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The stable homotopy category is rigid

By Stefan Schwede

The purpose of this paper is to prove that the stable homotopy category
of algebraic topology is ‘rigid’ in the sense that it admits essentially only one
model:

Rigidity Theorem. Let C be a stable model category. If the homotopy
category of C and the homotopy category of spectra are equivalent as trian-
gulated categories, then there exists a Quillen equivalence between C and the
model category of spectra.

Our reference model is the category of spectra in the sense of Bousfield
and Friedlander [BF, §2] with the stable model structure. The point of the
rigidity theorem is that its hypotheses only refer to relatively little structure on
the stable homotopy category, namely the suspension functor and the class of
homotopy cofiber sequences. The conclusion is that all ‘higher order structure’
of stable homotopy theory is determined by these data. Examples of this
higher order structure are the homotopy types of function spectra, which are
not in general preserved by exact functors between triangulated categories, or
the algebraic K-theory. However, the theorem does not claim that a model for
the category of spectra can be constructed out of the triangulated homotopy
category. Nor does it say that a given triangulated equivalence can be lifted
to a Quillen equivalence of model categories.

The rigidity theorem completes a line of investigation begun by Brooke
Shipley and the author in [SS] and improved 2-locally in [Sch]. We refer to
those two papers for motivation, and for examples of triangulated categories
that are not rigid, i.e., which admit exotic models. The new ingredients for
the odd-primary case are roughly the following. The arguments of [Sch] reduce
the problem at each prime p to a property of the first nonzero p-torsion class
in the stable homotopy groups of spheres, which is the Hopf map η at the
prime 2 and the class α1 in the stable (2p − 3)-stem for odd primes. At the
prime 2 the Hopf map η is the reason that the mod-2 Moore spectrum fails
to have a multiplication, even up to homotopy. At odd primes the mod-p
Moore spectrum has a multiplication up to homotopy, but for p = 3 the class
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α1 is the obstruction to the multiplication being homotopy associative [To3,
Lemma 6.2]. For primes p ≥ 5 the multiplication of the mod-p Moore spectrum
is homotopy associative and the relationship to the class α1 is more subtle: α1

shows up as the obstruction to an Ap-multiplication in the sense of Stasheff [St].
This fact is folklore, but I do not know a reference that uses the language of
An-structures.

The rigidity theorem starts from a triangulated equivalence which is not
assumed to be compatible with smash products in any sense. So the challenge
is to bring the feature of α1 as a coherence obstruction into a form that only
refers to the triangulated structure. For this purpose we introduce the notion of
a k-coherent action of a Moore space M on another object; see Definition 2.1.
This concept is similar to Segal’s approach to loop space structures via Δ-
spaces (unpublished, but see [An, §5] and [Th, §1]). I expect that a k-coherent
M -module is essentially the same as an Ak-action of the Moore space in the
sense of Stasheff [St]. However, we do not use associahedra; the bookkeeping
of higher coherence homotopies is done indirectly through extended powers of
Moore spaces.

Organization of the paper. In Section 1 we recall the extended power
construction and review some of its properties. Extended powers are used in
Section 2 to define and study coherent actions of a mod-p Moore space on
an object in a model category. Section 3 contains the main new result of
this paper, Theorem 3.1; it says that in the situation of the rigidity theorem,
the class α1 acts nontrivially on the object in the homotopy category of C
that corresponds to the sphere spectrum. Section 4 contains the proof of the
rigidity theorem, which is a combination of Theorem 3.1 with the reduction
arguments of [Sch].

While the rigidity theorem holds for general model categories, we restrict
our attention to simplicial model categories in the body of the paper. We
explain in Appendix A how the arguments have to be adapted in the general
case. The author thinks that the necessary technicalities about framings can
obstruct the flow of ideas, and that by deferring them to the appendix, the
paper becomes easier to read.
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Mahowald over a period of several years. I thank Paul Goerss for inviting me to
Northwestern University during the spring of 2002, where the main ideas in this
paper evolved. I also thank Jim McClure, Bill Dwyer, Neil Strickland and Doug
Ravenel for helpful suggestions related to this paper, and Dale Husemöller and
John Rognes for their encouragement and countless valuable comments on
earlier versions of the paper.
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1. Extended powers

For our definition of a coherent action of the Moore space in Section 2 we
need the extended power construction. In this section we recall this construc-
tion and review some of its properties. A key point is that ‘small’ extended
powers of mod-p Moore spaces are again mod-p Moore spaces; see Lemma 1.4.

Definition 1.1. For a group G we denote by EG the nerve of the transport
category with object set G and exactly one morphism between any ordered pair
of objects. So EG is a contractible simplicial set with a free G-action. We are
mainly interested in the case G = Σn, the symmetric group on n letters.

The n-th extended power of a pointed simplicial set X is defined as the
homotopy orbit construction

DnX = X∧n ∧Σn
EΣ+

n ,

where the symmetric group Σn permutes the smash factors, and the ‘+’ denotes
a disjoint basepoint. We often identify the first extended power D1X with X

and use the convention D0X = S0.
The injection Σi × Σj −→ Σi+j induces a Σi × Σj-equivariant map of

simplicial sets

EΣi × EΣj −→ EΣi+j

and thus a map of extended powers

μi,j : DiX ∧ DjX ∼= X∧(i+j) ∧Σi×Σj
(EΣi × EΣj)+(1.2)

−→ X∧(i+j) ∧Σi+j
EΣ+

i+j = Di+jX .

We will refer to the maps μi,j as the canonical maps between extended powers.
The canonical maps are associative in the sense that the following diagram
commutes:

DiX ∧ DjX ∧ DkX

μi,j ∧ Id

��

Id ∧μj,k �� DiX ∧ Dj+kX

μi,j+k

��
Di+jX ∧ DkX μi+j,k

�� Di+j+kX

for all i, j, k ≥ 0. The canonical maps are also unital, so that after identifying
DiX ∧ D0X and D0X ∧ DiX with DiX the maps μi,0 and μ0,i become the
identity.

Throughout this paper, p denotes a prime number and M is a finite
pointed simplicial set of the homotopy type of a mod-p Moore space with



840 STEFAN SCHWEDE

bottom cell in dimension 2. To be more specific, we define M as the pushout

S̃2

×p

��

�� CS̃2

��
S2

ι
�� M .

(1.3)

Here S2 = Δ[2]/∂Δ[2] is the ‘small’ simplicial model of the 2-sphere, S̃2 is
an appropriate subdivision of S2 and ×p : S̃2 −→ S2 is a map of degree p.
The simplicial set CS̃2 = Δ[1] ∧ S̃2 is the cone on the subdivided sphere.
The bottom cell inclusion ι : S2 −→ M induces an epimorphism in integral
homology in dimension 2.

With field coefficients, the reduced homology of the n-th extended power
DnX can be calculated as the homology of the symmetric group Σn with
coefficients in the tensor power of the reduced homology of X. If X is a
p-local space for a prime p strictly larger than n, then Σn has no higher group
homology with these coefficients. This indicates a proof of the following lemma.
The statement of Lemma 1.4 is not true for n ≥ p, and DpM is not a Moore
space.

Lemma 1.4. Let p be an odd prime and let M denote the mod-p Moore
space with bottom cell in dimension 2 defined above. Then for 2 ≤ n ≤ p − 1
the composite map

S2 ∧ Dn−1M
ι∧Id−−−−→ M ∧ Dn−1M

μ1,n−1−−−−−→ DnM

is a weak equivalence. Hence for such n the extended power DnM is a mod-p
Moore space with bottom cell in dimension 2n.

In the rest of this section we discuss certain cubes of simplicial sets whose
values are smash products of extended powers of M . These cubes and their
colimits enter in Theorem 2.5 below, where we explain how the homotopy
class α1 is the obstruction to the existence of a p-coherent multiplication on
the Moore space M .

For each n ≥ 1 we define a certain (n−1)-dimensional cube Hn of pointed
simplicial sets. In other words, Hn is a functor from the poset of subsets of the
set {1, . . . , n− 1}, ordered under inclusion. For such a subset T we first define
a subgroup Σ(T ) of the symmetric group Σn. The subgroup Σ(T ) consists of
all those permutations that for all i �∈ T map the set {1, . . . , i} to itself. Thus
if 1 ≤ t1 < t2 < · · · < tj ≤ n − 1 are the numbers that are not in T , then

Σ(T ) ∼= Σt1 × Σt2−t1 × · · · × Σn−tj
.(1.5)

For example, Σ(∅) is the trivial subgroup,

Σ({1, . . . , i− 1, i + 1, . . . , n− 1}) = Σi ×Σn−i and Σ({1, . . . , n− 1}) = Σn .
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The functor Hn sends a subset T ⊆ {1, . . . , n − 1} to the homotopy orbit
space

Hn(T ) = M∧n ∧Σ(T ) EΣ(T )+ ,(1.6)

where Σ(T ) permutes the smash factors. For S ⊆ T the group Σ(S)
is a subgroup of Σ(T ), so we get an induced map on homotopy orbits
Hn(S) −→ Hn(T ) which makes Hn into a functor. Since the group Σ(T )
is a product of symmetric groups as in (1.5), the values Hn(T ) are smash
products of extended powers,

Hn(T ) ∼= Dt1M ∧ Dt2−t1M ∧ · · · ∧ Dn−tj
M .

In this description, the map Hn(S) −→ Hn(T ) for S ⊆ T is a smash product
of canonical maps (1.2).

Lemma 1.7. (a) Each map Hn(S) −→ Hn(T ) in the cube Hn is injec-
tive, and for each pair of subsets T, U ⊆ {1, . . . , n− 1} the simplicial set
Hn(T ∩U) is the intersection of Hn(T ) and Hn(U) in Hn(T ∪U). Thus
the commutative square

Hn(T ∩ U) ��

��

Hn(U)

��
Hn(T ) �� Hn(T ∪ U)

is a pullback diagram.

(b) For every subset T of {1, . . . , n − 1}, the natural map

colimS⊂T,S �=T Hn(S) −→ Hn(T )

from the colimit over the proper subsets of T to Hn(T ) is injective.

Proof. (a) In order to show that Hn(S) −→ Hn(T ) is injective and that
the square is a pullback we show these properties in each simplicial dimension k.
The k-simplices of Hn(T ) are given by

Hn(T )k =
(
M∧n ∧Σ(T ) EΣ(T )+

)
k

= (Mk)∧n ∧Σ(T ) (Σ(T )k+1)+

∼= (Mk)∧n ∧ (Σ(T )k)+ ∼= ((M̄k)n × Σ(T )k)+

where Mk denotes the pointed set of k-simplices of M , and M̄k denotes the
set of nonbasepoint k-simplices of M . The last two isomorphisms are not com-
patible with the simplicial structure, but that does not concern us. These
isomorphisms are, however, natural for subgroups Σ(T ) of Σn. Since Σ(S)
is a subgroup of Σ(T ) for S ⊆ T , this description shows that the map
Hn(S) −→ Hn(T ) is injective.
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In order to show that the commutative square in question is a pullback,
it suffices to show that the commutative square of groups

Σ(T ∩ U) ��

��

Σ(U)

��
Σ(T ) �� Σ(T ∪ U)

is a pullback, because taking products and adding a disjoint basepoint preserve
pullbacks. But this is a direct consequence of the definition of Σ(T ) as those
permutations that stabilize the sets {1, . . . , i} for all i not in T .

Property (b) is a consequence of (a), compare [Gw, Rm. 1.17].

We denote by Hn the colimit of the ‘punctured cube’, i.e., the restriction
of Hn to the subposet consisting of all proper subsets of {1, . . . , n − 1} (i.e.,
strictly smaller than the whole set {1, . . . , n − 1}, the empty subset is allowed
here). For example, for n = 3 the colimit H3 is the pushout of the diagram

H3({1}) H3(∅)�� �� H3({2})

D2M ∧ M M ∧ M ∧ M
μ1,1∧Id

��
Id∧μ1,1

�� M ∧ D2M .

For n = 4, the colimit H4 is the colimit of the diagram

M ∧ M ∧ M ∧ M
Id∧ Id∧μ1,1 ��

Id∧μ1,1∧Id �����������������

μ1,1∧Id∧ Id

��

M ∧ M ∧ D2M
Id∧μ1,2

��������������

μ1,1∧Id

��

M ∧ D2M ∧ M
Id∧μ2,1

��

μ1,2∧Id

��

M ∧ D3M

D2M ∧ M ∧ M

μ2,1∧Id ����������������
Id∧μ1,1 �� D2M ∧ D2M

D3M ∧ M

Part (ii) of the previous lemma says that Hn is a cofibration cube in the
sense of [Gw, Def. 1.13]. As a consequence (see [Gw, Prop. 1.16]), the natural
map from the homotopy colimit of the punctured cube to the (categorical)
colimit Hn is a weak equivalence. Thus all colimits that occur in the following
are actually homotopy colimits. The following lemma indicates that the colimit
Hn of the punctured cube is weakly equivalent to the mapping cone of a map
from a mod-p Moore space with bottom cell in dimension 4n − 4 to a mod-p
Moore space with bottom cell in dimension 2n.
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Lemma 1.8.For 2≤ n≤ p, we consider the map γn : S2 ∧ Dn−1M −→Hn

defined as the composite

S2 ∧ Dn−1M
ι∧ Id−−−−→ M ∧ Dn−1M = Hn

(
{2, . . . , n − 1}

)
−→ Hn .(1.9)

Then γn is injective and its cofiber is weakly equivalent to a mod-p Moore space
with bottom cell in dimension 4n − 3.

Proof. For n = 2 we have γ2 = ι ∧ Id : S2 ∧ M −→ M ∧ M with cofiber
S3 ∧ M , which is indeed a Moore space with bottom cell in dimension 5. So
we assume n ≥ 3 and continue by induction.

We denote by κ : Hn−1 −→ Dn−1M = Hn−1({1, . . . , n− 2}) the canonical
map from the punctured colimit to the terminal vertex of the previous cube
Hn−1. The map κ is injective by Lemma 1.7 (b), and the map γn−1 : S2 ∧
Dn−2M −→ Hn−1 is a section up to homotopy to κ (the composite κ ◦ γn−1

is a weak equivalence by Lemma 1.4). So the cofiber of κ is weakly equivalent
to the suspension of the cofiber of γn−1, and thus, by induction, to a mod-p
Moore space with bottom cell in dimension 4n − 6.

We let ∂0Hn and ∂1Hn denote the ‘front’ and ‘back’ face of the cube
Hn with respect to the first coordinate. So ∂0Hn and ∂1Hn are the (n − 2)-
dimensional cubes indexed by subsets of {2, . . . , n − 1} given by

(∂0Hn)(T ) = Hn(T ) and (∂1Hn)(T ) = Hn({1} ∪ T )

for T ⊆ {2, . . . , n−1}. We view the (n−1)-cube Hn as a morphism ∂0Hn −→
∂1Hn of (n − 2)-cubes. We denote by H+

n−1 the previous cube Hn−1, but
indexed by subsets of {2, . . . , n − 1} instead of subsets of {1, . . . , n − 2}, via
the bijection s : {2, . . . , n − 1} −→ {1, . . . , n − 2} that subtracts 1 from each
element. In other words, we have

H+
n−1(T ) = Hn−1(s(T ))

for T ⊆ {2, . . . , n − 1}. With this notation

(∂0Hn)(T ) = M ∧H+
n−1(T )

as cubes indexed by subsets of {2, . . . , n − 1}.
By Lemma 1.4, the composite map of (n − 2)-cubes

S2 ∧H+
n−1

ι∧Id−−−−→ M ∧H+
n−1 = ∂0Hn

Hn−−−→ ∂1Hn

is a weak equivalence at every T ⊆ {2, . . . , n − 1}. This implies that the in-
duced map on homotopy colimits of punctured cubes is a weak equivalence. By
Lemma 1.7 and the discussion thereafter, these homotopy colimits are weakly
equivalent to the corresponding categorical colimits. Thus the composite map

S2 ∧ Hn−1
ι∧Id−−−−→ M ∧ Hn−1

colimHn−−−−−−→ |∂1Hn|
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is a weak equivalence, where |∂1Hn| is the colimit of the punctured (n − 2)-
cube ∂1Hn, i.e., the restriction of ∂1Hn to the proper subsets of {2, . . . , n−1}.
Note that the cubes H+

n−1 and Hn−1 have the same punctured colimit, namely
Hn−1.

We consider the following commutative diagram

S2 ∧ Dn−1M

ι∧Id

��

S2 ∧ Hn−1
Id∧κ��

ι∧Id

��

� �� |∂1Hn|

M ∧ Dn−1M M ∧ Hn−1
Id∧κ

��
colimHn

�� |∂1Hn|.

Here κ : Hn−1 −→ Dn−1M is the canonical map considered above, whose
cofiber is a mod-p Moore space with bottom cell in dimension 4n − 6. The
pushout of the lower row is the punctured colimit Hn and the map γn : S2 ∧
Dn−1M −→ Hn factors through the pushout of the upper row. Since the upper
right horizontal map is a weak equivalence, the simplicial set S2∧Dn−1M maps
by a weak equivalence to the pushout of the upper row. So instead of γn we
may study the map between the pushouts of the two rows.

Since colimits commute with each other, the vertical cofiber of the map
between the horizontal pushouts is the pushout of the vertical cofibers, i.e.,
the pushout of the diagram

S3 ∧ Dn−1M S3 ∧ Hn−1
Id∧κ�� �� ∗ .

As a threefold suspension of the cofiber of κ, this is indeed a mod-p Moore
space with bottom cell in dimension 4n − 3.

2. Coherent actions of Moore spaces

In this section we define coherent actions of a mod-p Moore space on an
object in a model category, and we establish some elementary properties of this
concept. We also show that the Moore space acts on itself in a tautological
(p − 1)-coherent fashion, and we prove that the homotopy class α1 is the
obstruction to extending this action to a p-coherent action.

We first restrict our attention to the class of simplicial model categories,
where it makes sense to smash a pointed simplicial set, for example a Moore
space, with an object of the category; this avoids a certain amount of techni-
calities. We indicate in Appendix A how the arguments have to be modified
for general model categories without a simplicial structure.

As before, M denotes a certain finite pointed simplicial set of the homo-
topy type of a mod-p Moore space with bottom cell in dimension 2. A specific
model was defined in (1.3). We denote by ι : S2 = Δ[2]/∂Δ[2] −→ M the ‘bot-
tom cell inclusion’ from the small simplicial 2-sphere. The extended powers
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DnM and the canonical maps μi,j were defined in 1.1 respectively (1.2). For
1 ≤ n ≤ p− 1 the extended power DnM is a mod-p Moore space with bottom
cell in dimension 2n, see Lemma 1.4.

Definition 2.1. Let C be a pointed simplicial model category, p a prime
and 1 ≤ k ≤ p. A k-coherent M -module X consists of a sequence

X(1), X(2), . . . , X(k)

of cofibrant objects of C, together with morphisms in C
μi,j : DiM ∧ X(j) −→ X(i+j)

for 1 ≤ i, j and i + j ≤ k, subject to the following two conditions.

• (Unitality) The composite

S2 ∧ X(j−1)
ι∧Id−−−−→ M ∧ X(j−1)

μ1,j−1−−−−→ X(j)

is a weak equivalence for each 2 ≤ j ≤ k (where we identify M with
D1M).

• (Associativity) The square

DiM ∧ DjM ∧ X(l)

μi,j∧Id

��

Id∧μj,l �� DiM ∧ X(j+l)

μi,j+l

��
Di+jM ∧ X(l) μi+j,l

�� X(i+j+l)

commutes for all 1 ≤ i, j, l and i + j + l ≤ k.

The underlying object of a k-coherent M -module X is the object X(1) of C.
We say that an object Y of C admits a k-coherent M -action if there exists a
k-coherent M -module whose underlying C-object is weakly equivalent to Y .

A morphism f : X −→ Y of k-coherent M -modules consists of C-morphisms
f(j) : X(j) −→ Y(j) for j = 1, . . . , k, such that the diagrams

DiM ∧ X(j)

μi,j

��

Id∧f(j) �� DiM ∧ Y(j)

μi,j

��
X(i+j)

f(i+j)

�� Y(i+j)

commute for 1 ≤ i, j and i + j ≤ k.

Example 2.2. A 1-coherent M -module is just a cofibrant object with no
further structure. If

X = {X(1), X(2), μ1,1 : M ∧ X(1) −→ X(2)}
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is a 2-coherent M -module, then in the homotopy category of C the composite
map

κ : M ∧ X(1)
μ1,1−−→ X(2)

∼=←−− S2 ∧ X(1)

is a retraction to ι ∧ Id : S2 ∧ X(1) −→ M ∧ X(1). So if the model category is
stable, then the identity map of X(1) has order p in the group [X(1), X(1)]Ho(C).
The converse is also true, but we do not need to know this. If the prime p is
odd, then the 2-coherent M -action can be extended to a 3-coherent M -action
if and only if the action map κ is homotopy associative.

Remark 2.3. The notion of a k-coherent M -module has a very similar
flavor to Graeme Segal’s concept of a special Δ-space, which encodes a loop
space structure. A special Δ-space is a simplicial space X such that Xn is
weakly equivalent to the n-fold cartesian product of X1, in a specific way
using the structure maps. The ‘multiplication’ in a Δ-space does not directly
pair the underlying space X1 with itself, but arises as one of the structure maps
X2 −→ X1, when we keep in mind that X2 is weakly equivalent to X1 × X1.
To my knowledge, Segal did not publish anything about special Δ-spaces, but
they are discussed for example in [An, §5] and [Th, §1].

In a k-coherent M -module X, something similar is going on: an iter-
ated application of the unitality condition shows that the i-th object X(i) of a
k-coherent M -module X receives a weak equivalence from S2i−2 ∧X(1). So up
to these suspensions, all the objects X(i) that make up a coherent M -module
are weakly equivalent. Thus the target of the action morphism μ1,1 is not the
underlying object X(1), but something weakly equivalent to it (up to double
suspension and in a specific way). So at the price of keeping different, but
weakly equivalent (up to suspension), underlying objects around, we can get
away with strictly associative actions.

We expect that a k-coherent M -module with underlying space Y cor-
responds to an Ak-action, á la Stasheff [St], of the Moore space on Y . In
Stasheff’s approach there is one fixed underlying object with a multiplication
map which is only associative up to coherence homotopies parametrized by the
associahedra. The standard way to endow the mod-p Moore spectrum with
an Ap−1-multiplication is an (easy kind of) obstruction theory, using that the
boundaries of the associahedra are spheres and that the p-local stable stems
vanish in dimensions 1 through 2p − 4.

A convenient feature of our approach is that the Moore space is tau-
tologically a (p − 1)-coherent module over itself; the necessary data for the
(p − 1)-coherent action can simply and explicitly be written down using ex-
tended powers, as we spell out in the following example.

Example 2.4. The mod-p Moore space acts on itself in a (p− 1)-coherent
fashion, which we refer to as the tautological (p − 1)-coherent M -module. We
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define a (p − 1)-coherent M -module M by setting

M (j) = DjM

for 1 ≤ j ≤ p − 1; in particular, the underlying object M (1) is just the Moore
space M . The action maps

μi,j : DiM ∧ M (j) = DiM ∧ DjM −→ Di+jM = M (i+j)

are the canonical maps, in the sense of (1.2), between extended powers. The
unit condition holds by Lemma 1.4. A futile attempt to extend M to a p-
coherent M -module would be to define M (p) as the p-th extended power DpM .
Then the associativity property still holds, but the map S2∧Dp−1M −→ DpM

is not a weak equivalence.
Now suppose that Y is a cofibrant object of a pointed simplicial model

category C. Then we can define a tautological (p − 1)-coherent M -action on
M ∧ Y by smashing the tautological module M with Y . More precisely, we
define a (p − 1)-coherent M -module M ∧ Y in C by

M ∧ Y (j) = M (j) ∧ Y = DjM ∧ Y

for j = 1, . . . , p − 1, and similarly for the structure maps. The associativity
and unitality conditions are inherited from M .

For simplicity, we now restrict our attention to stable model categories,
although the following theorem works in general. A pointed model category is
stable if the suspension functor defined on its homotopy category is an equiva-
lence. As usual we denote by α1 : S2p −→ S3 a generator of the p-primary part
of the homotopy group π2pS

3; see for example [Ra, Cor. 1.2.4]. Here p = 2 is
allowed, and then α1 is the suspension of the Hopf map η : S3 −→ S2. The
next theorem says that the homotopy class α1 ‘is’ the obstruction to extending
the tautological (p − 1)-coherent M -module M ∧ Y to a p-coherent module.

Theorem 2.5. Let Y be a cofibrant object of a simplicial, stable model
category C and let p be a prime. If the map

α1 ∧ Id : S2p ∧ Y −→ S3 ∧ Y

is trivial in the homotopy category of C, then the tautological (p − 1)-coherent
M -action on M ∧ Y defined in Example 2.4 can be extended to a p-coherent
M -action.

Proof. We use the (p − 1)-dimensional cube Hp of simplicial sets which
was defined in (1.6), as well as Hp, the colimit of the ‘punctured cube’, i.e., the
restriction of Hp to the subposet of all proper subsets of {1, . . . , p − 1}. The
map γp : S2 ∧ Dp−1M −→ Hp is the composite

S2 ∧ Dp−1M
ι∧Id−−−−→ M ∧ Dp−1M = Hp

(
{2, . . . , p − 1}

)
−→ Hp .
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Claim. An extension of M ∧ Y to a p-coherent M -action determines,
and is determined by, a cofibrant object M ∧ Y (p) of C and a morphism

μ : Hp ∧ Y −→ M ∧ Y (p)

such that the composite μ◦ (γp∧ Id) : S2∧Dp−1M ∧Y −→ M ∧ Y (p) is a weak
equivalence.

We only need one direction of the claim, namely that from M ∧ Y (p) and
μ : Hp ∧ Y −→ M ∧ Y (p) as above we can build a p-coherent M -module
extending M ∧ Y : we simply define the additional action maps μi,p−i for i =
1, . . . , p − 1 as the composites

DiM ∧M ∧ Y (p−i) = Hp

(
{1, . . . , î, . . . , p−1}

)
∧Y −→ Hp∧Y

μ−−→ M ∧ Y (p)

using the canonical map from the value of Hp at {1, . . . , î, . . . , p − 1} to the
punctured colimit Hp. The associativity condition holds because these action
maps factor through the punctured colimit Hp. The unitality condition holds
since the composite

S2 ∧ Dp−1M ∧ Y = S2 ∧ M ∧ Y (p−1)
ι∧Id−−−−→ M ∧ M ∧ Y (p−1)

μ1,p−1−−−−→ M ∧ Y (p)

equals μ ◦ (γp ∧ Id), which is a weak equivalence by assumption.
Since γp is an injective map of simplicial sets, the map

γp ∧ Id : S2 ∧ Dp−1M ∧ Y −→ Hp ∧ Y(2.6)

is a cofibration between cofibrant objects in C. By the claim it thus suffices
to show that (2.6) admits a retraction in the homotopy category of C. By
Lemma 1.8, the cofiber of γp is a mod-p Moore space with bottom cell in
dimension 4p − 3. So stably, γp sits in a cofiber sequence

M4p−4
f−−→ M2p � S2 ∧ Dp−1M

γp−−→ Hp −→ M4p−3(2.7)

for some stable map f : M4p−4 −→ S2 ∧ Dp−1M ; here the notation Mn refers
to a mod-p Moore space with bottom cell in dimension n. The attaching map
f is actually nonzero since the mod-p cohomology of Hp supports a nontrivial
Steenrod operation P 1, but we do not need this.

The group [M4p−4, M2p]stable of stable homotopy classes of maps which
contain f is cyclic of order p generated by the composite

M4p−4
pinch−−−−→ S4p−3 Σ2p−3α1−−−−−−→ S2p incl.−−−→ M2p .

If α1 ∧ Id : S2p ∧ Y −→ S3 ∧ Y is trivial in the homotopy category of C, then
so is the map f ∧ Id : M4p−4 ∧ Y −→ S2 ∧ Dp−1M ∧ Y . Thus the cofiber
sequence (2.7) splits after smashing with Y , and so the map (2.6) admits a
retraction in Ho(C).
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The next lemma describes ways to make new coherent modules from old
ones. By the mapping cone of a morphism f : X −→ Y in a pointed simplicial
model category we mean the object

C(f) = Δ[1] ∧ X ∪1×X Y

where Δ[1] is pointed by the 0-vertex.

Lemma 2.8. Let C be a pointed simplicial model category.

(a) The mapping cone of any morphism of k-coherent M -modules has a nat-
ural structure of a k-coherent M -module.

(b) Let X be a k-coherent M -module for 2 ≤ k ≤ p, and let f : K −→ X(1)

be a morphism in C from a cofibrant object to the underlying object of X.
Denote by f̂ : M ∧K −→ X(2) the free extension of f , i.e., the composite

M ∧ K
Id∧f−−−→ M ∧ X(1)

μ1,1−−→ X(2) .

Then the mapping cone of the free extension f̂ admits a natural (k − 1)-
coherent M -action.

(c) For any k-coherent M -module X there exists a morphism of k-coherent
M -modules ϕ : X −→ X̄ such that each component ϕ(i) : X(i) −→ X̄(i) is
an acyclic cofibration and such that the underlying object X̄(1) is fibrant.

Proof. (a) Let f : X −→ Y be a morphism of k-coherent M -modules.
For 1 ≤ j ≤ k we set C(f)(j) = C(f(j)), i.e., the j-th object C(f)(j) is the
mapping cone of the map f(j) : X(j) −→ Y(j). The action map μi,j is obtained
by passage to mapping cones in the horizontal direction in the commutative
diagram

DiM ∧ X(j)
Id∧f(j) ��

μi,j

��

DiM ∧ Y(j)

μi,j

��
X(i+j)

f(i+j)

�� Y(i+j) .

Associativity is inherited from associativity of the actions on X and Y . Simi-
larly, the unitality condition follows from the unitality of X and Y .

(b) Let us denote by X•+1 the (k − 1)-coherent M -module obtained from
X by forgetting the underlying space and reindexing the remaining parts, i.e.,
(X•+1)(i) = X(i+1) for i = 1, . . . , k − 1, and similarly for the action maps. As
the bullet varies from 1 to k − 1, the action maps of X constitute a morphism
of (k − 1)-coherent M -modules

μ•,1 : M ∧ X(1) −→ X•+1 .
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Here M ∧ X(1) is the tautological coherent M -module of Example 2.4 (to
be consistent with the notation of Example 2.4, we should underline all of
M ∧ X(1), but that results in an awkward typesetting). The mapping cone of
any morphism of (k − 1)-coherent M -modules has a natural (k − 1)-coherent
M -action as in part (a). So we obtain the natural (k − 1)-coherent M -module
with underlying object C(f̂) as the mapping cone of the composite morphism

M ∧ K
Id∧f−−−→ M ∧ X(1)

μ•,1−−→ X(•+1) .

(c) We define the object X̄(1) by choosing a fibrant replacement of X(1),
i.e., an acyclic cofibration ϕ(1) : X(1) −→ X̄(1) with fibrant target. For 2≤ i≤ k

we define the object X̄(i) as the pushout

Di−1M ∧ X(1)
Id∧ϕ(1) ��

μi−1,1

��

Di−1M ∧ X̄(1)

μi−1,1

��
X(i) ϕ(i)

�� X̄(i) .

As a cobase change of an acyclic cofibration, the morphism ϕ(i) is an acyclic
cofibration. The structure maps μi,j : DiM ∧ X̄(j) −→ X̄(i+j) are induced on
pushouts by the commutative diagram

DiM ∧ X(j)

μi,j

��

DiM ∧ Dj−1M ∧ X(1)
Id∧ Id∧ϕ(1) ��Id∧μj−1,1��

μi,j−1∧Id

��

DiM ∧ Dj−1M ∧ X̄(1)

μi,j−1∧Id

��
X(i+j) Di+j−1M ∧ X(1)

Id∧ϕ(1)

��
μi−j−1,1

�� Di+j−1M ∧ X̄(1)

The associativity and unitality conditions follow.

3. Why α1 acts nontrivially

The following Theorem 3.1 is the main technical result of this paper, and
this entire section is devoted to its proof. In Section 4 we will prove the rigidity
theorem by feeding Theorem 3.1 into the reduction arguments of [Sch]. Here
we formulate and prove Theorem 3.1 for simplicial stable model categories only,
but the result is true for all stable model categories. We explain in Appendix A
how to modify the arguments for general model categories without a simplicial
structure; the general form of Theorem 3.1 appears as Theorem A.1.

A pointed model category is stable if the suspension functor defined on its
homotopy category is an equivalence. The homotopy category of a stable model
category is naturally triangulated with suspension and cofibration sequences
defining the shift operator and the distinguished triangles, compare [Ho, Prop.
7.1.6]. For any integer n, we denote the n-dimensional sphere spectrum by Sn.
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Theorem 3.1. Let C be a simplicial stable model category and let

Φ : Ho(Spectra) −→ Ho(C)

be an exact functor of triangulated categories that is fully faithful. Then for
each odd prime p, the map

α1 ∧ Id : S2p ∧ Φ(S0) −→ S3 ∧ Φ(S0)

is nontrivial in Ho(C), where α1 generates the p-primary part of the homotopy
group π2pS

3.

A key point in Theorem 3.1 is that the functor Φ need not be compatible
with smash products in any sense. Since Φ is faithful, the morphism Φ(α1∧Id) :
Φ(S2p) −→ Φ(S3) is nontrivial, but that gives no a priori information about
α1 ∧ IdΦ(S0).

The following proposition enters into the proof of Theorem 3.1. We con-
tinue to denote by M the mod-p Moore space with bottom cell in dimension 2
(or more precisely a specific finite pointed simplicial set defined in (1.3)). The
inclusion ι : S2 −→ M induces a morphism in the stable homotopy category
ι ∧ Sn−2 : Sn = S2 ∧ Sn−2 −→ M ∧ Sn−2; by a slight abuse of notation, we
denote this morphism by ι as well.

Proposition 3.2. Let C be a simplicial stable model category and let

Φ : Ho(Spectra) −→ Ho(C)

be an exact functor of triangulated categories that is fully faithful. Let

a : Sn −→ E

be a morphism in the stable homotopy category and suppose that the j-fold
suspension in Ho(C) of the object Φ(E) admits a k-coherent M -action with
k ≥ 2.

Then there exists an extension

ā : M ∧ Sn−2 −→ E

of a to the mod-p Moore spectrum such that the (2 + j)-fold suspension in
Ho(C) of the object Φ(C(ā)) admits a (k − 1)-coherent M -action, where C(ā)
is any mapping cone of ā.

Proof. By assumption there exists a k-coherent M -module X in C and
an isomorphism X(1)

∼= Sj ∧ Φ(E) in the homotopy category of C, where X(1)

is the underlying object of the coherent M -module X. By Lemma 2.8 (c) we
can assume that X(1) is fibrant.

Let K be a cofibrant object of C which is isomorphic in the homotopy
category to Sj ∧ Φ(Sn). Since K is cofibrant and X(1) is fibrant, there is a
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morphism f : K −→ X(1) in the model category C such that the diagram

Sj ∧ Φ(Sn)
Sj∧Φ(a) ��

∼=
��

Sj ∧ Φ(E)

∼=
��

K
f

�� X(1)

(3.3)

commutes in Ho(C). We consider the free extension, in the sense of Lemma
2.8 (b), of f . This free extension is a morphism f̂ : M ∧ K −→ X(2) in C, and
part of a commutative square

S2 ∧ K
S2∧f ��

ι∧K

��

S2 ∧ X(1)

� μ1,1◦(ι∧X(1))

��
M ∧ K

f̂

�� X(2) .

(3.4)

We consider the following diagram in Ho(C),

S2+j ∧ Φ(Sn)
S2+j∧Φ(ι)

��

∼=

��

S2+j∧Φ(a)

��
S2+j ∧ Φ(M ∧ Sn−2)

��

S2+j∧Φ(ā)
�� S2+j ∧ Φ(E)

∼=��
S2 ∧ X(1)

∼=��
S2 ∧ K ι∧K

�� M ∧ K
f̂

�� X(2),

(3.5)

in which the two dotted arrows have not yet been defined; the vertical maps
decorated with isomorphism symbols are obtained from (3.3) by double sus-
pension and from (3.4). The big outer diagram involving S2+j ∧ Φ(a) com-
mutes since the squares (3.3) and (3.4) do. There exists an isomorphism
S2+j∧Φ(M∧Sn−2) −→ M∧K which makes the left square commute since both
S2+j ∧Φ(M ∧Sn−2) and M ∧K are cones of the degree p map of S2+j ∧Φ(Sn).
(More formally, we consider the diagram in Ho(C)

S2+j ∧ Φ(Sn)

∼=
��

S2+j∧Φ(·p) �� S2+j ∧ Φ(Sn)

∼=
��

S2+j∧Φ(ι) �� S2+j ∧ Φ(M ∧ Sn−2)

��
S2 ∧ K

(·p)∧K
�� S2 ∧ K ι∧K

�� M ∧ K

both rows of which are part of distinguished triangles. Since the left hand
square commutes, the axioms of a triangulated category allow us to choose a
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morphism in Ho(C) from S2+j ∧Φ(M ∧Sn−2) to M ∧K making the right hand
square commute, and this map is necessarily an isomorphism.)

Since Φ is full, there is a morphism ā : M ∧ Sn−2 −→ E in the stable ho-
motopy category such that S2+j∧Φ(ā) makes the right square in diagram (3.5)
commute. Since vertical maps in (3.5) are isomorphisms, the two morphisms
ā ◦ ι, a : Sn −→ E have the same image under Φ. Since Φ is faithful, the
morphism ā is thus an extension of a : Sn −→ E.

Let C(ā) be any mapping cone of ā. Since Φ is an exact functor and
the (2 + j)-fold suspension of Φ(ā) is isomorphic to the free extension f̂ :
M ∧ K −→ X(2), the object S2+j ∧ Φ(C(ā)) is isomorphic in Ho(C) to the
mapping cone of f̂ . Since X is a k-coherent M -module, that mapping cone
admits a (k − 1)-coherent M -action by Lemma 2.8 (b).

Proof of Theorem 3.1. We argue by contradiction and suppose that there
is an odd prime p for which α1∧IdΦ(S0) is trivial. As usual we write q = 2p−2.
We construct spectra Ei for i = 0, . . . , p − 1 with the following properties:

(a) the spectrum Ei has exactly one stable cell in dimensions jpq and jpq+1
for j = 0, . . . , i, and no others;

(b) in the mod-p cohomology of Ei, the Steenrod operation P ip is nontrivial
from dimension 0 to dimension ipq;

(c) the (2i+2)-fold suspension in Ho(C) of the object Φ(Ei) admits a (p− i)-
coherent M -action;

(d) there is a morphism in the stable homotopy category

ai : S(i+1)pq−1 −→ Ei

which is detected by the Steenrod operation P p.

Property (d) means that in the mod-p cohomology of the mapping cone of
ai, the Steenrod operation P p is nontrivial from dimension ipq to dimension
(i + 1)pq.

We start with E0 = M∧S−2, a mod-p Moore spectrum with bottom cell in
dimension 0. Then properties (a) and (b) hold. Since α1 acts trivially on Φ(S0)
by assumption, Theorem 2.5 provides a p-coherent M -action on M ∧ Φ(S0).
Since M ∧ Φ(S0) is isomorphic to S2 ∧ Φ(M ∧ S−2) = S2 ∧ Φ(E0) in Ho(C),
this gives property (c).

We choose any morphism a0 : Spq−1 −→ E0 which is detected by the
operation P p, for example the one constructed on page 60 of [To3, §5] (Toda
denotes this morphism by β̃1 since the composite with the pinch map E0 −→ S1

is a unit multiple of the class β1 which generates the p-component of the stable
stem of dimension pq − 2).
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The construction of Ei for 1 ≤ i ≤ p−1 is by induction on i. We extend the
morphism ai−1 : Sipq−1 −→ Ei−1 of the previous inductive step to a morphism
āi−1 : M ∧ Sipq−3 −→ Ei−1 as in Proposition 3.2, and we let Ei be a mapping
cone of the extension āi−1. Then property (a) for Ei follows from property (a)
for Ei−1.

Since the attaching map āi−1 : M∧Sipq−3 −→ Ei−1 restricts to ai−1 on the
bottom cell of the Moore spectrum, property (b) for Ei−1 and property (d) for
ai−1 show that the composite operation P pP (i−1)p in the mod-p cohomology
of Ei is nontrivial from dimension 0 to dimension ipq. The Adem relation

P pP (i−1)p = i · P ip + P ip−1P 1(3.6)

holds for all positive i; since the operation P 1 acts trivially on the mod-p co-
homology of Ei for dimensional reasons and since i < p, the operation P ip

is nontrivial on the bottom dimensional class of Ei, which means that prop-
erty (b) holds. Property (c) is part of Proposition 3.2.

It remains to justify property (d) by constructing the map ai : S(i+1)pq−1

−→ Ei. The quotient of Ei by the subspectrum Ei−1 is a Moore spectrum
with bottom cell in dimension ipq. So we can start with the map

Sipq ∧ a0 : S(i+1)pq−1 −→ Sipq ∧ E0 � Ei/Ei−1 ,

where a0 was constructed in step (d) for i = 0. Since a0 is detected by P p,
any lift in the stable homotopy category of Sipq ∧ a0 to Ei qualifies as the
morphism ai. The obstruction to lifting Sipq ∧ a0 to Ei is the composite in the
stable homotopy category

S(i+1)pq−1
Sipq∧a0 �� Ei/Ei−1

�� S1 ∧ Ei−1 ,

where the second map is the boundary morphism. Since S1 ∧ Ei−1 has stable
cells in dimensions jpq + 1 and jpq + 2 for j = 0, . . . , i− 1, the obstructions lie
in the p-local stable stems of dimension jpq−3 and jpq−2 for j = 2, . . . , i+1;
at this point we need some serious calculational input from stable homotopy
theory.

Fact. For j = 2, . . . , p, the p-components of the stable stems of dimension
jpq − 3 and jpq − 2 are trivial.

To prove this fact we can appeal to the Adams-Novikov spectral sequence
based on BP -homology. In [Ra, Thm. 4.4.20], Ravenel describes the E2-term
of this spectral sequence

Es,t
2 = Exts,t

BP∗BP -comod(BP∗, BP∗) =⇒ Z(p) ⊗ πstable
t−s

in the range of dimensions t− s ≤ (p2 +p)q, which is more than what we need.
The only nontrivial classes with topological dimension of the form

t − s = jpq − 3 or t − s = jpq − 2 for j = 2, . . . , p
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are the scalar multiples of

α1β
p
1 ∈ E

2p+1,(p2+1)q
2 and βp/p ∈ E2,p2q

2 .

As a consequence of Toda’s relation α1β
p
1 = 0 for the corresponding homo-

topy classes (see [To1], [To2]), the class βp/p must annihilate α1β
p
1 by a d2p−1-

differential (compare [Ra, 4.4.22]). Thus there are no nontrivial infinite cycles
in the dimensions we care about, and so there is no obstruction to lifting
Sipq ∧ a0 to a morphism ai : S(i+1)pq−1 −→ Ei. Such a lift is not at all unique,
but any lift is automatically detected by P p. This finishes the inductive con-
struction of the spectra Ei and the morphisms ai : S(i+1)pq−1 −→ Ei.

To finish the proof of Theorem 3.1 by contradiction, we consider the map-
ping cone C(ap−1) of the last morphism ap−1 : Sp2q−1 −→ Ep−1. By properties
(b) and (d), the composite Steenrod operation

P pP (p−1)p : H0(C(ap−1); Fp) −→ Hp2q(C(ap−1); Fp)

is nontrivial. On the other hand, for i = p the Adem relation (3.6) becomes
P pP (p−1)p = P p2−1P 1. Since the operation P 1 is trivial in the cohomology of
C(ap−1) for dimensional reasons, we arrive at a contradiction, which means
that α1 ∧ IdΦ(S0) is nontrivial. �

4. Proof of the rigidity theorem

In this final section we put all the pieces together to prove the rigidity
theorem. We start with a criterion for when an endofunctor of the stable
homotopy category is a self-equivalence. We continue to write Sn for the
n-dimensional sphere spectrum and we let α1 : S2p−3 −→ S0 generate the
p-primary part of the stable stem of dimension 2p − 3, where p is an odd
prime; this is the stable homotopy class represented by the unstable map
α1 : S2p −→ S3 with the same name which shows up in Theorem 3.1.

Proposition 4.1. Let F be an exact endofunctor of the stable homotopy
category of spectra that preserves infinite sums and takes the sphere spectrum
S0 to itself, up to isomorphism. If for every odd prime p the morphism F (α1) :
F (S2p−3) −→ F (S0) is nontrivial, then F is a self-equivalence.

Proof. This proposition is essentially contained in [Sch], but there it
is only stated locally at each prime separately. Since F is an exact functor
that commutes with infinite coproducts, it also commutes with p-localization
for every prime p; in other words, F takes p-local spectra to p-local spectra
and for any spectrum Y , the map F (Y ) −→ F (Y(p)) extends uniquely to an
isomorphism

F (Y )(p) −→ F (Y(p)) .
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In order to show that F is an equivalence of categories, we may show separately
for each prime p that the restriction of F to the category of p-local spectra

F : Ho(Spectra(p)) −→ Ho(Spectra(p))

is an equivalence. The functor F takes the p-local sphere to itself up to isomor-
phism, and thus it preserves the subcategory of finite p-local spectra (which
coincide with the compact objects in Ho(Spectra(p))). It suffices to show that F

restricts to a self-equivalence of the category of finite p-local spectra (compare
e.g. [Sch, Lemma 3.3]).

Proposition 3.1 of [Sch] reduces the problem further to showing that for
p = 2, the Hopf maps η, ν and σ are in the image of F and for p odd, the
class α1 is in the image of F . Very roughly, this reduction makes precise the
slogan that the homotopy groups of spheres are generated under higher order
Toda brackets by the Hopf maps and the classes α1 at odd primes. The precise
argument, however, avoids explicit mentioning of Toda brackets, and is given
in Section 4 of [Sch].

For an odd prime p, we assumed that F (α1) : F (S2p−3) −→ F (S0) is
nontrivial; since F (S0) is isomorphic to S0, the map

F : [S2p−3,S0] −→ [F (S2p−3), F (S0)]

is an isomorphism on p-primary components, since these are cyclic of order p

on both sides. Thus α1 is in the image of F .
For p = 2, Proposition 3.2 of [Sch] says that the Hopf maps are automati-

cally in the image of F . The key steps here are, again very roughly, as follows.
Since F is exact and takes the sphere spectrum to itself, it also takes the mod-2
Moore spectrum to itself. Thus F cannot annihilate the degree 2 map on the
mod-2 Moore spectrum. Since this degree 2 map factors over the Hopf map η,
the functor F cannot annihilate η either, and must thus take η to itself. Using
the relations 4ν = η3 and 8σ ∈ 〈ν, 8ι, ν〉 one deduces from this that the Hopf
maps ν and σ are also in the image of F . For the details of these arguments
we refer to Section 5 of [Sch].

Proof of the rigidity theorem. We use the same kind of argument as in the
2-local situation considered in [Sch]; the key new ingredient is Theorem 3.1
(or rather Theorem A.1, the generalization to not necessarily simplicial model
categories), which provides a handle on the element α1 at odd primes.

The hypothesis of the rigidity theorem is that C is a stable model category
and there exists an equivalence of triangulated categories

Φ : Ho(Spectra) −→ Ho(C)

from the stable homotopy category of spectra to the homotopy category of C.
We choose a cofibrant and fibrant object X of C that is isomorphic to Φ(S0) in
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the homotopy category of C. By the universal property of the model category
of spectra [SS, Thm 5.1], there is a left Quillen functor

− ∧ X : Spectra −→ C ,

which takes the sphere spectrum S0 to X. We will show that the left derived
functor

− ∧L X : Ho(Spectra) −→ Ho(C)

is an equivalence of categories. Then − ∧ X and its right adjoint are in fact
a Quillen equivalence. We warn the reader that our arguments do not show
that the derived functor − ∧L X is naturally isomorphic to Φ. So we do not
answer the question whether the stable homotopy category admits exotic self-
equivalences (other than shifts in either direction).

Since Φ is an equivalence, it suffices to show that the composite functor

F = Φ−1 ◦ (− ∧L X) : Ho(Spectra) −→ Ho(Spectra)

is an equivalence. Theorem 3.1 or Theorem A.1 shows that for each odd prime
p, the map α1 acts nontrivially on Φ(S0) ∼= X. Thus F (α1) = Φ−1(α1 ∧L X)
is also nontrivial and F is an equivalence of categories, by Proposition 4.1.

To be completely honest here we note that the expression ‘α1 ∧ X’ has
two different meanings. In Theorem 3.1 it refers to the action of the map of
simplicial sets α1 : S2p −→ S3 on the object X. But we are interested in the
value of the left Quillen functor − ∧ X : Spectra −→ C on the morphism of
spectra α1 : S2p−3 −→ S0. Since the 3-fold suspension of α1 : S2p−3 −→ S0 is
the effect of α1 : S2p −→ S3 on suspension spectra, these two uses of ‘α1 ∧ X’
are consistent. This finishes the proof of the rigidity theorem.

Essentially the same proof as above proves the following somewhat stronger
form of the rigidity theorem. For the R-local model structure on spectra, see
Section 4 of [SS].

Theorem 4.2. Let C be a stable model category whose homotopy category
is compactly generated, and let R be a subring of the ring of rational numbers.
Suppose that the full subcategory of compact objects in Ho(C) is equivalent, as a
triangulated category, to the homotopy category of finite R-local spectra. Then
there exists a Quillen equivalence between C and the R-local model category of
spectra whose left adjoint ends in C.

Besides the local form, the point of the stronger version is that already
the subcategory of finite spectra determines the model category structure up
to Quillen equivalence. In particular there is only one way to ‘complete’ the
homotopy category of finite spectra to a triangulated category with infinite
coproducts — as long as some underlying model structure exists. This gives
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a partial answer to Margolis’ Uniqueness Conjecture [Ma, Ch. 2, §1] for the
stable homotopy category.

Appendix A. Modifications in the absence of a simplicial structure

In the body of the paper, we defined coherent actions of a Moore space
only for model categories that possess a compatible simplicial structure. In
this appendix we develop coherent M -actions for general model categories,
not necessarily simplicial, and we explain how the assumption of a simplicial
structure can be dropped from the lemmas and propositions leading up to the
rigidity theorem. The upshot is the following generalization of Theorem 3.1.
The only difference between Theorems 3.1 and A.1 is that the hypothesis on
C of being simplicial has been removed.

Theorem A.1. Let C be a stable model category and let

Φ : Ho(Spectra) −→ Ho(C)

be an exact functor of triangulated categories that is fully faithful. Then for
each odd prime p, the map

α1 ∧ Id : S2p ∧ Φ(S0) −→ S3 ∧ Φ(S0)

is nontrivial in Ho(C), where α1 generates the p-primary part of the homotopy
group π2pS

3.

To compensate for the lack of a simplicial structure, we work with cosim-
plicial frames. The theory of ‘framings’ of model categories goes back to Dwyer
and Kan, who used the terminology (co-)simplicial resolutions [DK, 4.3]. We
first try to motivate the definition of a cosimplicial frame: given a simplicial
structure on a model category C, any object X can be thickened up to a cosim-
plicial object by taking Δ[n]×X as the object of n-cosimplices, where Δ[n] is
the simplicial n-simplex and the product symbol refers to the given simplicial
structure. If X is cofibrant, then this cosimplicial object, denoted by Δ[•]×X,
has two special properties:

(i) For every morphism α : [n] −→ [m] in the simplicial category Δ, the
cosimplicial operator α∗ : Δ[n]×X −→ Δ[m]×X is a weak equivalence
in C.

(ii) For all m ≥ 0 the natural map

Lm(Δ[•] × X) −→ Δ[m] × X

is a cofibration. Here Lm denotes the m-th latching object of a cosimpli-
cial object, which we define below. The latching object can informally be
described as the colimit of ‘everything coming from below dimension m’.
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In short, a cosimplicial frame is any cosimplicial object which behaves homo-
topically like Δ[•] × X in the sense that it has properties (i) and (ii) above.

After this motivation, we now discuss cosimplicial frames more formally.
In what follows, C is a pointed model category and we denote by cC the category
of cosimplicial objects in C. In this pointed situation, products have to be
replaced by smash products throughout. The balanced smash product (also
known as the coend) K ∧Δ A, of a pointed simplicial set K and a cosimplicial
object A, is defined by

K ∧Δ A =
∫ n∈Δ

Kn ∧ An

(A.2)

= coequalizer
( ∐

α:[n]−→[m] Km ∧ An α∗∧Id ��
Id∧α∗

��
∐

n≥0 Kn ∧ An
)

.

Here Kn ∧ An denotes the coproduct of copies of An indexed by the set
Kn, modulo the copy indexed by the basepoint of Kn. Then Δ[m]+ ∧Δ A

is naturally isomorphic to the object of m-cosimplices of A. The object
LmA = ∂Δ[m]+ ∧Δ A is called the m-th latching object of A. The inclusion
∂Δ[m] −→ Δ[m] induces a natural map LmA −→ Am.

Cosimplicial objects in any pointed model category admit the Reedy model
structure in which the weak equivalences are the cosimplicial maps that are
levelwise weak equivalences. A cosimplicial map A −→ B is a Reedy cofibration
if for all m ≥ 0 the natural map

Am ∪LmA LmB −→ Bm

is a cofibration in C. The Reedy fibrations are defined by the right lifting
property for Reedy acyclic cofibrations or equivalently with the use of matching
objects; see [Ho, 5.2.5] for more details. A cosimplicial frame (compare [Ho,
5.2.7]) is a cosimplicial object which is homotopically constant in the sense that
each cosimplicial structure map is a weak equivalence in C (compare property
(i) above) and Reedy cofibrant (compare property (ii)).

Note that the construction of K ∧Δ A does not need a simplicial structure
on C and can be formed as soon as colimits exist in C. If, however, the category
C comes with a simplicial structure, then for every pointed simplicial set K,
the object K ∧ X given by the simplicial structure can be recovered from K

and the special cosimplicial object Δ[•]+ ∧ X as

K ∧ X ∼= K ∧Δ (Δ[•]+ ∧ X) .

Thus the m-th latching object of Δ[•]+ ∧ X is naturally isomorphic to
∂Δ[m]+ ∧ X. In the absence of a simplicial structure, a choice of cosimpli-
cial frame X• for an object X (i.e., with X0 weakly equivalent to X) takes the
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role of Δ[•]+ ∧ X. The smash product K ∧Δ X• then has all the relevant ho-
motopical properties that the smash product K∧X has in a pointed simplicial
model category (but K ∧Δ X• is not functorial in X).

The construction (K, A) �→ K ∧Δ A which pairs a simplicial set and a
cosimplicial object to an object in C can be extended to an action of pointed
simplicial sets on the category cC of cosimplicial objects in C. We define a new
cosimplicial object K ∧ A by

(K ∧ A)n = (K ∧ Δ[n]+) ∧Δ A .

Then we have a natural isomorphism (K∧A)0 ∼= K∧ΔA. If A is a cosimplicial
frame and K a pointed simplicial set, then the cosimplicial object K ∧ A is
also a frame.

With the theory of cosimplicial frames at hand, we can now generalize the
arguments in the body of this paper from simplicial to general model categories.
The guiding principle is that cofibrant objects are replaced by cosimplicial
frames, and fibrant objects are replaced by Reedy fibrant cosimplicial frames.
For example, Definition 2.1 of a k-coherent M -module has to be modified as
follows.

Definition A.3. Let C be a pointed model category, p a prime and
1 ≤ k ≤ p. A k-coherent M -module consists of a sequence

X = X(1), X(2), . . . , X(k)

of cosimplicial frames in C together with morphisms in cC

μi,j : DiM ∧ X(j) −→ X(i+j)

for 1 ≤ i, j and i + j ≤ k. The unitality condition now requires that the
composite

S2 ∧ X(j−1)
ι∧Id−−−−→ M ∧ X(j−1)

μ1,j−1−−−−→ X(j)

is a level equivalence of cosimplicial objects for all 2 ≤ j ≤ k. The associa-
tivity condition takes precisely the same form as in Definition 2.1, just that
in the commuting square all the terms are now cosimplicial objects in C. The
underlying object of a k-coherent M -module X is the object X0

(1) of C, i.e.,
the 0-cosimplices of X(1). We say that an object Y of C admits a k-coherent
M -action if there exists a k-coherent M -module whose underlying C-object is
weakly equivalent to Y .

A morphism f : X −→ Y of k-coherent M -modules consists of morphisms
f(j) : X(j) −→ Y(j) of cosimplicial objects for j = 1, . . . , k, such that the
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diagrams

DiM ∧ X(j)

μi,j

��

Id∧f(j) �� DiM ∧ Y(j)

μi,j

��
X(i+j)

f(i+j)

�� Y(i+j)

commute for 1 ≤ i, j and i + j ≤ k.

If C is a pointed simplicial model category, then every k-coherent M -
module in the sense of the earlier Definition 2.1 gives rise to a coherent M -
module in the sense of Definition A.3, simply because the simplicial structure
produces canonical frames: for a cofibrant object X, the cosimplicial object
Δ[•]+ ∧ X is a cosimplicial frame.

For any cosimplicial frame Y in C, the tautological (p − 1)-coherent M -
module M in the category of simplicial sets can be smashed termwise with
Y to give a (p − 1)-coherent M -module M ∧ Y ; compare Example 2.4. The
underlying object M ∧ Y 0

(1) = M ∧Δ Y is a model for the smash product in
Ho(C) of the Moore space M with the object Y 0. The analog of Theorem 2.5
looks as follows.

Theorem A.4. Let Y 0 be a cofibrant object of a stable model category C
such that the map

α1 ∧ Id : S2p ∧ Y 0 −→ S3 ∧ Y 0

is trivial in the homotopy category of C. Then for every cosimplicial frame Y

which has Y 0 as its 0-cosimplices, the tautological (p − 1)-coherent M -module
M ∧ Y can be extended to a p-coherent M -module.

Morphisms between cosimplicial objects have mapping cones, so that the
statement of part (a) of Lemma 2.8 does not change in the present more general
context. The same arguments as in the proof of Lemma 2.8 also prove the
following modified version.

Lemma A.5. Let C be a pointed model category.

(a) The mapping cone of any morphism of k-coherent M -modules has a nat-
ural structure of a k-coherent M -module.

(b) Let X be a k-coherent M -module for 2 ≤ k ≤ p, and let f : K −→ X(1) be
a morphism of cosimplicial objects in C with source a cosimplicial frame.
Denote by f̂ : M ∧K −→ X(2) the free extension of f , i.e., the composite

M ∧ K
Id∧f−−−→ M ∧ X(1)

μ1,1−−→ X(2) .
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Then the mapping cone of the free extension f̂ admits a natural (k − 1)-
coherent M -action.

(c) For any k-coherent M -module X there exists a morphism of k-coherent
M -modules ϕ : X −→ X̄ such that each component ϕ(i) : X(i) −→ X̄(i)

is a Reedy acyclic cofibration and such that the cosimplicial object X̄(1)

is Reedy fibrant.

With these modified definitions of coherent M -actions in place, the proof
of Theorem A.1 is essentially the same as the proof of Theorem 3.1. First,
one checks that Proposition 3.2 holds for general stable model categories, i.e.,
without the assumption that C is simplicial. In the proof, cofibrant objects are
systematically replaced by cosimplicial frames, and fibrant objects by Reedy
fibrant cosimplicial frames. The proof of Theorem A.1 is then literally the
same as for Theorem 3.1.
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