Summer term 2025

Exercises for **Topology II** Sheet 1

Exercise 1 (10 points). Let $p: \mathbb{R}P^2 \to \mathbb{R}P^2/\mathbb{R}P^1$ be the collapse map, and recall that the target is homeomorphic to the 2-sphere S^2 (for example, because $\mathbb{R}P^2$ admits a 2-dimensional CW-structure with 1-skeleton $\mathbb{R}P^1$ and precisely one 2-cell).

- 1. Show that the induced map on homology $H_n(p;\mathbb{Z}): H_n(\mathbb{R}P^2;\mathbb{Z}) \to H_n(\mathbb{R}P^2/\mathbb{R}P^1;\mathbb{Z})$ is trivial for all n > 0.
- 2. Show that the induced map on second cohomology $H^2(p;\mathbb{Z}): H^2(\mathbb{R}P^2/\mathbb{R}P^1;\mathbb{Z}) \to H^2(\mathbb{R}P^2;\mathbb{Z})$ is non-trivial.
- 3. Explain why this implies that there cannot be a section of the surjection

 $\Phi: H^2(X;\mathbb{Z}) \to \operatorname{Hom}(H_2(X;\mathbb{Z}),\mathbb{Z})$

which is natural in all topological spaces X.

Remark. Similar examples show that there does not exist a natural section of

 $\Phi \colon H^n(X;\mathbb{Z}) \to \operatorname{Hom}(H_n(X;\mathbb{Z}),\mathbb{Z})$

for any $n \ge 2$; on the other hand, Φ is even an isomorphism for n = 0, 1.

Exercise 2 (15 points). Let X and Y be simplicial sets and R a ring. We define an exterior product

 $- \times -: H^n(X; R) \times H^m(Y; R) \to H^{n+m}(X \times Y; R)$

via

$$x \times y \coloneqq p_X^*(x) \cup p_Y^*(y),$$

where $p_X \colon X \times Y \to X$ and $p_Y \colon X \times Y \to Y$ are the projections. Show:

1. The exterior product is associative, i.e., the relation

$$(x \times y) \times z = x \times (y \times z)$$

in $H^{n+m+k}(X \times Y \times Z; R)$ holds for all $x \in H^n(X; R)$, $y \in H^m(Y; R)$ and $z \in H^k(Z; R)$.

2. If R is commutative, then the exterior product is commutative in the following sense: for $x \in H^n(X; R)$ and $y \in H^m(Y; R)$ we have

$$y \times x = (-1)^{nm} \cdot \tau^*(x \times y)$$

in $H^{n+m}(Y \times X; R)$, where $\tau: X \times Y \to Y \times X$ is the homeomorphism swapping the two factors.

3. If x and y are classes in the cohomology of the same space X (not necessarily in the same degree), we have

$$x \cup y = \Delta^*(x \times y)$$

where $\Delta \colon X \to X \times X$ is the diagonal map. In other words: The cup-product and the exterior product determine each other.

please turn over

Exercise 3 (15 points). Let X be a space, $A, B \subset X$ open subsets and R a ring. Recall from the lecture that the Alexander–Whitney map induces a bilinear map

$$H^n(X,A;R) \times H^m(X,B;R) \rightarrow H^{n+m}(X,A \cup B;R)$$

on relative cohomology, called the *relative cup-product*.

- 1. Show that the relative cup-product is associative.
- 2. We assume that $X = A \cup B$ and both A and B are contractible. Show that the cup-product of two classes of degree > 0 in $H^*(X; R)$ is always trivial.
- 3. Recall that the (unreduced) suspension ΣX of a space X is defined as the quotient space of $X \times [0,1]$ by the equivalence relation generated by the identifications $(x_1,0) \sim (x_2,0)$ and $(x_1,1) \sim (x_2,1)$ for all $x_1, x_2 \in X$. Show that the cup-product of any two cohomology classes in $H^*(\Sigma X; \mathbb{Z})$ of positive dimension is trivial.
- * Exercise 4 (10 bonus points). Fix a generator $\tau \in H^1(S^1; \mathbb{Z}) \cong \mathbb{Z}$. For every topological space X, we define a map

$$\beta \colon [X, S^1] \to H^1(X; \mathbb{Z})$$

from the set of unbased homotopy classes of maps $X \to S^1$ via $[f] \mapsto f^* \tau$.

- 1. Show that β is well-defined and a natural transformation of contravariant functors **Top** \rightarrow **Set** (where we make $[X, S^1]$ contravariantly functorial in X via precomposition).
- 2. Equip X with an arbitrary basepoint. Show that the forgetful map $[X, S^1]_* \to [X, S^1]$ from based to unbased homotopy classes is bijective.

Hint. Use the group structure on S^1 coming from the multiplication on \mathbb{C} .

3. Assume now that X admits a CW-structure. Show that β is bijective.

Hint. Reduce to the case where X has a single 0-cell and no cells above dimension 2.

Remark. The set $[X, S^1]$ carries an abelian group structure via the multiplication on S^1 , and one can show that β is actually an isomorphism of groups. More generally, one can find for any $n \ge 0$ and any abelian group A a topological abelian group K(A, n) together with natural group isomorphisms $[X, K(A, n)] \cong H^n(X; A)$ for all CW-complexes X.