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Exercise 1 (14 points). In the lecture the following addendum to the acyclic models theorem was stated
without proof:

Theorem. Let C be a category, and let F,G : C → Ch+ two functors to the category of non-negatively
graded chain complexes. Let ψ0 : F0 → G0 be a natural transformation of functors from C to Ab. Suppose
that for all n ∈ N, Fn is isomorphic to a sum of represented functors Z[C(c,−)] for some family of C-objects,
such that Hn(G(c)) = 0 for all c in the family and n > 0. Then there is a natural transformation ψ : F → G
that is ψ0 in degree 0.

1. Prove this theorem.

2. Show that any two such extensions are naturally chain homotopic.

Exercise 2 (12 points). 1. Use the theorem from the previous exercise to construct chain maps

m : C∗(X;Z)⊗ C∗(Y ;Z) → C∗(X × Y ;Z)

which are natural in all simplicial sets X and Y and are given by the product map

m : Z[X0]⊗ Z[Y0] −→ Z[X0 × Y0](∑
i

rixi

)
⊗

∑
j

sjyj

 7−→
∑
i,j

ri ⊗ sj(xi, yj)

in chain dimension 0.

2. Show that any such m is associative up to natural chain homotopy, i.e. the two composites

C∗(X;Z)⊗ C∗(Y ;Z)⊗ C∗(Z;Z)
m⊗id−−−→ C∗(X × Y ;Z)⊗ C∗(Z;Z)

m−→ C∗(X × Y × Z;Z)

and

C∗(X;Z)⊗ C∗(Y ;Z)⊗ C∗(Z;Z)
id⊗m−−−→ C∗(X;Z)⊗ C∗(Y × Z;Z) m−→ C∗(X × Y × Z;Z)

are naturally chain homotopic.

3. Show that any such m is naturally chain homotopic to the Eilenberg–Zilber map defined in the lecture.
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Construction. Recall the Bockstein homomorphism on homology associated to a short exact sequence of

abelian groups 0 → A
i−→ B

p−→ C → 0. There is an analogous version for cohomology: For every space X,
the sequence

0 → C∗(X;A)
i∗−→ C∗(X;B)

p∗−→ C∗(X;C) → 0

is short exact, where i∗ sends a function f : S(X)n → A to the composite i ◦ f : S(X)n → B, and similarly
for p∗. Hence there is an induced long exact sequence in cohomology groups of the form

· · · → Hn−1(X;C)
β−→ Hn(X;A)

i∗−→ Hn(X;B)
p∗−→ Hn(X;C)

β−→ . . .

The boundary map β is called the Bockstein homomorphism. Explicitly, β sends a class [c] of a cocycle

c ∈ Cn(X;C) to the class [i−1
∗ (∂n(c′))], where c′ is a lift of c along the surjection Cn(X;B)

p∗−→ Cn(X;C),
∂n(c′) is its image under the nth differential, and i−1

∗ (∂n(c′)) is the unique preimage under the embedding

Cn+1(X;A)
i∗−→ Cn+1(X;B) (which can be shown to be a cocycle).

Exercise 3 (14 points). 1. Consider the Bockstein H1(X;Z/2) → H2(X;Z/2) associated to the short
exact sequence 0 → Z/2 2−→ Z/4 → Z/2 → 0. Show that β is given by the ‘cup-square,’ i.e., it sends a
class x ∈ H1(X;Z/2) to x2 = x ∪ x ∈ H2(X;Z/2).
Hint. Consider the explicit formula for the Alexander–Whitney map in degree 2.

2. Use this to show that the cup product H1(RP2;Z/2)×H1(RP2;Z/2) → H2(RP2;Z/2) is non-trivial.

∗Exercise 4 (15 bonus points). Let X and Y be CW-complexes, at least one of which is locally compact, so
that X × Y carries an induced CW-structure with n-skeleton given by

n⋃
i=0

Xi × Yn−i ⊆ X × Y.

We further choose a commutative ring R, and consider the maps

αi,n−i : Hi(Xi, Xi−1;R)⊗R Hn−i(Yn−i, Yn−i−1;R)
∇−−→ Hn(Xi × Yn−i, Xi−1 × Yn−i ∪Xi × Yn−i−1;R)

−−→ Hn((X × Y )n, (X × Y )n−1;R)

where ∇ is the relative Eilenberg–Zilber map on homology.

1. Show that the αi,n−i assemble to a map of chain complexes

α : Ccell
∗ (X;R)⊗R C

cell
∗ (Y ;R) → Ccell

∗ (X × Y ;R).

Hint. Use naturality to reduce to the case where X and Y are disks.

2. Show that α is an isomorphism of chain complexes.

Hint. Again reduce to the case of disks and use that the Eilenberg–Zilber map induces an isomorphism

Hi(Di, Si−1;R)⊗R H
n−i(Dn−i, Sn−i−1;R)

∼=−→ Hn(Di ×Dn−i, Si−1 ×Dn−i ∪Di × Sn−i−1;R).

3. We now assume in addition that X and Y have only finitely many cells in each dimension (in fact it
would be enough to assume this for only one of X and Y ). Use the above to construct an isomorphism

C∗
cell(X × Y ;R)

∼=−−→ C∗
cell(X;R)⊗R C

∗
cell(Y ;R)

of cochain complexes.
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