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On the homotopy groups of symmetric spectra

STEFAN SCHWEDE

We construct a natural, tame action of the monoid of injective self-maps of the
set of natural numbers on the homotopy groups of a symmetric spectrum. This
extra algebraic structure allows a conceptual and uniform understanding of various
phenomena related to ��–isomorphisms, semistability and the relationship between
naive and true homotopy groups for symmetric spectra.

55P42; 55U35

Symmetric spectra are an easy-to-define and convenient model for the stable homotopy
category with a nice smash product. Symmetric ring spectra first showed up under
the name “FSP on spheres” in the context of algebraic K–theory and topological
Hochschild homology. Around 1993, Jeff Smith made the crucial observation that the
“FSPs on spheres” are the monoids in a category of “symmetric spectra” with respect
to an associative and commutative smash product, and he suspected compatible model
category structures so that one obtains as homotopy categories “the” stable homotopy
category (for symmetric spectra), the homotopy category of A1 ring spectra (for
symmetric ring spectra), respectively the homotopy category of E1 ring spectra (for
commutative symmetric ring spectra). The details of various model structures were
worked out by Hovey, Shipley and Smith in [3].

Maybe the only tricky point with symmetric spectra is that the stable equivalences
can not be defined by looking at stable homotopy groups (defined as the classical
sequential colimit of the unstable homotopy groups of the terms in a symmetric
spectrum). Formally inverting the ��–isomorphisms, ie, those morphisms which
induce isomorphisms of stable homotopy groups, leaves too many homotopy types.
Instead, Hovey, Shipley and Smith introduce a strictly larger class of stable equivalences,
defined as the morphisms which induce isomorphisms on all cohomology theories.
The difference between ��–isomorphisms and stable equivalences has previously
confused at least the present author. The precise relationship between the naively
defined homotopy groups and the “true” homotopy groups (morphisms from sphere
in the stable homotopy category) has largely been mysterious (although Shipley’s
detection functor [7, Section 3] sheds considerable light on this).

In this paper we advertise and systematically exploit extra algebraic structure on the
(classical) homotopy groups of a symmetric spectrum which, in the authors opinion,
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clarifies several otherwise ad hoc observations and illuminates various mysterious
points in the theory of symmetric spectra. This extra structure is an action of the
monoid M of injective self-maps of the set of natural numbers. The M –modules that
come up, however, have a special property which we call tameness; see Definition
1.4. Tameness has strong algebraic consequences and severely restricts the kinds of
M –modules which can arise as homotopy groups of symmetric spectra.

Here is a first example of the use of the M –action. An important class of symmet-
ric spectra is formed by the semistable symmetric spectra. Within this class, stable
equivalences coincide with ��–isomorphisms, so it is very useful to recognize a given
symmetric spectrum as semistable. In Theorem 4.1, we characterize the semistable
symmetric spectra as those for which the M –action on homotopy groups is trivial.
Other examples for the use of the M –action are the following:

� The group �0.FnSn/ is not just an infinitely generated free abelian group,
but a very prominent tame M –module Pn ; these M –modules are pairwise
nonisomorphic for different n (Example 3.4).

� Certain monomorphisms on homotopy groups which appear in the discussion of
semistable symmetric spectra are given by the action of the special element d

of M defined by d.i/D i C 1 (Example 1.6).

� A tame M –module which is finitely generated as an abelian group necessarily
has trivial M –action (Lemma 2.3 (iv)); this implies that symmetric spectra whose
homotopy groups are dimensionwise finitely generated are always semistable.
This puts [3, Proposition 5.6.4 (1)] into perspective, which proves that dimen-
sionwise finite homotopy groups implies semistability.

� The homotopy groups of the symmetric spectra �X and S1^X (Example 3.10),
sh X (Example 3.11), F1S0 ^X (Example 3.13), RX and R1X (Example
3.15) are functors of the homotopy groups of X , and the M –action on ��X
determines the M –action on the homotopy groups of these constructions.

� The E2 –term of Shipley’s Bousfield–Kan spectral sequence for calculating the
homotopy groups of DX can be identified with the Tor groups of ��X over the
monoid ring of M , and the spectral sequence can be analyzed in many examples
(Section 5).

The M –action is also intertwined in an interesting and nontrivial way with the smash
product of symmetric spectra. This explains the curious phenomenon that the homotopy
groups of a symmetric ring spectrum do in general not form a graded ring in any natural
way (unless the underlying symmetric spectrum in semistable); the problem is that
the termwise smash product pairings are not compatible with the stabilization maps in
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the colimit defining stable homotopy groups. The natural algebraic structure on the
homotopy of a symmetric ring spectrum is an action by the injection operad of the set
of natural numbers. This operad is a discrete analog, with similar properties, of the
operad of linear isometries which features prominently in other foundational parts of
stable homotopy theory. We do not discuss these topics here but hope to return to them
elsewhere.

Acknowledgments Several of the things which we discuss are contained, mostly
implicitly, in the papers by Hovey, Shipley and Smith [3] and Shipley [7]. The M –
action makes a brief appearance in Proposition 2.2.9 of [7], which Shipley attributes to
Smith; it appears though that the M –action has not been used systematically, nor has
tameness been exploited before.

1 Homotopy groups as M –modules

A symmetric spectrum consists of the following data:

� a sequence of pointed spaces Xn for n� 0;

� a base-point preserving continuous left action of the symmetric group †n on
Xn , for each n� 0;

� pointed continuous maps �nW Xn ^S1 �!XnC1 for n� 0.

This data is subject to the following condition: the composite

Xn ^Sm
�n^ Id // XnC1 ^Sm�1

�nC1^Id
// � � �

�nCm�1 // XnCm

is †n �†m –equivariant for all n;m � 0. Here Sm is the m–fold smash product of
S1 , on which the symmetric group †m acts by permuting the factors, and the action on
the target XnCm is by restriction from †nCm to the subgroup †n �†m ; here and in
the rest of the paper we view †n�†m as a subgroup of †nCm via the monomorphism
which sends .�; ı/ 2†n �†m to � � ı 2†nCm defined by

.� � ı/.i/ D

(
�.i/ for 1� i � n, and

ı.i � n/C n for nC 1� i � nCm.

A morphism f W X �! Y of symmetric spectra consists of †n –equivariant continuous
pointed maps fnW Xn �! Yn for n� 0, which are compatible with the structure maps
in the sense that fnC1 ı �n D �n ı .fn ^ Id/ for all n� 0. The category of symmetric
spectra is denoted by Sp† .
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The k –th stable homotopy group of a symmetric spectrum X , for k any integer, is the
colimit

�kX D colimn �kCnXn ;

taken over the maps ��W �kCnXn �! �kCnC1XnC1 defined as the composite

(1.1) �kCn Xn
�^S1

�����! �kCnC1 .Xn ^S1/
.�n/�
�����! �kCnC1 XnC1 :

A ��–isomorphism is a morphism of symmetric spectra which induces an isomorphism
on all stable homotopy groups. Every ��–isomorphism is a stable equivalence in
the sense of [3, Definition 3.1.3] respectively [5, Definition 8.3], but not conversely.
Inverting only the ��–isomorphisms of symmetric spectra leaves too many homotopy
types, and the resulting category is not equivalent to the usual stable homotopy category.

The definition of homotopy groups does not take the symmetric group actions into
account; using these actions we will now see that the homotopy groups of a symmetric
spectrum have more structure.

1.2 Construction We define an action of the monoid M of injective self-maps of
the set ! D f1; 2; 3; : : : g of positive natural numbers, on the homotopy groups of a
symmetric spectrum. We break the construction up into two steps and pass through the
intermediate category of I –functors. The category I has an object nD f1; : : : ; ng for
every nonnegative integer n, including 0D∅. Morphisms in I are all injective maps.
An I –functor is a covariant functor from I to the category of abelian groups.

Step 1 (from symmetric spectra to I –functors) For every integer k we assign an
I –functor �kX to a symmetric spectrum X . On objects, this I –functor is given by

.�kX /.n/ D �kCnXn

if k C n � 2 and .�kX /.n/ D 0 for k C n < 2. If ˛W n �! m is an injective map
and kC n� 2, then ˛�W .�kX /.n/ �! .�kX /.m/ is given as follows. We choose a
permutation 
 2†m such that 
 .i/D ˛.i/ for all i D 1; : : : ; n and set

˛�.x/ D sgn.
 / � 
�.�m�n
� .x//

where ��W �kCnXn �! �kCnC1XnC1 is the stabilization map (1.1).

We have to justify that this definition is independent of the choice of permutation 
 .
Suppose 
 0 2†m is another permutation which agrees with ˛ on n. Then 
�1
 0 is a
permutation of m which fixes the numbers 1; : : : ; n, so it is of the form 
�1
 0D 1��

for some � 2 †m�n , where 1 is the unit of †n . It suffices to show that for such
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permutations the induced action on �kCmXm via the action on Xm satisfies the
relation

(1.3) .1� �/�.�
m�n
� .x// D sgn.�/ � .�m�n

� .x//

for all x 2 �kCnXn . To justify this we let f W SkCn �! Xn represent x . Since the
iterated structure map �m�nW Xn^Sm�n �!Xm is †n�†m�n –equivariant, we have
a commutative diagram:

SkCm
f^Id //

Id^�
��

Xn ^Sm�n �m�n
//

Id^�
��

Xm

1��
��

SkCm
f^Id

// Xn ^Sm�n

�m�n
// Xm

The composite through the upper right corner represents .1� �/�.�m�n
� .x//. Since

the effect on homotopy groups of precomposing with a coordinate permutation of the
sphere is multiplication by the sign of the permutation, the composite through the lower
left corner represents sgn.�/ � .�m�n

� .x//. This proves formula (1.3) and completes the
definition of ˛�W .�kX /.n/ �! .�kX /.m/.

The inclusion n �! nC 1 induces the map �� over which the colimit �kX is formed,
so if we denote the inclusion by �, then the two meanings of �� are consistent. We let
N denote the subcategory of I which contains all objects but only the inclusions as
morphisms, and then we have

�kX D colimN �kX :

Step 2 (from I –functors to tame M –modules) The next observation is that for any
I –functor F the colimit of F , formed over the subcategory N of inclusions, has a
natural left action by the monoid M of injective self-maps of the set ! of natural
numbers. Applied to the I –functor �kX coming from a symmetric spectrum X , this
yields the M –action on the stable homotopy group �kX .

We let I! denote the category with objects the sets n for n � 0 and the set ! and
with all injective maps as morphisms. So I! contains I as a full subcategory and
contains one more object ! whose endomorphism monoid is M . We will now extend
an I –functor F to a functor from the category I! in such a way that the value of
the extension at the object ! is the colimit of F , formed over the subcategory N
of inclusions. It will thus be convenient, and suggestive, to denote the colimit of F ,
formed over the subcategory N of inclusions, by F.!/ and not introduce new notation
for the extended functor. The M –action on the colimit of F is then the action of the
endomorphisms of ! in I! on F.!/.
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So we set F.!/D colimN F and first define ˇ�W F.n/ �! F.!/ for every injection
ˇW n�!! as follows. We set mDmaxfˇ.n/g, denote by ˇjnW n�!m the restriction
of ˇ and take ˇ�.x/ to be the class in the colimit represented by the image of x under

.ˇjn/�W F.n/ �! F.m/ :

It is straightforward to check that this is a functorial extension of F , ie, for every
morphism ˛W k �! n in I we have .ˇ˛/�.x/D ˇ�.˛�.x//.

Now we let f W ! �! ! be an injective self-map of ! , and we want to define
f�W F.!/ �! F.!/. If Œx� 2 F.!/ is an element in the colimit represented by a
class x 2F.n/, then we set f�Œx�D Œ.f jn/�.x/� where f jnW n�!! is the restriction
of f and f�W F.n/ �! F.!/ was defined in the previous paragraph. Again it is
straightforward to check that this definition does not depend in the representative
x of the class Œx� in the colimit and that the extension is functorial, ie, we have
.f ˛/�.x/ D f�.˛�.x// for injections ˛W n �! ! as well as .fg/�Œx� D f�.g�Œx�/

when g is another injective self-map of ! . As an example, if we also write �W n�! !

for the inclusion, then we have ��.x/D Œx� for x 2 F.n/.

The definition just given is in fact the universal way to extend an I –functor F to
a functor on the category I! , ie, we have just constructed a left Kan extension of
F W I �!Ab along the inclusion I �! I! . However, we do not need this fact, so we
omit the proof.

A trivial but important observation straight from the definition is that the action of the
monoid M on the colimit of any I –functor F has a special property: every element
in the colimit F.!/ is represented by a class x 2 F.n/ for some n� 0; then for every
element f 2M which fixes the numbers 1; : : : ; n, we have f�Œx�D Œx�. We introduce
a special name for such M –modules:

1.4 Definition An M –module is a left module over the monoid ring ZŒM � of the
monoid M of injective self-maps of the set ! D f1; 2; 3; : : : g. We call an M –module
W tame if for every element x 2W there exists a number n� 0 with the following
property: for every element f 2M which fixes the set n elementwise we have f xDx .

Altogether, we have now shown:

1.5 Theorem The homotopy groups of a symmetric spectrum are naturally tame
M –modules.
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An example of an M –module which is not tame is the free module of rank 1. Tameness
has many algebraic consequences which we discuss in the next section. We show in
Remark 3.18 that we have now found all natural operations on the homotopy groups of
a symmetric spectrum; more precisely, we show that the ring of natural operations on
�0X is a completion of the monoid ring of M , so that an arbitrary operation is a sum,
possibly infinite, of operations by elements from M .

The action of the monoid M in used by Shipley in [7, Proposition 2.2.9], who credits
this observation to Jeff Smith. To our knowledge, the tameness of this action, which
is elementary but crucial for many things which we do in this paper, has not been
exploited before.

1.6 Example To illustrate the action of the monoid M on the homotopy groups of
a symmetric spectrum X we make it explicit for the injection d W ! �! ! given by
d.i/D i C 1, which will also play an important role later. For every n� 1, the map
d and the cycle .1; 2; : : : ; n; nC 1/ of †nC1 agree on n, so d acts on �kX as the
colimit of the system

�kX0
�� //

��
��

�kC1X1
�� //

�.1;2/�ı��
��

�kC2X2
�� //

.1;2;3/�ı��
��

� � �
�� // �kCnXn

�� //

.�1/n.1;2;:::;nC1/�ı��
��

�kC1X1 ��
// �kC2X2 ��

// �kC3X3 ��
// � � �

��
// �kCnC1XnC1 ��

//

(at least for k � 0; for negative values of k only a later portion of the system makes
sense).

1.7 Remark The stable homotopy group �kX of a symmetric spectrum X can also
be calculated from the system of stable as opposed to unstable homotopy groups of
the individual spaces Xn . For us, the m–th stable homotopy group �s

mK of a pointed
space K is the colimit of the sequence of abelian groups

(1.8) �mK
S1^
���! �1Cm.S

1
^K/

S1^
���! �2Cm.S

2
^K/

S1^
���! � � �

where we stabilize from the left. Smashing with the identity of S1 from the right
provides a stabilization map (even an isomorphism) �s

mK �! �s
mC1

.K ^S1/. For a
symmetric spectrum we can then define an I –functor �s

kX by setting .�s
kX /.n/D

�s
kCn

Xn on objects (with no restriction on kCn) and defining the action of a morphism
n �!m in the same way as for the I –functor �kX of unstable homotopy groups.

The map from the initial term to the colimit of the sequence (1.8) provides a natural
transformation �mK �! �s

mK which is compatible with stabilization, so it defines
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a morphism of I –functors �kX �! �s
kX for every symmetric spectrum X . The

induced map on colimits

colimN �kX
Š
��! colimN �s

kX

is bijective (compare [7, Lemma 2.2.3]), thus an isomorphism of M –modules.

1.9 Remark We have chosen to let the spheres act from the right on the spaces in
a symmetric spectrum, and not from the left as in [3]. The reason for this is that we
find the M –action on the homotopy groups more transparent this way. More formally,
we consider right S –modules in the category of symmetric sequences where Hovey,
Shipley and Smith consider left modules. Since the sphere spectrum is a commutative
monoid in symmetric sequences, its categories of left and right modules are isomorphic.
However, the isomorphism is slightly more subtle than one may first think, and making
consistent identifications of homotopy groups can be a little tricky. The reader is
invited to translate our definition of the M –action on the homotopy groups of a right
S –module via these isomorphism to left S –modules.

2 Algebraic properties of tame M –modules

In this section we discuss some algebraic properties of tame M –modules. It turns out
that tameness is a rather restrictive condition. An example is that a tame M –module
whose underlying abelian group is finitely generated must necessarily have a trivial
M –action.

We introduce some useful notation and terminology. For an injective map f W ! �! !

we write jf j for the smallest number i � 0 such that f .iC1/¤ iC1. So in particular,
f restricts to the identity on f1; : : : ; jf jg. We write j Id j D1. An element x of an
M –module W has filtration n if for every f 2M with jf j � n we have f x D x .
We denote by W .n/ the subgroup of W of elements of filtration n; for example, W .0/

is the set of elements fixed by all f 2M . We say that x has filtration exactly n if it
lies in W .n/ but not in W .n�1/ . By definition, an M –module W is tame if and only
if every element has a finite filtration, ie, if the groups W .n/ exhaust W .

The following lemmas collect some elementary observations, first for arbitrary M –
modules and then for tame M –modules.

2.1 Lemma Let W be any M –module.

(i) If two elements f and g of M coincide on nD f1; : : : ; ng, then f x D gx for
all x 2W of filtration n.
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(ii) For n� 0 and f 2M set mDmaxff .n/g. Then f �W .n/ �W .m/ .

(iii) We denote by d 2M the map given by d.i/D i C 1. If x 2W has filtration
exactly n with n� 1, then dx has filtration exactly nC 1.

(iv) Let V �W be an M –submodule such that the action of M on V and W =V is
trivial. Then the action of M on W is also trivial.

Proof (i) We can choose a bijection 
 2 M which agrees with f and g on n,
and then 
�1f and 
�1g fix n elementwise. So for x of filtration n we have
.
�1f /x D x D .
�1g/x . Multiplying by 
 gives f x D gx .

(ii) If g 2M satisfies jgj �m, then gf and f agree on n. So for all x 2W .n/ we
have gf x D f x by (i), which proves that f x 2W .m/ .

(iii) We have d �W .n/ �W .nC1/ by part (ii). To prove that d increases the exact
filtration we consider x 2W .n/ with n � 1 and show that dx 2W .n/ implies x 2

W .n�1/ .

For f 2M with jf j D n�1 we define g 2M by g.1/D 1 and g.i/D f .i �1/C1

for i � 2. Then we have gd D df and jgj D n. We let h be the cycle hD .f .n/C

1; f .n/; : : : ; 2; 1/ so that we have jhd j D f .n/D maxff .n/g. Then f x 2W .f .n//

by part (ii) and so

f x D .hd/.f x/ D h.g.dx// D .hd/x D x :

Altogether this proves that x 2W .n�1/ .

(iv) Since the M –action is trivial on V and W =V , every f 2M determines an
additive map ıf W W =V �! V such that x� f x D ıf .xCV / for all x 2W . These
maps satisfy ıfg.x/D ıf .x/Cıg.x/ and so ı is a homomorphism from the monoid M

to the abelian group of additive maps from W =V to V . We will see in Lemma 5.2 below
that the classifying space BM of the monoid M is contractible, so H 1.BM;A/D

Hom.M;A/ is trivial for every abelian group A. Thus ıf D 0 for all f 2M , ie, M

acts trivially on W .

2.2 Corollary The assignment n 7!W .n/ extends to an I –functor W .�/ in such a
way that W 7!W .�/ is right adjoint to the functor which assigns to an I –functor F

the M –module F.!/. The counit of the adjunction .W .�//.!/ �! W is injective
with image the subgroup of elements of finite filtration, which is also the largest tame
submodule of W . The assignment W 7! .W .�//.!/D

S
n W .n/ is right adjoint to the

inclusion of tame M –modules into all M –modules.
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Proof To define the I –functor W .�/ on morphisms ˛W n �! m in the category I

we choose any extension z̨W ! �! ! of ˛ and define ˛�W W .n/ �! W .m/ as the
restriction of z̨�W W �!W . This really has image in W .m/ by part (ii) of Lemma 2.1
and is independent of the extension by (i) of that lemma. The rest is immediate.

2.3 Lemma Let W be a tame M –module.

(i) Every element of M acts injectively on W .

(ii) If the filtration of elements of W is bounded, then W is a trivial M –module.

(iii) If the map d given by d.i/D i C 1 acts surjectively on W , then W is a trivial
M –module.

(iv) If W is finitely generated as an abelian group, then W is a trivial M –module.

Proof (i) Consider f 2M and x 2W .n/ with f xD 0. Since f is injective, we can
choose h 2M with jhf j � n. Then x D .hf /x D h.f x/D 0, so f acts injectively.

(ii) Lemma 2.1 (iii) implies that if W DW .n/ for some n � 0, then nD 0, so the
M –action is trivial.

(iii) Suppose M does not act trivially, so that W .0/ ¤ W . Let n be the smallest
positive integer such that W .0/ ¤W .n/ . Then by part (iii) of Lemma 2.1, any x 2

W .n/�W .0/ is not in the image of d , so d does not act surjectively.

(iv) The union of the nested sequence of subgroups W .0/ �W .1/ �W .2/ � � � � is
W . Since finitely generated abelian groups are noetherian, we have W .n/ DW for all
large enough n. By part (ii), the monoid M must act trivially.

Parts (i), (iii) and (iv) of Lemma 2.3 can fail for nontame M –modules: we can let
f 2M act on the abelian group Z as the identity if the image of f W ! �! ! has
finite complement, and we let f acts as 0 if its image has infinite complement.

2.4 Example We introduce certain tame M –modules Pn for n � 0 which play
important roles throughout this paper. The module Pn is the free abelian group with
basis the set of ordered n–tuples of pairwise distinct elements of ! (or equivalently
the set of injective maps from n to ! ). The monoid M acts from the left on this basis
by componentwise evaluation, ie, f .x1; : : : ;xn/D .f .x1/; : : : ; f .xn//, and it acts on
Pn by additive extension. For nD 0, there is only one basis element, the empty tuple,
and so P0 is isomorphic to Z with trivial M –action. For n� 1, the basis is countably
infinite and the M –action is nontrivial. The module Pn is tame: the filtration of a basis
element .x1; : : : ;xn/ is the maximum of the components. So the filtration subgroup
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P.m/n is generated by the n–tuples all of whose components are less than or equal to
m. An equivalent way of saying this is that P.m/n DZŒI.n;m/�, the free abelian group
generated by all injections from n to m; in particular, P.m/n is trivial for m< n.

The module Pn represents the functor of taking elements of filtration n: for every
M –module W , the map

HomM -mod.Pn;W / �! W .n/ ; ' 7! '.1; : : : ; n/

is bijective.

3 Examples

We discuss several classes of symmetric spectra with a view towards the M –action on
the stable homotopy groups.

3.1 Example (Stabilizing homotopy groups) Let X be a symmetric spectrum whose
homotopy groups stabilize, ie, for each k 2 Z there exists an n� 0 such that from the
group �kCnXn on, all maps in the system (1.1) defining �kX are isomorphisms. We
claim that then the action of M is trivial.

To prove the claim we consider more generally any I –functor F for which there exists
an n� 0 such that the natural map F.n/ �! F.!/ to the colimit is surjective. This
is certainly the case if from n on all maps �� in the colimit system are isomorphisms.
In this situation every element of F.!/ has filtration n. But tame M –modules with
bounded filtration necessarily have trivial M –action by Lemma 2.3 (ii).

Examples of symmetric spectra with stabilizing homotopy groups include all suspension
spectra, �–spectra, or �–spectra from some point Xn on. The symmetric spectrum
obtained from a � –space [6] by evaluation on spheres is another example since for every
� –space A the structure map A.Sn/^S1 �! A.SnC1/ is .2nC 1/–connected [4,
Proposition 5.21].

3.2 Example (Orthogonal spectra) The monoid M acts trivially on the homotopy
group of every symmetric spectrum which is underlying an orthogonal spectrum [5,
Example 4.4]. Indeed, the inclusion †n �!O.n/ as permutation matrices sends all
even permutations to the path component of the unit in O.n/. So if the †n –action on
a pointed space Xn extends to an O.n/–action, then all even permutations act as the
identity on the homotopy groups of Xn .

So we consider more generally any I –functor F which takes all even permutations to
identity maps. Given f 2M and an element Œx� 2 F.!/ in the colimit represented
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by x 2 F.n/ we can find m � maxff .n/g and an even permutation 
 2 †m such
that 
 agrees with f on n. Since 
 is even, we then have f�Œx� D Œ.f jn/�.x/� D
Œ.
 jn/�.x/�D Œ
�.�

m�n
� .x//�D Œ�m�n

� .x/�D Œx�.

3.3 Example (Eilenberg-Mac Lane spectra) Every tame M –module W can be
realized as the homotopy group of a symmetric spectrum. For this purpose we modify
the construction of the symmetric Eilenberg-Mac Lane spectrum of an abelian group,
cf [3, Example 1.2.5]. We define

.HW /n D jW
.n/
˝ZŒSn�j ;

where W .n/ is the filtration n subgroup of W , ZŒSn� refers to the simplicial abelian
group freely generated by the simplicial set Sn D S1 ^ : : : ^ S1 , divided by the
subgroup generated by the basepoint, and the bars denote geometric realization. The
symmetric group †n takes W .n/ to itself and we let it act diagonally on .HW /n ,
ie, on Sn by permuting the smash factors. The homotopy groups of the symmetric
spectrum HW are concentrated in dimension zero where we have �0HW ŠW as
M –modules. If M acts trivially on W , then this is just the ordinary Eilenberg-Mac
Lane spectrum. (Instead of the system n 7! W .n/ we could use any I –functor in
the definition above; this shows that every I –functor arises as the I –functor �0 of a
symmetric spectrum).

3.4 Example (Free symmetric spectra) Hovey, Shipley and Smith observe in [3,
Example 3.1.10] that the zeroth stable homotopy group of the free symmetric spectrum
FnSn is free abelian of countably infinite rank for n� 1. We refine this calculation to
an isomorphism of M –modules �0.FnSn/Š Pn ; here Pn is the M –module which
represents taking filtration n elements; see Example 2.4. So while the groups �0.FnSn/

are all additively isomorphic for different positive n, the M –action distinguishes them.
In particular, there cannot be a chain of ��–isomorphisms between FnSn and FmSm

for n¤m.

As in [3, Definition 2.2.5] we denote by FnK the free symmetric spectrum generated
by a pointed space K in level n. The free functor Fn is left adjoint to evaluating a
symmetric spectrum at level n.

We claim that there is a natural isomorphism of M –modules

(3.5) �k.FnK/ Š Pn˝�
s
kCnK :

Here �s
kCn

K is the .kCn/–th stable homotopy group of K ; the monoid M acts only
on Pn . We postpone the proof to the next paragraph, where this isomorphism will be a
special case of a more general statement.
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3.6 Example (Semifree symmetric spectra) Let L be a pointed space with a base-
point preserving left action by the symmetric group †n , for some n� 0. We let HnL

denote the semifree symmetric spectrum generated by L, which we define as follows.
First we let LŒn� denote the symmetric sequence which has the †n –space L in level
n and a point everywhere else, and then we set HnLD S ˝LŒn�. The functor Hn is
left adjoint to evaluating a symmetric spectrum at level n, but now viewed as a functor
with values in pointed †n –spaces.

We construct a natural isomorphism of M –modules

(3.7) �k.HnL/ Š Pn˝†n
.�s

kCnL/.sgn/ :

Here we use the right †n –action on the tame M –module Pn given on the basis by
permuting the components of an n–tuple, ie, .x1; : : : ;xn/
 D .x
.1/; : : : ;x
.n//. On
the right of the tensor symbol, the group †n acts by what is induced on stable homotopy
groups by the action on L, twisted by sign. For a pointed space K (without any group
action) we have Hn.†

C
n ^K/Š FnK , which makes the isomorphism (3.5) a special

case of (3.7).

The construction of the isomorphism (3.7) starts from the more explicit description of
the semifree spectrum as

.HnL/nCm D †CnCm ^†n�†m
.L^Sm/

(HnL consists only of a point in levels less than n). The structure map

�nCmW
�
†CnCm ^†n�†m

.L^Sm/
�
^S1

�! †C
nCmC1

^†n�†mC1
.L^SmC1/

arises from the inclusion †nCm �! †nCmC1 (as the subgroup fixing the element
nCmC 1) and the identification Sm ^S1 Š SmC1 .

We calculate the I –functor �s
k.HnL/ consisting of the stable homotopy groups of the

spaces .HnL/kCn and exploit that for any symmetric spectrum X the M –module
�kX can also be calculated as the colimit of �s

k
X instead of the I –functor �kX

of unstable homotopy groups; see Remark 1.7. We start with the isomorphism of
†nCm –modules

�s
kCnCm.HnL/nCm D �s

kCnCm

�
†CnCm ^†n�†m

.L^Sm/
�

Š ZŒ†nCm�˝ZŒ†n�†m� .�
s
kCnL˝ sgnm/ :
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The coordinate permutations of Sm act by sign on stable homotopy groups, whence
the sign representation sgnm of †m . For any †n –module B the map

ZŒ†nCm�˝ZŒ†n�†m� .B˝ sgnm/ �! P.nCm/
n ˝†n

B.sgn/


 ˝ .b˝ 1/ 7�! sgn.
 / � .
 .1/; : : : ; 
 .n//˝ b

is an isomorphism of †nCm –modules, where P.nCm/
n is the filtration nCm subgroup

of the M –module Pn . Taking B D �s
kCn

L and combining all the above yields
isomorphisms of †nCm –modules

�s
kCnCm.HnL/nCm Š P.nCm/

n ˝†n
.�s

kCnL/.sgn/

which as nCm varies constitute an isomorphism of I –functors

�s
k.HnL/ Š P.�/n ˝†n

.�s
kCnL/.sgn/ :

Taking colimits gives the isomorphism of M –modules (3.7).

3.8 Example (Infinite products) Finite products of symmetric spectra are ��–iso-
morphic to finite wedges, so stable homotopy groups commute with finite products.
But homotopy groups do not in general commute with infinite products. This should
not be surprising because stable homotopy groups involve a sequential colimit, and
these generally do not preserve infinite products.

There are even two different ways in which commutation with products can fail. First
we note that an infinite product of a family fWigi2I of tame M –modules is only tame
if almost all the modules Wi have trivial M –action. Indeed, if there are infinitely many
Wi with nontrivial M –action, then by Lemma 2.3 (ii) the product

Q
i2I Wi contains

tuples of elements whose filtrations are not bounded. We define the tame product of
the family fWigi2I by

tameY
i2I

Wi D

[
n�0

 Y
i2I

W
.n/

i

!
;

which is the largest tame submodule of the product and thus the categorical product in
the category of tame M –modules.

Now we consider a family fXigi2I of symmetric spectra. Since the monoid M acts
tamely on the homotopy groups of any symmetric spectrum, the natural map from
the homotopy groups of the product spectrum to the product of the homotopy groups
always lands in the tame product. But in general, this natural map

(3.9) �k

 Y
i2I

Xi

!
�!

tameY
i2I

�kXi

Geometry & Topology, Volume 12 (2008)



On the homotopy groups of symmetric spectra 1327

need not be an isomorphism. As an example we consider the symmetric spectra
.F1S1/�i obtained by truncating the free symmetric spectrum F1S1 above level i , ie,

..F1S1/�i/n D

(
.F1S1/n for n� i ,

� for n� i C 1

with structure maps as a quotient spectrum of F1S1 . Then .F1S1/�i has trivial
homotopy groups for all i . The 0–th homotopy group of the product

Q
i�1.F1S1/�i

is the colimit of the sequence of mapsY
i�n

P.n/1 �!

Y
i�nC1

P.nC1/
1

which first projects away from the factor indexed by i D n and then takes a product of
inclusions P.n/

1
�!P.nC1/

1
. The colimit is the quotient of the tame product

Qtame
i�1 P1

by the sum
L

i�1 P1 ; so �0 of the product is nonzero and even has a nontrivial
M –action.

3.10 Example (Loop and suspension) The loop �X and suspension S1^X of a
symmetric spectrum X are defined by applying the functors � respectively S1 ^�

levelwise, where the structure maps do not interact with the new loop or suspension
coordinates. We claim that loop and suspension simply shift the homotopy groups
while leaving the M –action unchanged.

We use the isomorphism ˛W �kCn�.Xn/Š�1CkCnXn defined by sending a represent-
ing continuous map f W SkCn�!�.Xn/ to the class of the adjoint yf W S1CkCn�!Xn

given by yf .s ^ t/D f .t/.s/, where s 2 S1 , t 2 SkCn . As n varies, these particular
isomorphisms are compatible with the symmetric group actions and stabilization maps,
so they form an isomorphism of I –functors ˛W �k.�X /Š �1CkX , hence induce an
isomorphism of M –modules

˛W �k.�X /
Š
��! �1CkX

on colimits.

For every symmetric spectrum X the map S1^�W �kCnXn �! �1CkCn.S
1^Xn/ is

†n –equivariant and a natural transformations of I –functors as n varies. So it induces
a natural map

ˇW �kX �! �1Ck.S
1
^X /

which is M –linear and an isomorphism by “stable excision”; see [3, Lemma 3.1.13].

Moreover, the composite

��X
ˇ
��! �1C�.S

1
^X /

˛�1

���! ��.�.S
1
^X //
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is the map induced by the adjunction unit X �!�.S1 ^X / on homotopy.

3.11 Example (Shift) The shift is another construction for symmetric spectra which
reindexes the homotopy groups, but unlike the suspension, this construction changes
the M –action in a systematic way. The shift of a symmetric spectrum X is given by

.sh X /n D X1Cn

with action of †n via the monomorphism .1��/W †n �!†1Cn which is explicitly
given by .1�
 /.1/D 1 and .1�
 /.i/D 
 .i�1/C1 for 2� i � 1Cn. The structure
maps of sh X are the reindexed structure maps for X . An isomorphic description of
the shift is as a symmetric function spectrum [3, Definition 2.2.9]

sh X D HomS .F1S0;X / ;

which shows that the shift functor has a left adjoint given by smashing with F1S0 .

If we view †n as the subgroup of M of maps which fix all numbers bigger than n, then
the homomorphism .1��/W †n �!†1Cn has a natural extension to a monomorphism
.1 � �/W M �! M given by .1 � f /.1/ D 1 and .1 � f /.i/ D f .i � 1/C 1 for
i � 2. The image of the monomorphism 1 �� is the submonoid of those g 2M

with g.1/ D 1. If W is an M –module, we denote by W .1/ the M –module with
the same underlying abelian group, but with M –action through the endomorphism
1��. We call W .1/ the shift of W . Since j1�f j D 1Cjf j, shifting an M –module
shifts the filtration subgroups, ie, we have M.1/.n/ DM .1Cn/ for all n� 0. Thus the
M –module W .1/ is tame if and only if W is.

For any symmetric spectrum X , integer k and large enough n we have

�.kC1/Cn.sh X /n D �kC.1Cn/X1Cn ;

and the maps in the colimit system for �kC1.sh X / are the same as the maps in the
colimit system for �kX . Thus we get �kC1.sh X /D�kX as abelian groups. However,
the action of a permutation on �kC1Cn.sh X /n is shifted by the homomorphism 1��,
so we have

(3.12) ��C1.sh X / D .��X /.1/

as M –modules.

Shifting preserves ��–isomorphisms because of (3.12), but shifting does not in general
preserve stable equivalences of symmetric spectra. An example is the fundamental
stable equivalence �W F1S1�!S of [3, Example 3.1.10] which is adjoint to the identity
of S1 . The symmetric spectrum sh.F1S1/ is isomorphic to the wedge of F0S1 and
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F1S2 , while sh S Š F0S1 ; the map sh�W sh.F1S1/ �! sh S is the projection to a
wedge summand whose complementary summand F1S2 is not stably contractible.

3.13 Example (Shift adjoint) We calculate the effect on homotopy groups of the
left adjoint of shifting by establishing a natural isomorphism of M –modules

(3.14) �k.F1S0
^X / Š ZŒM �C˝ZŒM � �kC1X :

Here ZŒM �C denotes the monoid ring of M with its usual left action, but with right
action through the monomorphism .1��/W M �!M given by .1� f /.1/D 1 and
.1 � f /.i/ D f .i � 1/C 1 for i � 2. As a right M –module, ZŒM �C is free of
countably infinite rank (one possible basis is given by the transpositions .1; n/ for
n � 1). So the isomorphism (3.14) in particular implies that the underlying abelian
group of �k.F1S0^X / is a countably infinite sum of copies of the underlying abelian
group of �kC1X .

The spectrum F1S0 ^Y is trivial in level 0 and in positive levels we have

.F1S0
^X /1Cn D †C

1Cn
^†n

Xn :

Here †n acts from the right on †1Cn via the monomorphism .1��/W †n �!†1Cn .
The structure map .†C

1Cn
^†n

Xn/ ^ S1 �! †C
1CnC1

^†nC1
XnC1 is induced by

.�� 1/W †1Cn �! †1CnC1 (the “inclusion”) and the structure map of X . Taking
stable homotopy groups we get a †1Cn –equivariant isomorphism

�s
kC.1Cn/.F1S0

^X /1Cn D �s
kC1Cn

�
†C

1Cn
^†n

Xn

�
Š ZŒ†1Cn�˝ZŒ†n� �

s
.kC1/CnXn :

Taking the colimit over the stabilization maps gives an isomorphism

�k.F1S0
^X / Š ZŒ†1�

C
˝ZŒ†1� �kC1X

where †1 is the subgroup of M consisting of bijections which fix almost all elements
of ! . The isomorphism (3.14) is then obtained from the observation that for every
tame M –module W , the natural map ZŒ†1�C˝ZŒ†1�W �! ZŒM �C˝ZŒM �W is
a bijection.

We note that the functor ZŒM �C˝ZŒM �� is left adjoint to HomM .ZŒM �C;�/, which
is a fancy way of writing the algebraic shift functor W 7!W .1/. Under the isomor-
phism (3.14) and the identification (3.12), the adjunction between shDHomS .F1S0;�/

and F1S0 ^� as functors of symmetric spectra corresponds exactly to the adjunction
between W 7!W .1/ and ZŒM �C˝ZŒM �� as functors of tame M –modules.
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3.15 Example (Homotopy of R1X ) In the proof of [3, Theorem 3.1.11], Hovey,
Shipley and Smith define spectra RX and R1X which come up when studying the
relationship between ��–isomorphisms and stable equivalences and which reappear
in the characterization of semistable symmetric spectra in [3, Proposition 5.6.2]. We
exhibit a natural isomorphism of M –modules

(3.16) �k.R
1X / Š .�kX /.1/ :

Here for an M –module V we denote by V .1/ the colimit of the sequence

V
d �
��! V .1/

d �
��! V .2/

d �
��! � � �

(note that .1�f /d D df for all f 2M , which means that d �W V �! V .1/ is indeed
M –linear, and so the colimit V .1/ is naturally an M –module).

By definition we have RX D HomS .F1S1;X / D �.sh X /. Let �W F1S1 �! S

denote the morphism adjoint to the identity of S1 ; this is the prototype of a stable
equivalence which is not a ��–isomorphism; compare [3, Example 3.1.10]. Then �
induces a morphism on function spectra

��W X D HomS .S;X / �! HomS .F1S1;X /DRX

and R1X is the colimit of the sequence

X
��

��! RX
R.��/
�����! R2X

R2.��/
������! � � � :

For calculating the homotopy of R1X we identify the effect of ��W X �! RX D

�.sh X / in homotopy. The level n component ��nW Xn �! .RX /n D �.X1Cn/ is
adjoint to the composite

S1
^Xn

Š
����!

twist
Xn ^S1 �n

��!XnC1

.1;:::;n;nC1/
��������!X1Cn

(using only the structure map �n without the twist isomorphism and cycle permutation
.1; : : : ; n; nC 1/ does not yield a morphism of symmetric spectra !) So the square

�kCnXn

�kCn.�
�
n/

��

�� // �kCnC1XnC1

.�1/n.1;:::;n;nC1/�
��

�kCn�.X1Cn/
.�1/k˛

Š // �kC1CnX1Cn

commutes, where �� is the stabilization map, and the isomorphism ˛ is as in Example
3.10. The signs arise as the effect of moving a sphere coordinate past k respectively n
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other coordinates. As n increases, the maps

.�1/n.1; : : : ; n; nC 1/� ı ��W �kCnXn �! �kC1CnX1Cn

stabilize to the left multiplication of d 2M on �kX ; see Example 1.6. So we have
shown that the square

(3.17)

�kX

�k.�
�/

��

d � // .�kX /.1/

�kRX
.�1/k˛

Š // �kC1.sh X /

commutes. If we iterate applications of R and pass to the colimit, we obtain the
isomorphism (3.16).

3.18 Remark The monoid M gives essentially all natural operations on the homotopy
groups of symmetric spectra. More precisely, we now identify the ring of natural
operations �0X �! �0X with a completion of the monoid ring ZŒM �. Moreover,
tame M –modules can equivalently be described as the discrete modules over the ring
of operations. We will not need this information later, so we will be brief.

We define the ring ZŒŒM �� as the endomorphism ring of the functor �0W Sp† �!

Ab . So an element of ZŒŒM �� is a natural self-transformation of the functor �0 , and
composition of transformations gives the product. The following calculation of this
ring depends on the fact that the homotopy group functor �0 is prorepresented, in the
level homotopy category of symmetric spectra, by the inverse system of free symmetric
spectra FnSn , and that we know �0.FnSn/ by Example 3.4.

In more detail: for every n � 0 we let jn 2 �n.FnSn/n be the wedge summand
inclusion Sn �! †Cn ^ Sn D .FnSn/n indexed by the unit element of †n . Then
evaluation at jn is a bijection

ŒFnSn;X � �! �nXn ; Œf � 7! f�.jn/

where the left hand side means homotopy classes of morphisms of symmetric spectra.
We write �W FnC1SnC1 �! FnSn for the morphism adjoint the wedge summand
inclusion SnC1 �! †C

nC1
^ .Sn ^ S1/ D .FnSn/nC1 indexed by the unit element

of †nC1 . Then we have

��.jnC1/ D ��.jn/
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in the group �nC1.FnSn/nC1 which implies that the squares

ŒFnSn;X �
Š //

Œ�;X �
��

�nXn

��

��
ŒFnC1SnC1;X �

Š
// �nC1XnC1

commute. Passage to colimits gives a natural isomorphism

colimn ŒFnSn;X � �! �0X :

From here the Yoneda lemma shows that we get an isomorphism of abelian groups

(3.19) ˇW ZŒŒM �� �! lim
n
�0.FnSn/ ;

(where the limit is taken over the maps �0�) by sending a natural transformation
� W �0 �! �0 to the tuple f�FnSn Œjn�gn .

It remains to exhibit the ring ZŒŒM �� as a completion of the monoid ring ZŒM �. The
natural action of M on the 0–th homotopy group of a symmetric spectrum provides
a ring homomorphism ZŒM � �! ZŒŒM ��. We define a left ideal In of ZŒM � as the
subgroup generated by all differences of the form f �g for all f;g 2M such that f
and g agree on n. If W is a tame M –module and if x 2W .n/ has filtration n, then
In �x D 0. So the action of the monoid ring ZŒM � on any tame module automatically
extends to an additive map

.lim
n

ZŒM �=In/˝W �! W :

(Warning: In is not a right ideal for n� 1, so the completion does not a priori have a
ring structure). Since the homotopy groups of every symmetric spectrum form tame
M –modules, this gives a map of abelian groups

˛W lim
n

ZŒM �=In �! ZŒŒM ��

which extends the map from the monoid ring ZŒM �.

To prove that ˛ is a bijection we show that the composite ˇ˛W limn ZŒM �=In �!

limn �0.FnSn/ with the isomorphism (3.19) is bijective. But this holds because the
composite arises from compatible isomorphisms

ZŒM �=In �! �0.FnSn/ ; f C In 7�! f � Œjn� ;

which in turn uses the isomorphisms Pn Š �0.FnSn/ from Example 3.4.
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We end this remark by claiming without proof that the extended action of ZŒŒM �� on a
tame M –module W makes it a discrete module in the sense that the action map

ZŒŒM ���W �! W

is continuous with respect to the discrete topology on W and the filtration topology
on ZŒŒM ��. Conversely, if W is a discrete module over ZŒŒM ��, then its underlying
M –module is tame. This establishes an isomorphism between the category of tame
M –modules and the category of discrete ZŒŒM ��–modules.

4 Semistable symmetric spectra

The semistable spectra form an important class of symmetric spectra since between
these, stable equivalences coincide with ��–isomorphisms. The reason behind this is
that for semistable spectra, the naively defined homotopy groups of (1.1) coincide with
the “true” homotopy groups, ie, morphisms in the stable homotopy category from the
sphere spectra.

More formally, a symmetric spectrum is semistable in the sense of [3, Definition 5.6.1]
if some (hence any) stably fibrant replacement is a ��–isomorphism. Here a stably
fibrant replacement is a stable equivalence X �! LX with target an �–spectrum.
Many symmetric spectra which arise naturally are semistable (compare Example 4.2),
and Section 5.6 of [3] gives some criteria for checking semistability. We now provide
a criterion for semistability in terms of the M –action on the homotopy groups of a
symmetric spectra.

4.1 Theorem A symmetric spectrum is semistable if and only if the M –action on all
of its homotopy groups is trivial.

Proof By [3, Proposition 5.6.2], X is semistable if and only if the map ��W X �!
RX D�.sh X / is a ��–isomorphism (since we work with topological spaces and not
simplicial sets, we do not need any level fibrant replacement). By (3.17) this happens if
and only if left multiplication by d is an isomorphism on all homotopy groups, which
by Lemma 2.3 (iii) is equivalent to a trivial M –action.

The “trivial M –action” criterion is often handy for deciding about semistability and
for showing that semistability is preserved by certain constructions. We give a few
examples of this:
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4.2 Example By Example 3.1 any symmetric spectrum whose homotopy groups
stabilize has trivial M –action and is thus semistable (compare Proposition 5.6.4 (2)
of [3]). This applies in particular to suspension spectra, �–spectra (possibly only from
some later point on), or symmetric spectra associated to � –spaces. By Example 3.2,
the underlying symmetric spectrum of every orthogonal spectrum has trivial M –action
on homotopy groups, and is thus semistable.

4.3 Example Let X be a symmetric spectrum whose homotopy groups are dimen-
sionwise finitely generated as abelian groups. Tameness then forces the M –action
to be trivial (Lemma 2.3 (iv)) and so X is semistable. This is a strengthening of
Proposition 5.6.4 (1) of [3], where is it is proved that spectra with finite homotopy
groups are semistable.

4.4 Example Example 3.8 shows that an infinite product of symmetric spectra with
trivial homotopy groups can have homotopy groups with nontrivial M –action. In
particular, infinite products of semistable symmetric spectra need not be semistable.

4.5 Example If f W X �! Y is any morphism of symmetric spectra, then the homo-
topy groups of the spectra X , Y and the mapping cone C.f / D Œ0; 1�C ^X [f Y

are related by a long exact sequence of tame M –modules (see [5, Thm 7.4 (vi)]; we
use that the M –action does not change under loop and suspension). Trivial tame
M –modules are closed under taking submodules, quotient modules and extensions
(Lemma 2.1 (iv)); so if two out of the three graded M –modules ��X , ��Y and
��C.f / have trivial M –action, then so does the third. Thus the mapping cone of any
morphism between semistable symmetric spectra is semistable.

If f W X �! Y is an h-cofibration [5, Section 5] of symmetric spectra, or simply an
injective morphism when in the simplicial context of [3], then the mapping cone C.f /

is ��–isomorphic to the quotient Y=X . Thus if two of the spectra X , Y and Y=X

are semistable, then so is the third.

4.6 Example Semistability is preserved under suspension, loop, wedges, shift and
sequential colimits along h-cofibrations (or injective morphisms when in the simplicial
context) since these operations preserve the property of M acting trivially on homotopy
groups.

4.7 Example For a symmetric spectrum X and a pointed space K , let K^X be
the symmetric spectrum obtained by smashing K levelwise with X . So .K^X /n D

K^Xn , with †n –action by the given action on Xn , and with structure map
Id^�nW K ^ Xn ^ S1 �! K ^ XnC1 . For example, when K D S1 is the circle,

Geometry & Topology, Volume 12 (2008)



On the homotopy groups of symmetric spectra 1335

this specializes to the suspension of X . We claim that if X is semistable and K is a
CW-complex, then the symmetric spectrum K ^X is again semistable.

We first prove the claim for finite dimensional CW-complexes by induction over the
dimension. If K is 0–dimensional, then K ^ X is a wedge of copies of X , thus
semistable. If K has positive dimension n and K.n�1/ is its .n� 1/–skeleton, then
K=K.n�1/ is a wedge of n–spheres and so the quotient of K^X by the subspectrum
K.n�1/ ^X is a wedge of n–fold suspension of X . By induction the subspectrum
K.n�1/ ^ X is semistable; since the inclusion is an h-cofibration and the quotient
spectrum is also semistable, so is K^X . For a general CW-complex K the symmetric
spectrum K ^X is the sequential colimit, over h-cofibrations, of the smash product of
X with the skeleta of K . So K ^X is semistable.

The geometric realization of any simplicial set is a CW-complex, so in the simplicial
context of [3] we deduce that for any pointed simplicial set K and any semistable
symmetric spectrum X the symmetric spectrum K ^X is again semistable.

4.8 Example Let F W J �!Sp† be a functor from a small category J to the category
of symmetric spectra. If F.j / is semistable for each object j of J , then the homotopy
colimit of F over J is semistable.

Indeed, the homotopy colimit is the geometric realization of the simplicial replacement
q�F in the sense of Bousfield and Kan [2, Chapter XII, 5.1], a simplicial object
of symmetric spectra. The spectrum of n–simplices of q�F is a wedge, indexed
over the n–simplices of the nerve of J , of spectra which occur as values of F . The
geometric realization j q� F j is the sequential colimit, over h-cofibrations, of the
realizations of the skeleta sknq�F in the simplicial direction, so it suffices to show
that each of these is semistable. The skeleton inclusion realizes to an h-cofibration
j skn�1q�F j �! j sknq�F j whose quotient symmetric spectrum is a wedge, indexed
over the nondegenerate n–simplices of the nerve of J , of n–fold suspensions of spectra
which occur as values of F . So the quotient spectra are semistable, and so by induction
the symmetric spectra j sknq�F j are semistable.

As the final result in this section we show that the smash product of two semistable
symmetric spectra is again semistable, under a mild cofibrancy condition. We switch
to symmetric spectra of simplicial set (as opposed to topological spaces) for the rest of
this section, because several results which we will want to quote are in the literature
in this context. A symmetric spectrum of simplicial sets X is S-cofibrant if for all
n � 0 the natural map LnX �! Xn is injective. Here LnX D .X ^ xS/n is the
n–th latching space in the sense of [3, Definition 5.2.1] (this characterization of S –
cofibrations does not seem to be in the literature, but the proof is analogous to the proof
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of [3, Proposition 5.2.2] for stable cofibrations). A symmetric spectrum of simplicial
sets X is stably cofibrant if for all n � 0 the natural map LnX �! Xn is injective
and the symmetric group †n acts freely away from the image. Thus every stably
cofibrant symmetric spectrum is S –cofibrant, but not vice versa. For example, semifree
symmetric spectra HnL associated to a pointed †n –simplicial set L are S –cofibrant,
but not stably cofibrant, unless the †n –action is free away from the basepoint.

4.9 Proposition Smashing with an S –cofibrant symmetric spectrum preserves ��–
isomorphisms.

Proof We go through a sequence of steps proving that successively larger classes of
S –cofibrant spectra have the desired property. By Example 3.10 respectively Example
3.13, the homotopy groups of S1^X and of F1S0^X are functors of the homotopy
groups of X . So smashing with S1 and F1S0 preserves ��–isomorphisms. Since
FnSm is isomorphic to .F1S0/^m ^ .S1/^n , smashing with the cofibrant spectrum
FnSm preserves ��–isomorphisms. Since homotopy groups of a wedge are the direct
sum of the homotopy groups, smashing with a wedge of spectra of the form FnSm ,
for varying n and m, preserves ��–isomorphisms.

Every stably cofibrant symmetric spectrum is a retract of one built via the small object
argument as X D colim Xn , starting with X0 D�, and such that each Xi �!XiC1 is
a stable cofibration with quotient isomorphic to a wedge of symmetric spectra of the
form FnSm . Inductively, using that cofiber sequences of spectra give rise to long exact
sequences of homotopy groups, smashing with each Xi preserves ��–isomorphisms.
Thus smashing with the filtered colimit X and thus with an arbitrary stably cofibrant
spectrum, preserves ��–isomorphisms.

Finally, let X be an S –cofibrant symmetric spectrum. We choose a level equivalence
X 0 �! X with stably cofibrant source. If f W A �! B is a ��–isomorphism, then in
the commutative square

X 0 ^A //

��

X 0 ^B

��
X ^A // X ^B

the upper horizontal map is a ��–isomorphism by the above. Both vertical maps are
level equivalences by [3, Section 5]. Thus the lower map is a ��–isomorphism, which
finishes the proof.

4.10 Theorem Let X and Y be two semistable spectra one of which is S –cofibrant.
Then the smash product X ^Y is semistable.
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Proof Suppose X is S –cofibrant and semistable. We first prove the proposition
when Y has a special form, namely Y D �nL0.†1K/ for a pointed simplicial set
K , where L0 is a level fibrant replacement functor. Smashing with an S –cofibrant
spectrum preserves level equivalences [3, Theorem 5.3.7], so X ^L0.†1K/ is level
equivalent to X ^†1K , which is isomorphic to the symmetric spectrum K ^X and
thus semistable by Example 4.7.

The counit of the adjunction between loop and suspension is a ��–isomorphism
"W Sn ^�nL0.†1K/ �!L0.†1K/, so by Proposition 4.9 the map

Id^"W X ^Sn
^�nL0.†1K/ �! X ^L0.†1K/

is a ��–isomorphism. Since the target is semistable, so is X ^Sn ^�nL0.†1K/. A
symmetric spectrum is semistable if and only if its suspension is, so we conclude that
X ^�nL0.†1K/ is semistable.

To prove the general case we use Shipley’s detection functor [7, Section 3] which
associates to every symmetric spectrum Y the semistable symmetric spectrum DY .
Here DY is the homotopy colimit of a functor DY W I �! Sp† from the category
I to the category of symmetric spectra with values DY .n/D�nL0.†1Yn/. By the
above the symmetric spectrum X ^DY .n/ D X ^�nL0.†1Yn/ is semistable for
each n� 0. Hence the homotopy colimit of the functor X ^DY W I �! Sp† , which
is isomorphic to X ^DY , is semistable by Example 4.8.

By [7, Cor. 3.1.7] the semistable spectrum Y is related by a chain of ��–isomorphisms
to the symmetric spectrum DY . By Proposition 4.9, X ^Y is thus related by a chain
of ��–isomorphisms to the symmetric spectrum X ^DY , which we just recognized
as semistable. Hence X ^Y is semistable, which finishes the proof.

5 Shipley’s spectral sequence for true homotopy groups

By the “true” homotopy groups of a symmetric spectrum X we mean the morphisms
in the stable homotopy category from sphere spectra to X . In practice, one is usually
interested in the true homotopy groups of a symmetric spectrum and not the naively
defined and sometimes pathological homotopy groups as in (1.1). However, the naive
homotopy groups are more readily computable from an explicit presentation of the
symmetric spectrum, so one would like a way to obtain the true homotopy groups from
the naive ones.

The true homotopy groups can be calculated as the naive homotopy groups of the target
of any stably fibrant replacement, ie, any stable equivalence X �!LX whose target
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is an �–spectrum. However, stably fibrant replacements are typically obtained by the
small object argument, so it is often difficult to get one’s hands on their homotopy
groups. In the paper [7] Shipley introduces a detection functor D such that for every
symmetric spectrum X , the naive homotopy groups of DX are naturally isomorphic
to the true homotopy groups of X . Moreover, the spectrum DX is defined as a
homotopy colimit, so it comes with a Bousfield–Kan spectral sequence for calculating
its homotopy groups. We now discuss the spectral sequence associated to DX from
the perspective of the M –action and reinterpret its E2 –term as Tor groups over the
monoid ring of M . Then we discuss several examples in which one can completely
understand the spectral sequence.

We recall Shipley’s construction from [7, Section 3], which is inspired by Bökstedt’s
use of a homotopy colimit over the category I in the original definition of topological
Hochschild homology [1]. First, Shipley associates to a symmetric spectrum X a
functor DX W I �! Sp† from the category I of finite sets and injections to the
category of symmetric spectra by the rule

DX .n/ D �n.F0Xn/ :

(Shipley works simplicially and also needs a level fibrant replacement before taking
loops, which is unnecessary in the topological context). Here F0Xn is the free sym-
metric spectrum generated in level 0 by the pointed space Xn (so F0Xn is another
name for the symmetric suspension spectrum †1Xn ).

This assignment becomes a functor in n 2 I as follows. The symmetric group †n D

I.n;n/ acts on �n.F0Xn/Dmap.Sn;F0Xn/ by conjugation, using the given action
on Xn and the coordinate permutations on the source sphere Sn . The morphism
DX .�/W DX .n/ �! DX .nCm/ induced by the inclusion �W n �! nCm is given in
level k as follows. If f W Sn �!Xn ^Sk is an element of DX .n/k D�n.Xn ^Sk/,
then DX .�/.f / is the composite

SnCm f^Id
���!Xn ^Sk

^Sm Id^�
���! Xn ^Sm

^Sk �m^Id
�����!XnCm ^Sk :

This uniquely extends to a functor on the category I .

Shipley then defines DX as the homotopy colimit of DX over the category I and proves
in [7, Theorem 3.1.6] that DX is related by a natural chain of ��–isomorphisms to a
stably fibrant replacement of X . So the naive homotopy groups of DX are isomorphic
to the true homotopy groups of X .

Since the naive homotopy groups are a homology theory on symmetric spectra, the
homotopy colimit DX comes with a Bousfield–Kan spectral sequence [2, Chapter XII,
Section 5] converging to the homotopy groups of DX whose E2

p;q –term equals
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colimp
I
�qDX , the p–th left derived functor of the colimit functor, applied to the

I –functor n 7! �qDX .n/. We have

�qDX .n/ D �q.�
nF0Xn/ Š �s

qCnXn ;

and as n varies, this yields an isomorphism of I –functors �qDX Š �
s
qX . Theorem

5.4 below provides natural isomorphisms of abelian groups

colimp
I

�
�s

qX
�
Š TorZŒM �

p .Z; �qX / :

This makes it clear that the derived colimits only depend on the sequential colimit of
the functor �s

qX , ie, the homotopy groups of X , together with the M –action.

Using these isomorphisms, the Bousfield–Kan spectral sequence takes the form of a
strongly convergent half-plane spectral sequence

(5.1) E2
p;q D TorZŒM �

p .Z; �qX / H) �pCq.DX / :

The spectral sequence is natural in X with dr –differential of bidegree .�r; r � 1/.
The edge homomorphism

Z˝M �qX DE2
0;q �! �q.DX /

is induced on homotopy groups by the stably fibrant replacement X �!LX composed
with Shipley’s isomorphism [7, Theorem 3.1.6 (1)] between the homotopy groups of
DX and those of the stably fibrant replacement LX . Here, and below, we use the
notation �˝M � as short hand for the tensor product over the monoid ring ZŒM �.

We will see below that the spectral sequence (5.1) collapses in many cases, for example
for semistable symmetric spectra and for free symmetric spectra (see Example 5.5),
and it always collapses rationally (see Example 5.7). The spectral sequence typically
does not collapse for semifree symmetric spectra; see Example 5.9.

For the identification of derived colimits with Tor groups we need two preparatory
Lemmas. I owe the proof of Lemma 5.2 to Neil Strickland.

5.2 Lemma The classifying space BM of the monoid M is contractible.

Proof The classifying space BM is the geometric realization of the nerve of the
category BM with one object whose monoid of endomorphisms is M . Let t 2M be
given by t.i/D 2i . We define an injective endomorphism ct W M �!M as follows.
For f 2M and i 2 ! we set

ct .f /.i/ D

(
i if i is odd, and

2 �f .i=2/ if i is even.
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Even though t is not bijective, the endomorphism ct behaves like conjugation by
t in the sense that the formula ct .f / � t D t � f holds. Thus t provides a natural
transformation from the identity functor of BM to B.ct /. On the other hand, if s 2M

is given by s.i/D 2i � 1, then ct .f / � s D s for all f 2M , so s provides a natural
transformation from the constant functor of BM with value 1 2M to B.ct /. Thus
via the homotopies induced by t and s , the identity of BM is homotopic to a constant
map, so BM is contractible.

5.3 Lemma (i) Let ZŒM �C denote the monoid ring of M with its usual left action,
but with right action through the monomorphism .1��/W M �!M given by .1�
f /.1/D 1 and .1�f /.i/D f .i � 1/C 1 for i � 2. Then for every n� 0 the map

�W P1Cn �! ZŒM �C˝M Pn

which sends the generator .1; : : : ; nC 1/ to the element 1˝ .1; : : : ; n/ of filtration
nC 1 in ZŒM �C˝M Pn is an isomorphism of M –modules.

(ii) For every n � 0 and every abelian group A, the groups TorZŒM �
p .Z;Pn ˝A/

vanish in positive dimensions.

Proof (i) For any n–tuple .x1; : : : ;xn/ of pairwise distinct natural numbers we can
choose g 2M with g.i/D xi for 1� i � n. Because of

f ˝ .x1; : : : ;xn/ D f ˝g.1; : : : ; n/ D f .1�g/ � .1˝ .1; : : : ; n//

the element 1˝ .1; : : : ; n/ generates ZŒM �C ˝M Pn , so the map � is surjective.
The map ZŒM �C˝M Pn �! P1Cn which sends f ˝ .x1; : : : ;xn/ to .f .1/; f .x1C

1/; : : : ; f .xn C 1// is right inverse to � since the composite sends the generator
.1; : : : ; nC 1/ to itself. So � is also injective.

(ii) The groups TorZŒM �
p .Z;A/ are isomorphic to the singular homology groups with

coefficients in A of the classifying space BM of the monoid M . This classifying
space is contractible by Lemma 5.2, so the groups TorZŒM �

p .Z;A/ vanish for p � 1,
which proves the case nD 0.

For n � 1, the M –modules P1Cn˝A and ZŒM �C˝M Pn˝A are isomorphic by
part (i). Since the M –bimodule ZŒM �C is free as a left and right module separately,
the balancing property of Tor groups yields

TorZŒM �
� .Z;P1Cn˝A/Š TorZŒM �

� .Z;ZŒM �C˝M Pn˝A/

Š TorZŒM �
� .Z˝M ZŒM �C;Pn˝A/Š TorZŒM �

� .Z;Pn˝A/

since Z˝M ZŒM �C is again the trivial right M –module Z. So induction on n shows
that the groups TorZŒM �

p .Z;Pn˝A/ vanish in positive dimensions.
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5.4 Theorem For every I –functor F there are natural isomorphisms of abelian
groups

colimp
I

F Š TorZŒM �
p .Z; colimN F /

for all p � 0.

Proof We show that the collection of functors˚
F 7! TorZŒM �

p .Z; colimN F /
	
p�0

has all the properties that characterize the left derived functors of the colimit. Clearly

colimI F Š Z˝M .colimN F / ;

so the functors agree for p D 0. Taking colimit over the filtered category N is exact,
so the Tor functors of the colimit take short exact sequences of I –functors to long
exact sequences of abelian groups. The least obvious part is that the Tor groups
TorZŒM �

p .Z; colimN F / vanish for all projective functors F and all p � 1. The I –
functors ZŒI.n;�/� arising as the linearizations of the representable functors form a
set of projective generators for the category of I –functors, so it suffices to show the
vanishing of higher Tor groups for these. But the colimit over N of the I –functor
ZŒI.n;�/� is precisely the M –module Pn ; so Lemma 5.3 (ii) provides the vanishing
result and finishes the proof.

5.5 Example (Semistable and free symmetric spectra) When X is a semistable
symmetric spectrum or a free symmetric spectrum, then the higher Tor groups for the
homotopy of X vanish by Lemma 5.3 (ii). Thus in the spectral sequence (5.1) we have
E2

p;q D 0 for p ¤ 0, and so the edge homomorphism

Z˝M .��X / �! ��.DX /

is an isomorphism.

5.6 Example (Eilenberg–Mac Lane spectra) In Example 3.3 we associate an
Eilenberg–Mac Lane spectrum HW to every tame M –module W . The homotopy
groups of HW are concentrated in dimension 0, where we get the module W back.
So the spectral sequence (5.1) for HW collapses onto the axis q D 0 to isomorphisms

�p.D.HW // Š TorZŒM �
p .Z;W / :

In particular, the true homotopy groups of HW need not be concentrated in dimen-
sion 0.

Here is an example which shows that for nontrivial W the Eilenberg–Mac Lane
spectrum HW can be stably contractible: we let W be the kernel of a surjection
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Pn �! Z. Lemma 5.3 (ii) and the long exact sequence of Tor groups show that the
groups TorZŒM �

p .Z;W / vanish for all p � 0. Thus the homotopy groups of D.HW /

are trivial, ie, HW is stably contractible.

5.7 Example (Rational collapse) We claim that for every tame M –module W

and all p � 1, we have TorZŒM �
p .Q;W /D 0. So the spectral sequence (5.1) always

collapses rationally and the edge homomorphism is a rational isomorphism

Q˝M .��X / �! Q˝��.DX / :

The rational vanishing of higher Tor groups is special for tame M –modules.

To prove the claim we consider a monomorphism i W V �!W of tame M –modules
and show that the kernel of the map Z˝M i W Z˝M V �! Z˝M W is a torsion
group. The inclusions W .n/ �!W induce an isomorphism

colimn Z˝†n
W .n/ Š

��! Z˝M W :

For every n�0, the kernel of Z˝†n
i .n/W Z˝†n

V .n/ �! Z˝†n
W .n/ is annihilated

by the order of the group †n . Since the kernel of Z˝M i is the colimit of the kernels
of the maps Z˝†n

i .n/ , it is torsion. Thus the functor Q˝M � is exact on short exact
sequences of tame M –modules and the higher Tor groups vanish as claimed.

The Tor groups discussed in the next lemma arise in the spectral sequence (5.1) for
semifree symmetric spectra.

5.8 Lemma For every †n –module B we have a natural isomorphism

TorZŒM �
� .Z;Pn˝†n

B/ Š H�.†nIB/ :

Proof Since Pn is free as a right †n –module, the functor Pn˝†n
� is exact. The func-

tor takes the free †n –module of rank 1 to Pn , so by Lemma 5.3 (ii) it takes projective
†n –modules to tame M –modules which are acyclic for the functor Z˝M �.

Thus if P� �!B is a projective resolution of B by †n –modules, then Pn˝†n
P� is

a resolution of Pn˝†n
B which can be used to calculate the desired Tor groups. Thus

we have isomorphisms

TorZŒM �
� .Z;Pn˝†n

B/DH�.Z˝MPn˝†n
P�/ŠH�.Z˝†n

P�/DH�.†nIB/ :

5.9 Example (Semifree symmetric spectra) For semifree symmetric spectra (see
Example 3.6) the spectral sequence (5.1) typically does not degenerate. As an example
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we consider the semifree symmetric spectrum H2S2 , where S2 is a †2 –space by
coordinate permutations.

We first identify the stable equivalence type of H2S2 . The spectrum H2S2 is isomor-
phic to the quotient spectrum of †2 permuting the smash factors of .F1S1/^2 . Since
the †2 –action on .F1S1/^2 is free, the map

.F1S1/^2
^†2

E†C
2
�! .F1S1/^2=†2 DH2S2

which collapses E†2 to a point is a level equivalence. On the other hand, the stable
equivalence �^2W .F1S1/^2�!S is †2 –equivariant, so it induces a stable equivalence

.F1S1/^2
^†2

E†C
2
�! S ^†2

E†C
2
D†1B†C

2

on homotopy orbit spectra. Altogether we conclude that H2S2 is stably equivalent to
†1B†C

2
.

The spectral sequence (5.1) for H2S2 has as E2 –term the Tor groups of ��.H2S2/.
According to (3.7) these homotopy groups are isomorphic to P2˝†2

.�s
�C2

S2/.sgn/.
The sign representation cancels the sign action induced by the coordinate flip of S2 ,
so we have an isomorphism of M –modules �q.H2S2/ Š P2˝†2

�s
qS0 , this time

with trivial action on the stable homotopy groups of spheres. Using Lemma 5.8, the
spectral sequence (5.1) for H2S2 takes the form

E2
p;q Š Hp.†2I�

s
qS0/ H) �s

pCq.B†
C

2
/ :

This spectral sequence has nontrivial differentials and it seems likely that it coincides
with the Atiyah–Hirzebruch spectral sequence for the stable homotopy of the space
B†C

2
.
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