Exercises for **Topology II** Sheet 4

Exercise 1 (15 points). Show the following relative version of the topological Künneth theorem: **Theorem.** Let (X, A) and (Y, B) be pairs of spaces. Then for every $n \in \mathbb{N}$ the exterior product map

$$\bigoplus_{p+q=n} H_p(X,A;\mathbb{Z}) \otimes H_q(Y,B;\mathbb{Z}) \to H_n(X \times Y, X \times B \cup A \times Y;\mathbb{Z})$$

is split injective, and the cokernel is naturally isomorphic to

1

$$\bigoplus_{p+q=n-1} \operatorname{Tor}(H_p(X,A;\mathbb{Z}), H_q(Y,B;\mathbb{Z})).$$

Hint. Use that the Eilenberg–Zilber theorem was proved for general tensor products of simplicial abelian groups in the lecture.

Exercise 2 (15 points). Let $K = ([0,1] \times [0,1])/_{\sim}$ denote the Klein bottle. Use the Künneth theorem to compute the singular homology groups $H_*(K \times \mathbb{RP}^2; \mathbb{Z})$ and $H_*(K \wedge \mathbb{RP}^2; \mathbb{Z})$; here we choose the class of one of the corners as the basepoint of K, while the basepoint of \mathbb{RP}^2 is the point [1:0:0].

Exercise 3 (10 points). Let p be a prime. Further let

- A be an abelian group which is *p*-power torsion, i.e. for every element $a \in A$ there exists an $n \in \mathbb{N}$ such that $p^n \cdot a = 0$, and
- -B be an abelian group on which p acts invertibly, i.e. every element b of B is uniquely divisible by p.
- 1. Show that both the tensor product $A \otimes B$ and the Tor-group Tor(A, B) are the trivial group.
- 2. Let (X, x_0) and (Y, y_0) be path-connected pointed topological spaces such that for all m > 0 the group $H_m(X;\mathbb{Z})$ is *p*-power torsion while *p* acts invertibly on $H_m(Y;\mathbb{Z})$. Show that the inclusion

$$X \lor Y \hookrightarrow X \times Y$$

induces an isomorphism on all integral homology groups.

* Exercise 4 (5 points). This is marked as a bonus exercise not because it is particularly challenging, but rather because it is purely algebraic.

Let k be a field. The exterior algebra $\Lambda(k)$ over k is defined to be the commutative ring $k[\epsilon]/\epsilon^2$. We define a $\Lambda(k)$ -module structure on k by setting $\epsilon \cdot x = 0$ for all $x \in k$.

- 1. Construct a projective resolution P_* of k over $\Lambda(k)$ and compute the homology groups of the levelwise tensor product $P_* \otimes_{\Lambda(k)} k$, i.e. the Tor groups $\operatorname{Tor}_*^{\Lambda(k)}(k, k)$ as defined last term.
- 2. Conclude that $\Lambda(k)$ is not of global dimension ≤ 1 , i.e. there exists a submodule of a projective module that is not projective.