square function

SJSW,ϕ :=

(∑
k∈Z

|Pϕkf − Ekf |2
)1/2

is bounded from Lp(R) to Lp(R) for 1 < p <∞, with the constant depending
only on p.

Combining this proposition with already proven bound in the dyadic case
we show (a) for the operator Tc.
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16 A boundedness criterion for generalized

Caldern-Zygmund operators

after G. David and J-L. Journé [1]
A summary written by Jingxin Zhong

Abstract

We outline a proof of T1 theorem due to G. David and J-L. Journé.

16.1 Introduction

Singular integral operators appear naturally in analysis. For the classical sin-
gular integral operators of convolution type, such as Hilbert transform, the
fourier transform method gives a satisfatory description. For more general
singular integral operators, the classical fourier method is no longer effective
and a more sophisticated method is needed. The class of Calderón-Zygmund
operator (CZO) is an important generalization of the classical singular in-
tegral operators, whose distributional kernels still satisfy some regularity
conditions. To define a CZO, we first need the following notion:

Definition 1. A standard kernel is a continuous function K defined on Ω =
Rn × Rn\∆, where ∆ = {(x, y);x = y}, such that there exist two constants
δ ∈ (0, 1] and C > 0, and K satisfies the following conditions:
For all (x, y) ∈ Ω,

|K(x, y)| ≤ C|x− y|−n, (1)

For all x, x′, y such that |x′ − x| < 1
2
|x− y|,

|K(x′, y)−K(x, y)|+ |K(y, x′)−K(y, x)| ≤ C
|x′ − x|δ

|x− y|n+δ
. (2)

Definition 2. A Calderón-Zygmund operator is a bounded operator from the
class S(Rn) of Schwartz functions to its dual S ′(Rn) associated with a stan-
dard kernel K such that:
1) For all functions f, g ∈ C∞c (Rn) with disjoint supports, < Tf, g >=˜
K(x, y)f(y)g(x)dxdy, where <,> is the dual paring of S ′(Rn) and S(Rn);

2) T can be extended to a bounded operator on L2(Rn) .
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Actually from the defintion of CZOs, we can easily see that the adjoint
operator T ∗ defined by < T ∗g, f >=< Tf, g > is also a CZO associated
with the kernel K∗(x, y) = K(y, x). If we work a little harder, we can
establish the boundedness of CZOs in various Lp space for 1 < p ≤ ∞.
Given the nice properties of CZOs, the problem is to give a workable criterion
for CZOs. In general, one can write down the kernel of a singular integral
operator explicitly and check the standard kernel condition. However the
L2-boundedness condition seems impossible to verify. The David and Journé
T1 theorem, which is the theme of this summary, gives a necessry, sufficient
and workable criterion for the L2-boundedness, which roughly states that one
can verify the L2-boundedness condition of a singular integral operator with
a standard kernel simply by checking its action on the constant function 1.

16.2 Preliminaries

To state the T1 theorem, we first need to define the action of a CZO, T on
1, or more generally on any bounded smooth function. The result will be a
distribution (up to some modulation) acting on functions in a dense subspace
of the Hardy space H1.

Let f ∈ C∞(Rn) be bounded, g ∈ C∞c (Rn) with integral 0, f1 ∈ C∞c (Rn)
coincide with f in a neighborhood of supp(g) and f2 = f − f1. We define
< Tf, g >=< Tf1, g > +

˜
K(x, y)f2(y)g(x)dxdy. Note that < Tf1, g >

is well defined from the defition of CZO. Moreover, the convergence of the
integral in the definiton follows from the regularity of the standard kernel and
the special cancellation property due to the function g. One can easily check
the defintion is independent of the choice of f1. Now by a well-known result
proved by Peetre, Spanne and Stein, the CZO extends to a bounded operator
from L∞ to BMO. Therefore, from the BMO−H1 duality, ”T (1) ∈ BMO”
means there exists a constant C > 0 such that < T (1), g >≤ C||g||H1 for any
g ∈ C∞c (Rn) with integral 0.

We need one more defintion. A continuous operator T from S(Rn) to
S ′(Rn) has the weak boundedness property if for any bounded subset B
of C∞c (Rn), there exist a constant C dependent on B, such that for any
φ1, φ2 ∈ B, x ∈ Rn and R > 0, we have | < Tφx,R1 , φx,R2 > | ≤ CRn,
where φx,R(y) = φ((y − x)/R). Note that L2 boundedness implies weak
boundedness.

We now state the main theorem:
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Theorem 3. (T1 theorem) Let T be a continuous operator from S(Rn) to
S ′(Rn), associated with a standard kernel. Then T can be extended to a
bounded operator on L2(Rn) if and only if the following three conditions holds:
i) T1 ∈ BMO,
ii) T ∗1 ∈ BMO,
iii) T has the weak boundedness property.

The necessity of i), ii) and iii) follows from the discussion above. The mir-
acle lies in the sufficiency. To prove sufficiency, the scheme is to decompose
T as the sum of three operators L,M and T̃ . The first two operators belong
to the family of paraproducts. The L2-boundedness of the third operator T̃
will be an application of Cotlar-Knapp-Stein lemma.

16.3 Paraproduct construction

The first part of the proof is to construct two CZOs, L and M, which are
typical examples of a special class of bilinear operators called paraproduct
and satisfy L1 = T1, L∗1 = 0, M1 = 0 and M∗1 = T ∗1. Once we con-
struct L, then M can be similarily constructed. We pick ϕ ∈ C∞c (Rn)
be a radial function supported on the unit ball with integral 1. Denote
ϕt(x) = (1/tn)ϕ(x/t) , Pt to be the operator of convolution with ϕt and Qt

to be the operator −tdPt/dt. It is easy to check Qt is a operator of con-
volution with ψt(x) = (1/tn)ψ(x/t), where ψ is a radial atom supported on
the unit ball. Let β = T1 ∈ BMO. We define the operator L formally

by Lf = η
∞́

0

Qt[(Qtβ)(Ptf)]dt/t, where η is some normalized constant to be

chosen.
To show the operator L is a CZO, we need the following approximation

lemma which can be easily deduced.

Lemma 4. Let Tm be a bounded sequence of CZOs (i.e. the L2-operator
norms of Tm are uniformly bounded and the associated kernels estimates
have the same constant C). If the associated kernels Km(x, y) converges
uniformly on any compact set in Ω to K(x, y) and the Tm converges weakly
to an operator T , then T is a CZO with kernel K. Moreover, for any function
g ∈ C∞c (Rn) with integral zero, < T1, g >= limm→+∞ < Tm1, g >.

The lemma tells us how to approximate a CZO by a sequence of CZOs.

We define Lmf = η
ḿ

1/m

Qt[(Qtβ)(Ptf)]dt/t and the natural goal is to show:

100



Proposition 5. The sequence Lm satisfies the hypothesis of the lemma.

Given the explicit expression of Lm, we can directly verify the standard
kernel condition. Denote Lt(x, y) =

´
ψt(x − z)Qtβ(z)ϕt(z − y) to be the

kernel of Qt[(Qtβ)Pt]. As we mentioned above Qt is convolution with an
atom, we know Qtβ is uniformly by C||β||BMO for some constant C. Then
the kernel of Lm and its derivative are bounded by C||β||BMO/|x − y|n and
C||β||BMO/|x− y|n+1, which satisfy the standard kernel condition.

The key tool to prove L2-boundedness of Lm is the Carleson measure.
For f, g ∈ C∞c (Rn), using Cauchy-Schwarz inequality, we have:

| < Lmf, g > | ≤ (

ˆ
Rn

m̂

1
m

|Qtg|2
dxdt

t
)

1
2 (

ˆ
Rn

m̂

1
m

|Qtβ|2|Ptf |2
dxdt

t
)

1
2 (3)

Using Plancherel theorem, the first factor can be estimated:

(

ˆ
Rn

m̂

1
m

|Qtg|2
dxdt

t
)

1
2 ≤ C||g||2 (4)

For the second factor, we notice that |Qtβ|2 dxdtt is a Carleson measure
since β ∈ BMO. Therefore, using the Carleson measure estimate and the L2-
boundedness of Hardy-Littlewood maximal operator (for details of Carleson
measure, see [2]), we have:

(

ˆ
Rn

m̂

1
m

|Qtβ|2|Ptf |2
dxdt

t
)

1
2 ≤ C||f ||2||β||BMO (5)

Now we know the Lm is a bounded sequence of CZOs and < Lmf, g >
converges. Therefore, Lm has a weak limit L, which is a CZO. Moreover,
since Qt1 = 0, we have L∗m1 = 0 and therefore L∗1 = 0. It remains to show
L1 = β.

Lemma 6. For all g ∈ C∞c (Rn) with integral 0, by choosing an appropriate
η, we have

limm→∞ < Lm1, g >=< β, g >.
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The proof of the lemma essentially uses the characterization of Hardy
space by Riesz transform to transform the limit into a convergence of func-
tions under L1-norm. We omit the details here.

Now we have constructed two CZOs, L and M, satisfying L1 = T1, L∗1 =
0, M1 = 0 and M∗1 = T ∗1. Therefore, the operator T̃ = T −L−M satifies
T̃1 = 0, T̃ ∗1 = 0.

16.4 Almost orthogonality

We turn to the second part of the proof, which is to establish L2-boundedness
of T̃ . The main ingredient to prove L2-boundedness of T̃ is the following
Cotlar-Knapp-Stein lemma (for a elegant proof, see [2]):

Lemma 7. Let H be a Hilbert space, and Tj be a sequence of bounded op-
erators on H. Let T ∗j be the adjoint of Tj. Suppose there exists a sequence

ω : Z → [0,+∞) such that
∑√

ω(k) = A < ∞ and for all (j, k) ∈ Z2,

||T ∗j Tk|| + ||TjT ∗k || ≤ ω(j − k). Then the sum SM,N =
∑N

j=−M Tj converge
strongly to a bounded operator T satisfying ||T || ≤ A

To use the lemma, we apply a Littlewood-Paley type decomposition to
T̃ . Let ϕ be as in the previous section. For j ∈ Z, denote Sj to be the
convolution with ϕ2j and ∆j = Sj −Sj+1. Let Tj = SjT̃∆j, T

′
j = ∆jT̃ Sj and

T ′′j = ∆jT̃∆j. Note
∑N
−M Tj + T ′j + T ′′j = S−M T̃ S−M + SN T̃ SN and Sj is

an approximation to identity, so the partial sum converges weakly to T̃ . We
will show Tj satisfies CKS lemma and the other two can be deduced in the
same way. The result is based on the following estimates of the kernel of Tj:

Lemma 8. Denote pj(x) = 2−njp(x/2j). The operator Tj is given by a ker-
nel Kj such that:

|Kj(x, y)| ≤ Cpj(x− y); (6)

|Kj(x, y)−Kj(x
′, y)|+ |Kj(y, x)−Kj(y, x

′)|

≤ CMin(1,
|x′ − x|

2j
)[pj(x− y) + pj(x

′ − y)];
(7)

ˆ
Kj(x, y)dy = 0 (8)
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for all x; ˆ
Kj(x, y)dx = 0 (9)

for all y.

By defintion, the kernel Kj(x, y) =< T̃φy
2j
, ϕx2j >, where φy

2j
= ϕy

2j
−ϕy

2j+1 .
To prove (6), we have two cases. For |x − y| ≤ 10 2j, then (6) follows from
the weak boundedness property of T̃ . For |x− y| ≥ 10 2j, φy

2j
and ϕx2j have

disjoint supports. Using the fact that φy
2j

has integral 0, then (6) follows

from the standard kernel estimate (2) associated to T̃ .
For (7), we also have two cases. For |x − x′| ≥ 2j, then (7) follows from

(6). For the other case, (7) can be reduced to the following gradient estimate
of the kernel Kj:

|∆xKj(x, y)|+ |∆yKj(x, y)| < C2jpj(x− y) (10)

Note ∆yKj(x, y) = −2j < T̃ (∆φ)y
2j
, ϕx2j >, so (10) follows from the proof of

(6) applying to ∆φ, ϕ.
(8) and (9) follow from the fact that φ has integral 0 and T̃ ∗1 = 0.
Finally, using the estimates in the lemma, we can show Tjs satisfy the

hypothesis of the CKS lemma and thus complete the proof of the main the-
orem.

Proposition 9. Let Tj be a sequence of operators with kernel Kj satisfying
(6),(7),(8) and (9). Then there exists a constant C > 0 such that for all
(j, k) ∈ Z2,

||T ∗j Tk||+ ||TjT ∗k || ≤ C2−δ|j−k|. (11)

.
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