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Abstract. We prove a splitting result in global equivariant homotopy theory that is a simultaneous

refinement of the Segal–Becker splitting and its equivariant generalizations, and of the explicit Brauer
induction of Boltje and Symonds. We show that the morphism of ultra-commutative ring spectra from

Σ∞
+ BglU(1) to the global K-theory spectrum that classifyies the tautological U(1)-representation admits a

section on underlying global infinite loop spaces that is a 1-fold global loop map. We prove that this global
Segal–Becker splitting induces the Boltje–Symonds explicit Brauer induction on equivariant homotopy

groups, and that it induces the classical Segal–Becker splittings on equivariant cohomology theories. As an

application we rigidify the unstable Adams operations in equivariant K-theory to global self-maps of the
global space BUP.
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Introduction

The purpose of this paper is to prove a splitting result in global equivariant homotopy theory that is a
simultaneous refinement of the Segal–Becker splitting [4, 24] and its equivariant generalizations [8, 11], and
of the explicit Brauer induction of Boltje [5] and Symonds [28]. The main player is the morphism of ultra-
commutative ring spectra η : Σ∞

+ P −→ KU from the unreduced suspension spectrum of the global space
P, a multiplicative model of the global classfying space of U(1) and a global refinement of CP∞, to the
global K-theory spectrum that classifies the tautological U(1)-representation. We construct a section to the
morphism of underlying global infinite loop spaces Ω•(η) : Ω•(Σ∞

+ P) −→ Ω•(KU) that is a 1-fold global loop
map. We prove that this global Segal–Becker splitting induces the Boltje–Symonds explicit Brauer induction
on equivariant homotopy groups, and that it induces the classical Segal–Becker splittings on equivariant
cohomology theories. As an application we rigidify the unstable Adams operations in equivariant K-theory
to global loop self-maps of the representing global space BUP.

To put our results into perspective, we give a brief review of the history of the Segal–Becker splitting and
of ‘explicit Brauer induction’. The Segal–Becker splitting is the statement that the morphism Σ∞

+ CP∞ −→

Date: October 12, 2025; 2020 AMS Math. Subj. Class.: 55N91, 55P91, 55Q91.
1



2 STEFAN SCHWEDE

KU from the suspension spectrum of infinite complex projective space to the complex K-theory spectrum
that classifies the tautological line bundle over CP∞ has a section after passing to infinite loop spaces. The
theorem implies in particular that the transformation of degree 0 cohomology theories on spaces induced by
the morphism is a split epimorphism, and several papers on the subject state the splitting in this form. The
original splitting theorem was proved by Segal in [24] for complex K-theory. Becker provided a different
proof in [4] that also provides a splitting for real and symplectic K-theory. Segal’s construction produces
p-complete maps for every prime p that are then assembled via an arithmetic square; all other sources on
the subject use transfers in some incarnation to construct the relevant splitting. It seems to be well-known
that the section to Ω∞(Σ∞

+ CP∞) −→ Ω∞KU ≃ Z × BU can be arranged as a loop map, but it does not
deloop twice; we recall an argument in Remark 4.9.

In the paper [16], Nagata, Nishida and Toda prove a version of Segal’s splitting for Real K-theory in
the sense of Atiyah [2], i.e., the K-theory made from complex vector bundle over spaces with involutions,
equipped with a fiberwise conjugate-linear involution. A different proof of the Real splitting was given by
Kono [14]. On underlying non-equivariant spaces this recovers Segal splitting for complex K-theory; taking
C-fixed points yields Becker’s splitting for real K-theory. A version of the Segal–Becker splitting in motivic
homotopy theory, for algebraic K-theory in place of topological K-theory, is provided in [13].

An equivariant generalization of the Segal–Becker splitting for finite groups G was obtained by Iriye and
Kono [11, Theorem 1]. Iriye and Kono also remark in [11, Theorem 1’] that their method works in the same
way for Real-equivariant K-theory, for finite groups with involution. The most comprehensive discussion
of an equivariant Segal–Becker splitting is in Crabb’s paper [8]; Crabb proves the Segal–Becker splitting
for compact Lie groups (and not just for finite groups), and he shows that his splittings are natural for
restriction along continuous homomorphisms between compact Lie groups. Compatible equivariant results
for all compact Lie groups are always highly suggestive of an underlying globally-equivariant statement,
and this is precisely what had originally motivated the work in this paper.

Now we give a more detailed outline of our own results. The non-equivariant morphism Σ∞
+ CP∞ −→ KU

that classifies the tautological line bundle over CP∞ has a particularly nice and prominent global-equivariant
refinement, a morphism of global spectra

η : Σ∞
+ P −→ KU .

The global K-theory spectrum KU was introduced by Joachim [12], see also [18, Construction 6.4.9]; for
every compact Lie group G, the underlying genuine G-spectrum ofKU represents G-equivariant complex K-
theory, see [12, Theorem 4.4] or [18, Corollary 6.4.23]. The global space P is is a specific global refinement of
CP∞, made from projective spaces of complex inner product spaces, see Construction 3.1. The underlying
G-equivariant homotopy type of P is that of the projective space of a complete complex G-universe. It
is a global classifying space, in the sense of [18, Definition 1.1.27], for the circle group U(1) that we
shall denote by T throughout this paper; so its unreduced global suspension spectrum Σ∞

+ P represents

the functor πT0 on the global stable homotopy category, compare [18, Theorem 4.4.3]. The morphism
η is extremely highly structured, and has a range of marvelous properties. It is a morphism of ultra-
commutative ring spectra that sends the universal element in πT0 (Σ

∞
+ P) to the class of the tautological

T -representation in πT0 (KU) ∼= R(T ). As a morphism of ultra-commutative ring spectra, the effect of η on
equivariant homotopy groups is not only compatible with restriction, inflations and transfers, but also with
products, multiplicative power operations and norms. In [21], the author establishes a global refinement and
generalization of Snaith’s celebrated theorem [25, 26], saying that KU can be obtained from Σ∞

+ CP∞ by
‘inverting the Bott class’: the morphism η : Σ∞

+ P −→ KU is initial in the ∞-category of ultra-commutative
ring spectra among morphisms from Σ∞

+ P that invert a specific family of representation-graded equivariant

homotopy classes in π
U(n)
νn (Σ∞

+ P), pre-Bott classes, for all n ≥ 1.
The global space U is a specific global refinement of the infinite unitary group, made from the unitary

groups of all hermitian inner product spaces, see Construction 1.2. The underlying G-equivariant homotopy
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type of U is that of the unitary group of a complete complex G-universe. The global space U features in
a global refinement of Bott periodicity, a global equivalence Ω2U ∼ U that encodes equivariant Bott
periodicity for all compact Lie groups at once, see [18, Theorem 2.5.41]. In Construction 4.1 we use the
global stable splitting of Σ∞

+ U from [19, Theorem 4.10] to construct a morphism

d : U −→ Ω•(Σ∞
+ P ∧ S1)

in the unstable global homotopy category, our deloop of the global Segal–Becker splitting. The splitting
property is our first main result, to be proved as Theorem 4.2:

Theorem A. The composite

U
d−−→ Ω•(Σ∞

+ P ∧ S1)
Ω•(η∧S1)−−−−−−→ Ω•(KU ∧ S1)

is a global equivalence.

We emphasize that the composite Ω•(η ∧ S1) ◦ d of Theorem A is not just any global equivalence, but it
coincides with the ‘preferred infinite delooping’ of U, i.e., the global equivalence

U
∼−−→ Ω•(shKU)

established in [18, Theorem 6.4.21], up to a natural global equivalence KU ∧ S1 ∼ shKU. In fact, all
the work in proving Theorem A goes into showing precisely this. At the heart of the argument is a subtle
connection between the global stable splitting and the preferred delooping of U, two features that are
a priori unrelated. As we show in Theorem 3.10, the adjoint Σ∞U −→ shKU of the preferred infinite
delooping annihilates the higher terms of the stable global splitting (1.1).

The global space BUP is a global refinement of the space Z × BU , and BUP represents equivariant
K-theory, see [18, Theorem 2.4.10]. Just as Z × BU is the infinite loop space of the topological K-theory
spectrum KU , the global space BUP ‘is’ the global infinite loop space of KU, see [18, Remark 6.4.22]. By
looping the morphism d : U −→ Ω•(Σ∞

+ P∧S1) and composing with the global Bott periodicity equivalence
BUP ∼ ΩU from [18, Theorem 2.5.41], we obtain another morphism in the unstable global homotopy
category

c : BUP −→ Ω•(Σ∞
+ P) ,

the global Segal–Becker splitting. By design, the morphism c is a global loop map. Its splitting property, to
be proved as Corollary 4.8, is an easy consequence of Theorem A:

Theorem B. The composite

BUP
c−−→ Ω•(Σ∞

+ P)
Ω•(η)−−−−→ Ω•(KU)

is a global equivalence.

A morphism that admits a section tends to admit many different sections. Our next two results justify
that the global Segal–Becker splitting c : BUP −→ Ω•(Σ∞

+ P) is the ‘correct’ splitting to Ω•(η), by showing
that its effect on equivariant homotopy groups and on equivariant cohomology theories recover certain
classical and much studied algebraic sections. On equivariant homotopy groups, the global Segal–Becker
splitting induces the so-called explicit Brauer induction of Boltje [5] and Symonds [28]. By Brauer’s theorem
[6, Theorem I] the complex representation ring of a finite group is generated, as an abelian group, by
representations that are induced from 1-dimensional representations of subgroups. Segal generalized this
result to compact Lie groups in [23, Proposition 3.11 (ii)], where ‘induction’ refers to the smooth induction.
We write A(T,G) for the free abelian group with basis the symbols [H,χ], where H runs over all conjugacy
classes of closed subgroup of G with finite Weyl group, and χ : H −→ T = U(1) runs over all characters of
H. The Brauer–Segal theorem can then be paraphrased as the fact that the group homomorphism

A(T,G) −→ R(G)
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that sends [H,χ] to trGH(χ) is surjective. An explicit Brauer induction is an ‘explicit’ section to this map,
possibly with naturality properties as the group G varies. The first explicit Brauer induction was Snaith’s
formula [27, Theorem (2.16)]; however, Snaith’s maps are not additive and not compatible with restriction
to subgroups. Not much later Boltje [5] specified a different explicit Brauer induction formula by purely
algebraic means; Symonds [28] gave a topological interpretation of Boltje’s construction. The Boltje–
Symonds maps are additive and natural for restriction along group homomorphisms; the maps are not (and
in fact cannot be) in general compatible with transfers. We prove the following result as Theorem 5.7:

Theorem C. For every compact Lie group G, the composite

R(G) ∼= πG0 (BUP)
πG
0 (c)−−−−→ πG0 (Σ

∞
+ P) ∼= A(T,G)

coincides with the Boltje–Symonds explicit Brauer induction.

Our fourth main result justifies the name ‘global Segal–Becker splitting’ for the morphism c : BUP −→
Ω•(Σ∞

+ P) by showing that it refines the classical equivariant Segal–Becker splittings. The latter are defined
at the level of equivariant cohomology theories, and we review them in Construction 5.8. We show the
following in Theorem 5.15:

Theorem D. Let G be a compact Lie group and A a finite G-CW-complex. Then the composite

KG(A) ∼= [A,BUP]G
[A,c]G−−−−→ [A,Ω•(Σ∞

+ P)]G

coincides with the G-equivariant Segal–Becker splitting ϑG,A defined in (5.9).

The isomorphism between the G-equivariant K-group KG(A) and the group [A,BUP]G will be recalled
in Construction 5.13. The group [A,Ω•(Σ∞

+ P)]G is isomorphic to the group of morphisms from Σ∞
+ A to

Σ∞
+ P(UG) is the G-equivariant stable homotopy category, where P(UG) is a classifying G-space for G-

equivariant complex line bundles. Theorem C is in fact a special case of Theorem D, but we prove Theorem
C first, and then deduce Theorem D using the global functoriality.

As an application of the global Segal–Becker splitting, we construct global rigidifications of the unstable
Adams operations on equivariant K-theory. In (6.4) we define the n-th global Adams operation

ψn : BUP −→ BUP ,

for n ≥ 1. These global Adams operations are morphisms in the the unstable global homotopy category
that arise as global loop maps, the deloopings being certain endomorphisms of U. The following result,
proved as Theorem 6.7, justifies the name of the global Adams operations:

Theorem E. For every compact Lie group G and every finite G-CW-complex A, the following square
commutes:

KG(A)

∼=
��

ψn

// KG(A)

∼=
��

[A,BUP]G
[A,ψn]G

// [A,BUP]G

The upper horizontal map in the diagram is the n-th classical Adams operation on equivariant K-theory.

Conventions. We use the models of [18] to represent unstable and stable global homotopy types. So
global spaces are represented by orthogonal spaces, relative to the notion of global equivalence introduced
in [18, Definition 1.1.2]. Our global Segal–Becker splitting and its deloop will thus be morphisms in the
unstable global homotopy category, i.e., the localization of the category of orthogonal spaces at the class of
global equivalences. Similarly, global spectra are represented by orthogonal spectra, relative to the notion
of global equivalence introduced in [18, Definition 4.1.3].
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1. The global stable splitting of U

The construction of our deloop of the global Segal–Becker splitting depends crucially on a stable splitting
of the global space U. In [19], the author constructs certain morphisms sk : Σ

∞(GrCk )
ad(k) −→ Σ∞

+ U in the
global stable homotopy category such that the combined morphism

(1.1)
∑

sk :
∨
k≥0

Σ∞(GrCk )
ad(k) ∼−−→ Σ∞

+ U

is a global equivalence, see [19, Theorem 4.10]. The splitting (1.1) is a global-equivariant refinement

of Miller’s stable splitting [15] of the infinite unitary group. The orthogonal space GrCk is made from

Grassmannians of complex k-planes; see [18, Example 2.3.16]. And (GrCk )
ad(k) denotes the global Thom

space over GrCk associated with the adjoint representation ad(k) of U(k); see [19, Example 3.12]. In this
section we review the construction of the splitting morphisms, and then translate the splitting (1.1) into an
interpretation of the group JΣ∞U, XK of stable global morphisms in terms of ad(k)-graded U(k)-equivariant
homotopy groups of X, see Theorem 1.13. Moreover, we establish two geometric fixed point relations for
the splitting that we need later, see Theorems 1.16 and 1.21.

Construction 1.2 (The ultra-commutative monoid U). We recall the ultra-commutative monoid U made
from unitary groups, compare [18, Example 2..37]. We write

VC = C⊗R V

for the complexification of a euclidean inner product space V . The euclidean inner product ⟨−,−⟩ on
V induces a hermitian inner product (−,−) on VC, defined as the unique sesquilinear form that satisfies
(1⊗ v, 1⊗ w) = ⟨v, w⟩ for all v, w ∈ V . The value of the orthogonal space U on V is

U(V ) = U(VC) ,

the unitary group of the complexification of V . The complexification of every R-linear isometric embedding
φ : V −→W preserves the hermitian inner products, so we can define a continuous group homomorphism

U(φ) : U(V ) −→ U(W )

by conjugation with φC : VC −→ WC and the identity on the orthogonal complement of the image of φC.
The commutative multiplication of U is given by the direct sum of unitary automorphisms

U(V )×U(W ) −→ U(V ⊕W ) , (A,B) 7→ A⊕B .

If G is a compact Lie group, then the underlying G-space is the unitary group of a complete complex G-
universe. Since unitary G-representations break up into isotypical summand, its G-fixed points decompose
as a weak product, indexed by the isomorphism classes of irreducible unitary G-representations, of infinite
unitary groups. We refer to [18, Example 2..37] for more details.
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The global stable splitting morphism sk : (GrCk )
ad(k) −→ Σ∞

+ U ultimately stems from a specific U(k)-

equivariant stable splitting of the ‘top cell’ in U(k)ad, the unitary group U(k) acting on itself by conjugation.
We review this splitting now, following Crabb’s exposition in [7, page 39]. In [18] and [19] we use different
conventions on whether the suspension coordinate in an orthogonal suspension spectrum is written on the
left of right of the argument. In this paper, we adopt the convention of [18], with the suspension coordinate
written on the left; this entails some minor changes to some formulas in [19], moving some suspension
coordinates to the other side.

Construction 1.3 (Splitting the top cell off U(k)ad). We write

ad(k) = {X ∈M(k × k;C) : X = −X̄t}
for the R-vector space of skew-hermitian complex k× k matrices. The unitary group U(k) acts on ad(k) by
conjugation, and this action witnesses ad(k) as the adjoint representation of U(k), whence the name. The
Cayley transform is the U(k)-equivariant open embedding

ad(k) −→ U(k)ad , X 7−→ (X − 1)(X + 1)−1

onto the subspace of U(k) of those matrices that do not have +1 as an eigenvalue. The associated collapse
map

U(k)ad −→ Sad(k)

admits a section in the stable homotopy category of genuine U(k)-spectra, as follows. We write

sa(k) = {Z ∈M(k × k;C) : Z = Z̄t}
for the R-vector space of hermitian complex k×k matrices, with U(k)-action by conjugation. A basic linear
algebra fact, sometimes referred to as ‘polar decomposition’, is that the U(k)-equivariant map

(1.4) ϕk : sa(k)× U(k) −→ M(k × k;C) = sa(k)⊕ ad(k) , (Z,A) 7→ A · exp(−Z)
is an open embedding onto the general linear group Gln(C); for a proof, see for example [19, Proposition
B.17]. This open embedding has an associated U(k)-equivariant collapse map

(1.5) tk : Ssa(k)⊕ad(k) −→ Ssa(k) ∧ U(k)ad+

that is a stable section to the previous collapse map U(k)ad −→ Sad(k), see the argument after the proof of
Theorem 1.8 in [7, page 39], or the proof of [19, Theorem 4.7].

Next we recall how the U(k)-equivariant stable splitting (1.5) gives rise to a specific equivariant

homotopy class ⟨tk⟩ in π
U(k)
ad(k)(Σ

∞
+ U); this class in turn characterizes the global splitting morphism

sk : Σ
∞(GrCk )

ad(k) −→ Σ∞
+ U by the relation (1.10).

Construction 1.6 (The global splitting morphism). We let W be a unitary representation of a compact
Lie group G. We write uW for the underlying orthogonal G-representation, i.e., the underlying R-vector
space with the euclidean inner product ⟨v, w⟩ = Re(v, w), the real part of the hermitian inner product. The
map

(1.7) ζW : W −→ C⊗R (uW ) = (uW )C , w 7−→ (1⊗ w − i⊗ iw)/
√
2

is a G-equivariant C-linear isometric embedding. So conjugation by ζW and extension by the identity on
the orthogonal complement of its image is a continuous group monomorphism

ζW∗ : U(W ) −→ U((uW )C) = U(uW ) .

Since ζW is G-equivariant, the map ζW∗ is G-equivariant for the conjugation action on the source and for
the G-action on U(uW ) through the functoriality of the orthogonal space U. One should beware that
ζW∗ is different from the monomorphism that sense a unitary automorphism φ : W −→ W to the unitary
automorphism (uφ)C of (uW )C.
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We let νk denote the tautological unitary U(k)-representation on Ck. In this special case we obtain a
U(k)-equivariant monomorphism

(1.8) ζk∗ = ζνk∗ : U(k)ad = U(νk) −→ U(u(νk)) .

The U(k)-equivariant collapse map tk was defined in (1.5). In [19, Construction 4.4], we define (for K = C,
m = 0, and in slightly different notation) a class

⟨tk⟩ ∈ π
U(k)
ad(k)(Σ

∞
+ U)

as the one represented by the U(k)-map

Sνk⊕sa(k)⊕ad(k) Sνk∧tk−−−−−→ Sνk⊕sa(k) ∧ U(k)ad+
Sνk⊕sa(k)∧ζk∗−−−−−−−−−→ Sνk⊕sa(k) ∧U(u(νk))+(1.9)

Sνk⊕sa(k)∧U(i1)−−−−−−−−−−−→ Sνk⊕sa(k) ∧U(u(νk)⊕ sa(k))+ = (Σ∞
+ U)(u(νk)⊕ sa(k)) .

Here i1 : u(νk) −→ u(νk)⊕ sa(k) is the embedding of the second summand. In [19], we consider ⟨tk⟩ as an
equivariant stable homotopy class of the k-th stage of the eigenspace filtration of U, but now we work in
the ambient orthogonal space U.

The tautological class

eU(k),ad(k) ∈ π
U(k)
ad(k)(Σ

∞(GrCk )
ad(k))

is defined in [19, (A.16)]. By [19, Theorem A.17 (i)], the pair (Σ∞(GrCk )
ad(k), eU(k),ad(k)) represents

the functor π
U(k)
ad(k) : GH −→ Ab on the global stable homotopy category. The global splitting morphism

sk : Σ
∞(GrCk )

ad(k) −→ Σ∞
+ U is defined in [19, (4.6)] by the property that it takes the tautological class to

⟨tk⟩, i.e., by the relation

(1.10) (sk)∗(eU(k),ad(k)) = ⟨tk⟩ .

In this paper, we shall mostly work with the reduced suspension spectrum Σ∞U (as opposed to the
unreduced one), and with the ‘reduced’ version of the classes ⟨tk⟩. We endow U with the intrinsic basepoint
1 ∈ U consisting of the multiplicative units. We write U+ for U with an additional basepoint added. This
comes with based maps U+ −→ S0 and U+ −→ U; the first of these maps U to the non-basepoint of S0,
and the second is the identity of U and maps the extra basepoint to the intrinsic basepoint 1. We write

ϵ : Σ∞
+ U −→ Σ∞

+ ∗ = S and q : Σ∞
+ U −→ Σ∞U

for the morphisms induced on reduced suspension spectra. The combined morphism

(1.11) (ϵ, q) : Σ∞
+ U

∼−−→ S× (Σ∞U)

is then a global equivalence. We set

(1.12) σk = q∗⟨tk⟩ ∈ π
U(k)
ad(k)(Σ

∞U) .

The following representability result is a fairly direct consequence of the stable splitting (1.1). We shall
use it to construct global stable morphisms with source Σ∞U, and to check commutativity of diagrams
whose initial object is Σ∞U. We let J−,−K denote the group of morphisms in the global stable homotopy
category.

Theorem 1.13. For every global spectrum X, the evaluation map

JΣ∞U, XK
∼=−−→

∏
k≥1

π
U(k)
ad(k)(X) , f 7−→ (f∗(σk))k≥1

is an isomorphism.
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Proof. The splitting (1.1) proved in [19, Theorem 4.10] and the representability property of (Σ∞(GrCk )
ad(k),

eU(k),ad(k)) together provide the natural isomorphism

(1.14) JΣ∞
+ U, XK

∼=−−→
∏

k≥0
π
U(k)
ad(k)(X) , f 7−→ (f∗⟨tk⟩)k≥0 .

The global equivalence (1.11) induces another isomorphism

JS, XK × JΣ∞U, XK
∼=−−→ JΣ∞

+ U, XK , (a, b) 7−→ a ◦ ϵ+ b ◦ q .

The morphism ϵ : Σ∞
+ U −→ S sends the class ⟨t0⟩ to 1 ∈ π0(S), so the composite

JS, XK ϵ∗−−→ JΣ∞
+ U, XK

f 7→f∗⟨t0⟩−−−−−−→ π0(X)

is an isomorphism. Moreover, q∗⟨t0⟩ = 0 and q∗⟨tk⟩ = σk, so the isomorphism (1.14) restricts an isomor-
phism as in the statement of the theorem, where now the factor indexed by k = 0 is omitted. □

Construction 1.15. The commutative multiplication on U induces the structure of commutative orthog-
onal ring spectrum on its unreduced suspension spectrum. The multiplication in turn provides graded-
commutative ring structures on the equivariant homotopy groups, and external multiplication maps

× : πGk (Σ
∞
+ U)× πKl (Σ∞

+ U) −→ πG×K
k+l (Σ∞

+ U) , x× y = p∗G(x) · p∗K(y) ;

here pG : G×K −→ G and pK : G×K −→ K are the projections. We let T k denote the diagonal maximal
torus of U(k). The following proposition will show that ⟨tk⟩ and the class

⟨t1⟩ × · · · × ⟨t1⟩ ∈ πT
k

k (Σ∞
+ U) ,

the k-fold exterior product of copies of ⟨t1⟩ ∈ πT1 (Σ
∞
+ U), have the same T k-geometric fixed points. The

T k-fixed points of the adjoint representation are the diagonal matrices inside ad(k), and we use the map

Rk −→ ad(k) , (x1, . . . , xk) 7−→

ix1 . . . 0
...

. . .
...

0 . . . ixk


to identify ad(k)T

k

with Rk. The T k-geometric fixed point map then becomes a homomorphism

ΦT
k

: π
U(k)
ad(k)(Σ

∞
+ U) −→ ΦT

k

k (Σ∞
+ U) .

Theorem 1.16. For every k ≥ 2, the relation

ΦT
k

(⟨t1⟩ × · · · × ⟨t1⟩) = ΦT
k

⟨tk⟩

holds in the group ΦT
k

k (Σ∞
+ U).

Proof. We write

∆ : Ck −→ M(k × k;C) , (z1, . . . , zk) 7→

z1 . . . 0
...

. . .
...

0 . . . zk


for the embedding as diagonal matrices. This map embeds U(1)k = T k diagonally into U(k), it embeds
ad(1)k diagonally into ad(k), and it embeds sa(1)k diagonally into sa(k). We denote all these restrictions
by ∆, too.
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We will show that the following diagram of based continuous maps commutes:

(1.17)

(Ssa(1)⊕ad(1))∧k
(t1)

∧k

//

shuffle ∼=
��

(Ssa(1) ∧ U(1)+)
∧k

∼= shuffle
��

(Ssa(1)∧ζ1∗)
∧k

// (Ssa(1) ∧U(u(ν1))
T
+)

∧k

shuffle
��

Ssa(1)k⊕ad(1)k

∼=∆∧∆
��

Ssa(1)k ∧ U(1)k+
Ssa(1)k∧(ζ1∗)

k
+ //

∼= ∆∧∆
��

(Ssa(1)k ∧U(u(ν1))
k
+)
Tk

(∆∧µ(k)

u(ν1)
)T

k

��
(Ssa(k)⊕ad(k))T

k (tk)
Tk

// (Ssa(k) ∧ U(k)ad+ )T
k

(Ssa(k)∧(U(i1)◦ζk∗ ))
Tk

��

(Ssa(k)∧ζk∗ )
Tk

// (Ssa(k) ∧U(u(νk))+)
Tk

(Sad(k)∧U(i1)+)T
k

��
((Σ∞

+ U)(u(νk)⊕ sa(k)))T
k

(Sad(k) ∧U(u(νk)⊕ sa(k))+)
Tk

The clockwise composite represents the class ΦT
k

(⟨t1⟩ × · · · × ⟨t1⟩); here we exploit that (ν1)
T = 0, so

the smash factor Sν1 in the representative (1.9) for ⟨t1⟩ does not contribute to the representative for its

T -geometric fixed points, and we omit it. The counter clockwise composite represents the class ΦT
k⟨tk⟩;

here we exploit that (νk)
Tk

= 0, so the smash factor Sνk in the representative (1.9) for ⟨tk⟩ does not
contribute to the representative for its T k-geometric fixed points. Granted its commutativity, the diagram
(1.17) witnesses the desired relation.

Now we justify the commutativity of the diagram (1.17). The following diagram of open embeddings
commutes:

(sa(1)× U(1))k
(ϕ1)

k

//

shuffle ∼=
��

Ck

∆∼=

��

(sa(1)⊕ ad(1))k

∼= shuffle

��
sa(1)k × U(1)k

∼=∆×∆
��

sa(1)k × ad(1)k

∼= ∆×∆
��

(sa(k)× U(k)ad)T
k

(ϕk)
Tk

// M(k × k,C)Tk

(sa(k)× ad(k))T
k

The vertical maps in this diagram are homeomorphisms. So associated diagram of collapse maps commutes,
too, which is the left part of diagram (1.17). The iterated multiplication morphism

µ
(k)
u(ν1)

: U(u(ν1))× · · · ×U(u(ν1)) −→ U(u(ν1)⊕ · · · ⊕ u(ν1)) = U(u(νk))

of the ultra-commutative monoid U is given by orthogonal direct sum. So it participates in a commutative
diagram:

U(1)k

∆

��

(ζ1∗)
k

// U(u(ν1))
k

µ
(k)

u(ν1)

��
U(k)ad

ζk∗

// U(u(νk))

This implies the commutativity of the middle right part of diagram (1.17). □

Construction 1.18. We write

(1.19) c : S1 ∼=−−→ U(1) , c(x) = (x+ i)(x− i)−1
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for the Cayley transform. We write

∂ : C −→ M(k × k;C) , z 7→

z . . . 0
...

. . .
...

0 . . . z


for the embedding as constant diagonal matrices. This map identifies U(1) with the center of U(k), consist-
ing of the constant diagonal matrices, which also equals the U(k)-fixed space under the conjugation action
(U(k)ad)U(k). We consider the composite

δk : S1 c−−→∼= U(1)
∂−−→ U(k)ad

ζk∗−−−→ U(u(νk)) ,

where ζk∗ was defined in (1.8). We define

(1.20) dk ∈ π
U(k)
1 (Σ∞U)

as the class of the map

Sνk ∧ δk : Sνk ∧ S1 −→ Sνk ∧U(u(νk)) = (Σ∞U)(u(νk)) .

We let H be a closed subgroup of U(k) whose tautological action on Ck is irreducible. Equivalently, H
is not subconjugate to a block subgroup U(j, k − j) for any 1 ≤ j ≤ k − 1. Then scalar multiplications
are the only H-equivariant automorphisms of Ck, and thus (U(k)ad)H coincides with the center of U(k).
Moreover, the H-fixed points of the adjoint representation are the diagonal matrices inside ad(k), and we
use the map

R −→ ad(k) , y 7−→ ∂(iy)

to identify ad(k)H with R. The H-geometric fixed point map then becomes a homomorphism

ΦH : π
U(k)
ad(k)(Σ

∞U) −→ ΦH1 (Σ∞U) .

Theorem 1.21.

(i) The relation σ1 = d1 holds in the group πT1 (Σ
∞U).

(ii) For k ≥ 2, let H be a closed subgroup of U(k) whose tautological action on Ck is irreducible. Then
the relation

ΦH(σk) = ΦH(dk)

holds in the group ΦH1 (Σ∞U).

Proof. We start with a preliminary study that we need in both parts of the proof. We have sa(1) = R and
ad(1) = i·R, both with trivial action by T = U(1). We recall from (1.4) the open embedding

ϕ1 : R× U(1) −→ C = R2 , (z, λ) 7−→ exp(−z) · λ = (exp(−z) · Re(λ), exp(−z) · Im(λ))

whose image is C\{0}. The associated collapse map is t1 : S
2 −→ S1∧U(1)+. We claim that the composite

(S1 ∧ q) ◦ t1 : S2 −→ S1 ∧U(1) is homotopic to the suspension of the Cayley transform (1.19). The Cayley
transform a homeomorphism, so we may show that the composite

(1.22) S2 t1−−→ S1 ∧ U(1)+
S1∧q−−−→ S1 ∧ U(1)

S1∧c−1

−−−−−→∼=
S2

is homotopic to the identity. This composite collapses the contractible subset [0,∞] × {0} of S2 to the
basepoint and factors through a homeomorphism

S2/([0,∞]× {0}) ∼= S2 .
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So the composite (1.22) is a homotopy equivalence. Expanding all formulas shows that the composite (1.22)
is given on R× R>0 by the formula

F : R2 −→ R2 , F (x, y) =
(
− ln(

√
x2 + y2), x/y +

√
(x/y)2 + 1

)
.

So (1.22) fixes the point (0, 1), and it is smooth near (0, 1) with differential D(0,1)F =
(
0 −1
1 0

)
. Since this

differential has determinant 1, the composite (1.22) is indeed homotopic to the identity. This concludes the
proof of the claim that (S1 ∧ q) ◦ t1 ∼ S1 ∧ c.

(i) The class σ1 = q∗⟨t1⟩ is represented by the U(1)-map

Sν1⊕R2 Sν1∧t1−−−−→ Sν1⊕R ∧ U(1)+
Sν1⊕R∧(U(i1)◦ζ1∗◦q)−−−−−−−−−−−−−→ Sν1⊕R ∧U(u(ν1)⊕ R) = (Σ∞U)(u(ν1)⊕ R) .

The class d1 is represented by the composite

Sν1 ∧ δ1 : Sν1⊕R Sν1∧c−−−−→ Sν1 ∧ U(1)
Sν1∧ζ1∗−−−−−→ Sν1 ∧U(u(ν1)) = (Σ∞U)(u(ν1)) .

Since (S1 ∧ q) ◦ t1 is homotopic to S1 ∧ c, this proves the first claim.
(ii) Since the class σk arises from the collapse map tk defined in (1.5), we first study the H-fixed points

of tk. The vertical maps in the following commutative diagram are homeomorphisms:

R× U(1)
ϕ1 //

∂×∂ ∼=
��

C

∂∼=
��

R2

∼= ∂×∂(i·−)

��
(sa(k)× U(k)ad)H

(ϕk)
H

// M(k × k,C)H (sa(k)× ad(k))H

So the collapse maps for the horizontal open embeddings participate in a commutative diagram that is the
upper left rectangle in the following diagram of based continuous maps:

S2
t1

//

∂∧∂(i·−) ∼=
��

S1∧(δk)
H

++
S1 ∧ U(1)+

∼= ∂∧∂
��

S1∧(ζk∗◦∂◦q)
H

// S1 ∧U(u(νk))
H

∼= ∂∧U(u(νk))
H

��
(Ssa(k)⊕ad(k))H

(tk)
H

//

represents ΦH(σk) ,,

(Ssa(k) ∧ (U(k)ad)+)
H

(Ssa(k)∧(ζk∗◦q))
H

// (Sad(k) ∧U(u(νk)))
H

(Ssa(k)∧U(i1))
H

��
((Σ∞U)(u(νk)⊕ sa(k)))H (Ssa(k) ∧U(u(νk)⊕ sa(k)))H

The uppermost part commutes because (S1∧ q)◦ t1 ∼ S1∧ c and δk = ζk∗ ◦∂ ◦ c. The class σk is represented
by the U(k)-map

Sνk⊕sa(k)⊕ad(k) Sνk∧tk−−−−−→ Sνk⊕sa(k) ∧ U(k)ad+

Sνk⊕sa(k)∧(U(i1)◦ζk∗◦q)−−−−−−−−−−−−−−−→ Sνk⊕sa(k) ∧U(u(νk)⊕ sa(k)) = (Σ∞U)(u(νk)⊕ sa(k)) .

The hypothesis on H guarantees that (νk)
H = 0. So the smash factor Sνk in the representative for σk does

not contribute to the representative for its H-geometric fixed points. The class ΦH(σk) is thus represented
by the lower left diagonal composite, as indicated in the diagram.

The class dk is represented by the map Sνk∧δk, by definition. Again because (νk)
H = 0, the smash factor

Sνk does not contribute to the representative for ΦH(dk), which is thus represented by the map (δk)
H . The

big diagram above thus witnesses the desired relation ΦH(σk) = ΦH(dk). □
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2. The eigenspace morphism

The connective global K-theory spectrum ku is defined in [18, Construction 3.6.9], generalizing a con-
figuration space model of Segal [22, Section 1] to the global equivariant context. We recall the definition in
Construction 2.2 below. The eigenspace morphism of based orthogonal spaces

(2.1) eig : U −→ Ω•(shku)

is defined in [18, (6.3.26)]. Here ‘sh’ denotes the shift of an orthogonal spectrum [18, Construction 3.1.21],
which is globally equivalent to the suspension. And Ω• is the functor from orthogonal spectra to based
orthogonal spaces that is right adjoint to the reduced suspension spectrum functor, see [18, Construction
4.1.6]. For every orthogonal spectrum X, the orthogonal space Ω•X models the underlying ‘global infinite
loop space’ of the global spectrum X.

As the name suggest, this morphism assigns to a unitary automorphism the configuration of eigenvalues
and eigenspaces; the shift coordinate in shku is the place that stores the eigenvalues. The eigenspace
morphism (2.1) is a Fin-global equivalence by [18, Theorem 6.3.27]. We will mostly work with the adjoint

eig♮ : Σ∞U −→ shku

of the eigenspace morphism, and we recall the definition of eig♮ in Construction 2.3 below. The purpose of
this section is to show that for every compact Lie group G, the map of equivariant homotopy groups

(eig♮ ◦q)∗ : πG∗ (Σ
∞
+ U) −→ πG∗ (shku)

annihilates the square of the augmentation ideal, see Theorem 2.6.

� The eigenspace morphism (2.1) is not a fully global equivalence, but the composite Ω•(sh j)◦eig : U −→
Ω•(shKU) is, see [18, Theorem 6.4.21]. This is related to the fact that the periodization morphism

j : ku −→ KU is a Fin-global connective cover, but it is not a connective cover for compact Lie groups of
positive dimensions, see for example [18, Remark 6.3.38].

Construction 2.2 (The connective global K-theory spectrum). We recall from [18, Construction 6.3.9]
the definition of the connective global K-theory spectrum ku, an adaptation of Segal’s configuration space
model [22, Section 1] to the global equivariant context. We let U be a hermitian inner product space of
countable dimension (finite or infinite). We recall the Γ-space C (U) of ‘orthogonal subspaces in U ’. For a
finite based set A we let C (U , A) be the space of tuples (Ea)a∈A\{0}, indexed by the non-basepoint elements
of A, of finite-dimensional, pairwise orthogonal C-subspaces of U . The topology on C (U , A) is that of a
disjoint union of subspaces of a product of Grassmannians. The basepoint of C (U , A) is the tuple where
Ea = {0} for all a ∈ A\{0}. For a based map α : A −→ B the induced map C (U , α) : C (U , A) −→ C (U , B)
sends (Ea) to (Fb) where

Fb =
⊕

α(a)=b
Ea.

Every Γ-space can be evaluated on a based space by a coend construction, see for example [18, (4.5.14)].
Categorically speaking, this coend realizes the enriched Kan extension along the inclusion of Γ into the
category of based spaces. We write C (U ,K) = C (U)(K) for the value of the Γ-space C (U) on a based
space K. Elements of C (U ,K) can be interpreted as ‘labeled configurations’: a point is represented by an
unordered tuple

[E1, . . . , En; k1, . . . , kn]

where (E1, . . . , En) is an n-tuple of finite-dimensional, pairwise orthogonal subspaces of U , and k1, . . . , kn
are points of K, for some n. The topology is such that, informally speaking, the labels sum up whenever
two points collide, and a label disappears whenever a point approaches the basepoint of K.

The value of the orthogonal spectrum ku on a euclidean inner product space V is

ku(V ) = C (Sym(VC), S
V ) ,
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the value of the Γ-space C (Sym(VC)) on the sphere SV ; the inner product on the symmetric algebra is
described in [18, Proposition 6.3.8]. The action of O(V ) on V then extends to a unitary action on Sym(VC).
We let the orthogonal group O(V ) act diagonally, via the action on the sphere SV and the action on the
Γ-space C (Sym(VC)). For the structure maps we refer to [18, Construction 6.3.9].

Construction 2.3 (The adjoint eigenspace morphism). We recall the adjoint

(2.4) eig♮ : Σ∞U −→ shku .

of the eigenspace morphism (2.1), the latter being defined in [18, (6.3.26)]. Its value

eig♮(V ) : SV ∧U(V ) = SV ∧ U(VC) −→ C (Sym((V ⊕ R)C), SV⊕R) = ku(V ⊕ R) = (shku)(V )

at an inner product space V is defined as follows. For a unitary endomorphism A ∈ U(VC), we let
λ1, . . . , λn ∈ U(1) \ {1} be the set of its eigenvalues different from 1, and we let E(λj) be the eigenspace of
A for the eigenvalue λj . We let

(2.5) c−1 : U(1)
∼=−−→ S1 , c−1(λ) = i · (λ+ 1)(λ− 1)−1

be the inverse of the Cayley transform (1.19). Then the map eig(V ) is defined by

eig♮(V )(v ∧A) = [E(λ1), . . . , E(λn); (v, c
−1(λ1)), . . . , (v, c

−1(λn))] .

In other words, eig♮(V )(v∧A) is the configuration of the points (v, c−1(λi)) ∈ SV⊕R labeled by the eigenspace
E(λi) of A, whence the name. Strictly speaking, E(λi) is a subspace of VC, which we embed into the linear
summand of Sym((V ⊕ R)C).

The ultra-commutative multiplication on U induces an ultra-commutative ring spectrum structure on
the unreduced suspension spectrum Σ∞

+ U. This, in turn, induces a product structure on the equivariant
homotopy groups of Σ∞

+ U. The morphism ϵ : Σ∞
+ U −→ S arising from the unique morphism of orthogonal

spaces U −→ ∗ is a morphism of ultra-commutative ring spectra, and thus induces a morphism of graded-
commutative equivariant homotopy rings

ϵ∗ : πG∗ (Σ
∞
+ U) −→ πG∗ (S) .

Because the morphism U −→ ∗ has a section given by the identity elements of the unitary groups, ϵ∗ is
surjective. The augmentation ideal of πG∗ (Σ

∞
+ U) is the kernel of this homomorphism ϵ∗.

Theorem 2.6. For every compact Lie group G, the composite

πG∗ (Σ
∞
+ U)

q∗−−−→ πG∗ (Σ
∞U)

eig♮
∗−−→ πG∗ (shku)

annihilates the square of the augmentation ideal.

Proof. We define the exterior multiplication

⊠ : πGk (Σ
∞
+ U)× πGl (Σ

∞
+ U) −→ πGk+l(Σ

∞
+ (U⊠U))

as the composite

πGk (Σ
∞
+ U)× πGl (Σ

∞
+ U)

·−→ πGk+l((Σ
∞
+ U) ∧ (Σ∞

+ U)) ∼= πGk+l(Σ
∞
+ (U⊠U)) ,

where the isomorphism is induced by the strong symmetric monoidal structure on the unreduced suspension
spectrum functor, see [18, (4.1.17)]. Then

(Σ∞
+ µ)∗(x⊠ y) = x · y ,

for all equivariant homotopy classes x, y ∈ πG∗ (Σ
∞
+ U), where µ : U ⊠U −→ U denotes the multiplication

morphism.
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We let ρ1, ρ2 : U⊠U −→ U denote the projections to the two factors. The morphism Σ∞
+ ρ1 : Σ

∞
+ (U⊠

U) −→ Σ∞
+ U factors as the composite

Σ∞
+ (U⊠U) ∼= (Σ∞

+ U) ∧ (Σ∞
+ U)

Id∧ϵ−−−→ (Σ∞
+ U) ∧ S ∼= Σ∞

+ U ,

where the final isomorphism is the unit isomorphism of the smash product, and similarly for Σ∞
+ ρ2. So

(2.7) (Σ∞
+ ρ1)∗(x⊠ y) = x · ϵ∗(y) and (Σ∞

+ ρ2)∗(x⊠ y) = ϵ∗(x) · y .

Below we introduce an orthogonal spectrum ku[2] together with a morphism eig[2] : Σ∞(U ⊠ U) −→
shku[2]. The spectrum ku[2] is globally equivalent to a product of two copies of ku. The upshot of the
construction will be a commutative diagram of orthogonal spectra:

(2.8)

(Σ∞
+ U)× (Σ∞

+ U)
q×q // (Σ∞U)× (Σ∞U)

eig♮ × eig♮

// (shku)× (shku)

Σ∞
+ (U⊠U)

(Σ∞
+ ρ1,Σ

∞
+ ρ2)

OO

q[2]
//

Σ∞
+ µ

��

Σ∞(U⊠U)

Σ∞µ

��

(Σ∞ρ1,Σ
∞ρ2)

OO

eig[2]

//

��

shku[2]

sh∇
��

(sh p1,sh p2)∼

OO

Σ∞
+ U

q
// Σ∞U

eig♮

// shku

The upward pointing morphisms p1, p2 : ku
[2] −→ ku are incarnations of projections to the factors. The

morphism ∇ : ku[2] −→ ku is a model for the fold map.

The value of the orthogonal spectrum ku[2] on a euclidean inner product space V is the configuration
space

ku[2](V ) = C (Sym(VC), S
V ∨ SV ) ,

the value of the Γ-space C (Sym(VC)) on the wedge of two copies of SV . The action of O(V ) and the

structure maps of ku[2] are defined in much the same way as for ku. The projection and fold maps

p1, p2, ∇ : SV ∨ SV −→ SV

induce continuous, based and O(V )-equivariant maps of configuration spaces

p1(V ), p2(V ), ∇(V ) : ku[2](V ) = C (Sym(VC), S
V ∨ SV ) −→ C (Sym(VC), S

V ) = ku(V ) .

For varying inner product spaces V , these maps assemble into morphisms of orthogonal spectra

p1, p2, ∇ : ku[2] −→ ku .

We claim that the morphism

(p1, p2) : ku[2] −→ ku× ku

is a global equivalence of orthogonal spectra. We call an orthogonal G-representation V ample if the
complex symmetric algebra Sym(VC) is a complete complex G-universe. If V is ample, then the G-Γ-space
C (Sym(VC),−) is special by [18, Theorem 6.3.19 (i)], and it is G-cofibrant by [18, Example 6.3.16]. So
the G-Γ-space C (Sym(VC), S

1 ∧ −) is very special and cofibrant, and thus takes wedges of finite based
G-CW-complexes to products, up to G-weak equivalence, by [18, Theorem B.61 (i)]. In particular, if V is
ample and V G ̸= 0, then the map

(p1(V ), p2(V )) : ku[2](V ) = C (Sym(VC), S
V ∨ SV ) −→

C (Sym(VC), S
V )× C (Sym(VC), S

V ) = ku(V )× ku(V )

is a G-weak equivalence. The ample G-representations with nonzero G-fixed points are cofinal in all or-
thogonal G-representations, so this proves the claim that the morphism (p1, p2) is a global equivalence.
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Since shifting orthogonal spectra preserves global equivalences and products, also the upper right vertical
morphism (sh p1, sh p2) in (2.8) is a global equivalence.

The morphism eig[2] : Σ∞(U ⊠U) −→ shku[2] is a variation of the adjoint eigenspace morphism (2.4),
but with two (instead of one) unitary parameters. Its value at an inner product space V is the map

eig[2](V ) : SV ∧ (U⊠U)(V ) −→ C (Sym((V ⊕ R)C), SV⊕R ∨ SV⊕R) = ku[2](V ⊕ R) = (shku[2])(V )

defined as follows. Elements of (U⊠U)(V ) are pairs (A,B) of unitary endomorphisms A,B ∈ U(V ) that
are transverse in the following sense: there exists an orthogonal direct sum decomposition V = V ′ ⊕ V ′′

such that A is the identity on V ′, and B is the identity on V ′′. The transversality hypothesis in particular
means that A and B commute (but it is stronger than that), so A and B are simultaneously diagonalizable.
We let λ1, . . . , λn ∈ U(1) \ {1} be the set of all eigenvalues of A and B different from 1, we let E(λj)
be the eigenspace of A for eigenvalue λj , and we let F (λj) be the eigenspace of B for eigenvalue λj . By
the transversality hypothesis, all these eigenspaces E(λi) and F (λj) are pairwise orthogonal. We can then

define the map eig[2](V ) by

eig[2](V )(v ∧ (A,B)) = {E(λj), (v, c
−1(λj))1}1≤j≤n ∪ {F (λj), (v, c−1(λj))2}1≤j≤n .

As before, c−1 is the inverse Cayley transform (2.5). The subscripts ‘1’ and ‘2’ indicate in which of the two
wedge summands of SV⊕R ∨ SV⊕R the respective point lies. In other words, the eigenspace E(λj) of A is
attached to the point (v, c−1(λj)) in the first wedge summand, and the eigenspace F (λj) of B is attached
to the point (v, c−1(λj)) in the second wedge summand.

The relation

(sh p1) ◦ eig[2] = eig♮ ◦(Σ∞ρ1) : Σ∞(U⊠U) −→ shku

holds because for every pair (A,B) of transverse unitary matrices, both composites forget B and record
the eigenvalues and eigenspaces of A. And similarly for the projections to the second factor. So the upper
part of the diagram (2.8) commutes. The lower part of the diagram (2.8) commutes by the fact that for
every pair (A,B) of transverse unitary matrices and all λ ∈ U(1) \ {1}, the λ-eigenspace of the commuting
product A ·B is the orthogonal direct sum of the λ-eigenspaces of A and B.

Now we can proceed to prove the theorem. We let x, y ∈ πG∗ (Σ
∞
+ U) be classes in the augmentation ideal.

The commutativity of the upper part of (2.8) now provides the relation

((sh p1) ◦ eig[2] ◦q[2])∗(x⊠ y) = (eig♮ ◦q ◦ (Σ∞
+ ρ1))∗(x⊠ y)

(2.7) = (eig♮ ◦q)∗(x · ϵ∗(y)) = 0 .

And similarly, ((sh p2) ◦ eig[2] ◦q[2])∗(x⊠ y) = 0. Because the upper right vertical morphism (sh p1, sh p2) in
(2.8) is a global equivalence, this proves that

(eig[2] ◦q[2])∗(x⊠ y) = 0 .

The commutativity of the lower part of (2.8) then provides the desired relation

(eig♮ ◦q)∗(x · y) = (eig♮ ◦q∗ ◦ (Σ∞
+ µ))∗(x⊠ y)

= ((sh∇) ◦ eig[2] ◦q[2])∗(x⊠ y) = 0 . □

A more careful analysis in the spirit of the previous proof shows the relation

eig♮∗(q∗(x · y)) = eig♮∗(q∗(x) · ϵ∗(y)) + eig♮∗(ϵ∗(x) · q∗(y)) .

for all equivariant homotopy classes x, y ∈ πG∗ (Σ
∞
+ U), not necessarily in the augmentation ideal.
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3. The interplay of the global splitting and the eigenspace morphism

In this section we establish a subtle connection between two a priori unrelated features of the ultra-
commutative monoid U, namely its global stable splitting and its preferred infinite delooping. As we show
in Theorem 3.10, the adjoint Σ∞U −→ shKU of the preferred infinite delooping U ∼ Ω•(shKU) from [18,
Theorem 6.4.21] annihilates all the higher terms of the stable global splitting (1.1). This fact is fundamental
for all other results in this paper.

Construction 3.1 (The global ultra-commutative monoid P). We recall the orthogonal space P made
from complex projective spaces, compare [18, (2.3.20)], a specific ultra-commutative model for the global
classifying space of the circle group T = U(1). In [18], we use the notation PC to distinguish this version
made from complex projective spaces from the real version. In this paper, the real version plays no role, so
we simplify notation and drop the superscript ‘C’. The value of P at the inner product space V is

P(V ) = P (Sym(VC)) ,

the complex projective space of the symmetric algebra of the complexification. The structure map P(φ) :
P(V ) −→ P(W ) induced by a linear isometric embedding φ : V −→ W takes a complex line to its image
under Sym(φC) : Sym(VC) −→ Sym(WC). The orthogonal space P also has a commutative multiplication
by tensor product of line bundles, see [18, Example 2.3.8]. Since this multiplication plays no particular role
for the present paper, we do not go into more details.

The inclusions VC −→ Sym(VC) as the linear summands induce maps of projective spaces

ℓ(V ) : GrC1 (V ) = P (VC) −→ P (Sym(VC)) = P(V ) .

As V varies, these maps form a morphism of orthogonal spaces

(3.2) ℓ : GrC1
∼−−→ P

that is a global equivalence by [18, Theorem 1.1.10]. The reason for using the ‘bigger’ model P in the first
place is that tensor product of line bundles makes P into an ultra-commutative monoid, and hence Σ∞

+ P
into an ultra-commutative ring spectra; the ultra-commutative multiplication of P does not restrict to a
multiplication on GrC1 .

Construction 3.3 (Tautological classes). The underlying global spaces of GrC1 and P are global classifying
spaces, in the sense of [18, Definition 1.1.27], for the circle group T = U(1). In particular, the associated

Rep-functors π0(GrC1 ) and π0(P) are represented by T , see [18, Proposition 1.5.12]. We will later need to
refer to the universal elements, the tautological classes, so we recall them here. The line

L = C · (1⊗ 1− i⊗ i) = im(ζν1 : ν1 −→ u(ν1)C)

is a T -fixed point of P (u(ν1)C) = GrC1 (u(ν1)); the unstable tautological class in πT0 (GrC1 ) is its homotopy
class [L]. The stable tautological class

(3.4) ẽT ∈ πT0 (Σ
∞
+ GrC1 )

is the class represented by the T -equivariant map

Sν1
−∧L−−−→ Sν1 ∧ P (u(ν1)C)+ = (Σ∞

+ GrC1 )(u(ν1)) .

We also set

(3.5) uT = ℓ∗[L] ∈ πT0 (P) and eT = (Σ∞
+ ℓ)∗(ẽT ) ∈ πT0 (Σ

∞
+ P)

for the images of the tautological classes under the global equivalence induced by (3.2). Then both the

pairs (GrC1 , [L]) and (P, uT ) represent the functor π
T
0 on the unstable global homotopy category. And both

the pairs (Σ∞
+ GrC1 , ẽT ) and (Σ∞

+ P, eT ) represents the functor πT0 on the global stable homotopy category.
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Construction 3.6 (The morphism η : Σ∞
+ P −→ KU). The morphism of non-equivariant spectra from

Σ∞
+ CP∞ to KU that classifies the tautological complex line bundle over CP∞ has a particularly nice and

prominent global-equivariant refinement, a morphism of ultra-commutative ring spectra

η : Σ∞
+ P −→ KU .

The global K-theory spectrum KU was introduced by Joachim [12], see also [18, Construction 6.4.9]; for
every compact Lie group G, the underlying genuine G-spectrum of KU represents G-equivariant complex
K-theory, see [12, Theorem 4.4] or [18, Corollary 6.4.23]. In particular, the equivariant homotopy group
πG0 (KU) is isomorphic to the complex representation ring of the compact Lie group G; a specific natural
isomorphism R(G) ∼= πG0 (KU) is defined in [18, Theorem 6.4.24].

The morphism η is defined as a composite of two morphisms of ultra-commutative ring spectra

Σ∞
+ P

µ−−→ ku
j−−→ KU .

The first morphism µ is the inclusion of the ‘rank 1’ part in the rank filtration, compare [18, Construction
6.3.40]; its value at an inner product space V is the map

µ(V ) : (Σ∞
+ P)(V ) = SV ∧ P (Sym(VC))+ −→ C (Sym(VC), S

V ) = ku(V ) , v ∧ L 7−→ [L; v] .

The second morphism j is a ‘periodization morphism’ j : ku −→ KU defined in [18, Construction 6.4.13].
For finite groups of equivariance, the degree zero equivariant cohomology theory represented by ku is
equivariant K-theory, see [18, Theorem 6.3.31], and the effect of j on homotopy groups is inversion of
the Bott class; for non-finite compact Lie groups, the situation is somewhat more subtle, see for example
[18, Remark 6.3.38]. We will not need to know what the orthogonal spectrum KU or the morphism
j : ku −→ KU look like explicitly.

The underlying morphism of global spectra of η classifies the tautological T -representation ν1, in the
following sense. As mentioned earlier, the pair (Σ∞

+ P, eT ) represents the functor πT0 , where eT is the

stable tautological class (3.5). Under the preferred identification [18, Theorem 6.4.24] of πT0 (KU) with the
complex representation ring R(T ), the element eT maps to the class of the tautological T -representation,
i.e.,

η∗(eT ) = [ν1] in πT0 (KU) ∼= R(T ).

The morphism η is extremely highly structured, and has a range of marvelous properties. Because η
is a morphism of ultra-commutative ring spectra, its effect on equivariant homotopy groups is not only
compatible with restriction, inflations and transfers, but also with multiplicative power operations and
norms. Moreover, in [21], the author establishes a global generalization of Snaith’s celebrated theorem
[25, 26], saying that KU can be obtained from Σ∞

+ CP∞ by ‘inverting the Bott class’.

Proposition 3.7. Let V be an orthogonal representation of the unitary group U(k). Let T k be the diagonal
maximal torus of U(k). Then the geometric fixed point homomorphism

ΦT
k

◦ resU(k)

Tk : π
U(k)
V (KU) −→ ΦT

k

d (KU)

is injective, where d = dim(V T
k

).

Proof. For every orthogonal representation V of a compact Lie group G, the group πGV (KU) is isomorphic

to the reduced equivariant K-group K̃G(S
V ), in a way compatible with restriction to subgroups. The

restriction homomorphism

res
U(k)

Tk : K̃U(k)(S
V ) −→ K̃Tk(SV )

is split injective, see for example [3, Proposition (4.9)]. So also the restriction homomorphism

(3.8) res
U(k)

Tk : π
U(k)
V (KU) −→ πT

k

V (KU)

is split injective.
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We let W = V − V T
k

denote the orthogonal complement of the T k-fixed subrepresentation. Then W is
an orthogonal T k-representation with trivial fixed points, and thus admits a unitary structure. We choose

a linear isomorphism V T
k ∼= Rd and a unitary structure on W . Then Bott periodicity for any unitary

structure on W provides an isomorphism

πT
k

V (KU) ∼= πT
k

Rd⊕W (KU) ∼= πT
k

d+dim(W )(KU) ∼= πT
k

dim(V )(KU) .

Since the coefficient ring πT
k

∗ (KU) is 2-periodic and concentrated in even degrees, we conclude that

πT
k

V (KU) is free of rank 1 over πT
k

0 (KU) ∼= R(T k) whenever the dimension of V is even, and πT
k

V (KU) = 0

whenever the dimension of V is odd. Because π
U(k)
V (KU) injects into πT

k

V (KU), this group, too, vanishes
whenever the dimension of V is odd.

For the rest of the argument we assume that the dimension of V is even. As we just argued, the orthogonal
T k-representation underlying V then admits a unitary structure. A choice of unitary structure provides a

Bott class βV ∈ K̃Tk(SV ) ∼= πT
k

V (KU) such that πT
k

V (KU) is free of rank one over the representation ring

R(T k) ∼= πT
k

0 (KU).
Since KU is equivariantly complex oriented by the Bott classes, the geometric fixed point homomorphism

ΦT
k

: πT
k

0 (KU) −→ ΦT
k

0 (KU) presents the target as the localization of the source by inverting the Euler
classes of all non-trivial irreducible unitary T k-representations. Since T k is abelian, all irreducible unitary
representations are 1-dimensional, and thus given by characters λ : T k −→ T . Under the isomorphism

πT
k

0 (KU) ∼= R(T k), the Euler class of λ corresponds to 1−λ ∈ R(T k). So the composite ring homomorphism

R(T ) ∼= πT
k

0 (KU)
ΦTk

−−−→ ΦT
k

0 (KU)

extends uniquely to an isomorphism

R(T )[(1− λ)−1] ∼= ΦT
k

0 (KU)

where the localization inverts 1− λ for all non-trivial T k-characters λ. In the commutative diagram

R(T k)
∼= //

��

πT
k

0 (KU)

ΦTk

��

βV ·−
∼=

// πT
k

V (KU)

ΦTk

��
R(T k)[(1− λ−1)] ∼=

// ΦT
k

0 (KU)
ΦTk

(βV )·−

∼= // ΦT
k

d (KU)

all horizontal maps are isomorphisms. Since the representation ring R(T k) is a domain, the left vertical
localization homomorphism is injective. So the right vertical geometric fixed point map is injective. Since
the restriction homomorphism (3.8) is injective, too, this proves the claim when the dimension of V is
even. □

Theorem 1.13 lets us define global morphisms from Σ∞U by specifying their values on the classes

σk ∈ π
U(k)
ad(k)(Σ

∞U) defined in (1.12). So we let

(3.9) a : Σ∞U −→ Σ∞
+ P ∧ S1

denote the unique morphism in the global stable homotopy category such that

a∗(σk) =

{
eT ∧ S1 for k = 1, and

0 for k ≥ 2.

In the case k = 1 we have implicitly identified R ∼= ad(1) by sending x to i · x.
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Theorem 3.10. The following diagram commutes in the global stable homotopy category:

Σ∞U
(3.9)

a //

(2.4)eig♮

��

Σ∞
+ P ∧ S1 η∧S1

// KU ∧ S1

λKU∼
��

shku
sh j

// shKU

Proof. By Theorem 1.13, it suffices to show that both composites agree on the classes σk for all k ≥ 1. We
start with the case k = 1. We define a morphism of based orthogonal spaces

b : (GrC1 )+ ∧ S1 −→ U

at an inner product space V as the map

b(V ) : ((GrC1 )+ ∧ S1)(V ) = P (VC)+ ∧ S1 −→ U(VC) = U(V )

that sends L ∧ x to the unitary automorphism b(V )(L ∧ x) of VC that is multiplication by c(x) ∈ U(1) on
the complex line L, and the identity on the orthogonal complement of L. By inspection of definitions, the
following diagram commutes:

S1
∼=
c //

L∧−
��

U(1)

ζ1∗
��

P (u(ν1)C)+ ∧ S1 ((GrC1 )+ ∧ S1)(u(ν1))
b(u(ν1))

// U(u(ν1))

Here L = C · (1⊗ 1− i⊗ i) is the T -invariant line that defines the tautological class (3.4). Smashing with
Sν1 and passing to homotopy classes proves the relation

(Σ∞b)∗(ẽT ∧ S1) = d1

in πT1 (Σ
∞U), where the class d1 was defined in (1.20).

The global equivalence ℓ : GrC1
∼−→ P was defined in (3.2). The right square in the following diagram

commutes by naturality of the λ-morphisms:

Σ∞
+ GrC1 ∧ S1

Σ∞
+ ℓ∧S1

∼
//

Σ∞b

��

Σ∞
+ P ∧ S1

η∧S1

,,

µ∧S1
// ku ∧ S1

j∧S1
//

λku∼
��

KU ∧ S1

λKU∼
��

Σ∞U
eig♮

// shku
sh j

// shKU

We claim that the left part also commutes. Indeed, expanding definitions shows that both composites send
an element

v ∧ L ∧ x ∈ SV ∧ P (VC)+ ∧ S1 = (Σ∞
+ GrC1 ∧ S1)(V )

to the one-element configuration [L, (v, x)] in C (Sym((V ⊕ R)C), SV⊕R) = (shku)(V ) of the point (v, x) ∈
SV⊕R labeled by the line L, embedded via VC −→ (V ⊕R)C −→ Sym((V ⊕R)C). Given the commutativity
of the previous diagram, we obtain:

((sh j) ◦ eig♮)∗(σ1) = ((sh j) ◦ eig♮)∗(d1)

= ((sh j) ◦ eig♮ ◦(Σ∞b))∗(ẽT ∧ S1)

= (λKU ◦ (η ∧ S1) ◦ (Σ∞
+ ℓ ∧ S1))∗(ẽT ∧ S1)

(3.5) = (λKU ◦ (η ∧ S1))∗(eT ∧ S1) = (λKU ◦ (η ∧ S1) ◦ a)∗(σ1)
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The first equation is Theorem 1.21 (i). The final equation is part of the definition (3.9) of the morphism a.
For k ≥ 2 we will show that both composites in the diagram of the theorem annihilate the class σk. On

the one hand, a∗(σk) = 0 by the definition (3.9) of the morphism a. On the other hand, we claim that the
class ⟨t1⟩ ∈ πT1 (Σ

∞
+ U) belongs to the augmentation ideal, i.e., ϵ∗⟨t1⟩ = 0. Indeed the composite

Ssa(1)⊕ad(1) t1−−→ Ssa(1) ∧ U(1)+
Sad(1)∧ϵ−−−−−→ Ssa(1)

is a map from a 2-sphere to a 1-sphere, hence null-homotopic. The group U(1) acts trivially on source and
target, so this composite is U(1)-equivariantly null-homotopy, and thus ϵ∗⟨t1⟩ = 0, as claimed. Theorem
2.6 thus shows that the map

(eig♮ ◦q)∗ : πT
k

k (Σ∞
+ U) −→ πT

k

k (shku)

annihilates the class ⟨t1⟩ × · · · × ⟨t1⟩. Hence

ΦT
k

((eig♮)∗(σk)) (1.12) = (eig♮ ◦q)∗(ΦT
k

⟨tk⟩)

= (eig♮ ◦q)∗(ΦT
k

(⟨t1⟩ × · · · × ⟨t1⟩))

= ΦT
k

((eig♮ ◦q)∗(⟨t1⟩ × · · · × ⟨t1⟩)) = 0

in the geometric fixed point group ΦT
k

k (shku); the second equation is Theorem 1.16. From this we deduce

ΦT
k

(((sh j) ◦ eig♮)∗(σk)) = (sh j)∗(Φ
Tk

(eig♮)∗(σk)) = 0

in ΦT
k

k (shKU). The geometric fixed point homomorphism ΦT
k

: π
U(k)
ad(k)(shKU) −→ ΦT

k

k (shKU) is com-

patible with the shift isomorphisms, and hence isomorphic to ΦT
k

: π
U(k)

ãd(k)
(KU) −→ ΦT

k

k−1(KU). This

homomorphism is injective by Proposition 3.7. Hence ((sh j)◦eig♮)∗(σk) = 0. This concludes the proof. □

Remark 3.11. The proof of Theorem 3.10, and hence of all subsequent results in this paper, hinges on
the fact that for k ≥ 2, the composite morphism of global spectra

Σ∞U
eig♮

−−−→
(2.4)

shku
sh j−−→ shKU

annihilates the classes σk that encodes the k-th summand in the global splitting (1.1).
� We alert the reader that the eigenspace morphism eig♮ : Σ∞U −→ shku itself does not annihilate σk

for any k ≥ 1. So eig♮ does not factor through a : Σ∞U −→ Σ∞
+ P ∧ S1, and the composite

U
d−−→ Ω•(Σ∞

+ P ∧ S1)
Ω•(µ∧S1)−−−−−−→ Ω•(ku ∧ S1)

Ω•(λku)−−−−−→ Ω•(shku)

is different from eig : U −→ Ω•(shku). At this point one might want to recall that the name ‘connective
global K-theory’ has to be taken with a grain of salt, in that the morphism j : ku −→ KU is an equivariant
connective cover for finite groups by Theorems 6.3.27 and 6.4.21 of [18], but not generally for compact Lie
groups of positive dimension.

We show that even the composite

Σ∞U
eig♮

−−→ shku
sh dim−−−−→ sh(Sp∞)

does not annihilate σk for any k ≥ 1. Here dim: ku −→ Sp∞ is dimension homomorphism to the infinite
symmetric product spectrum, defined in [18, Example 6.3.36]. The spectrum Sp∞ is Fin-globally equivalent
to the Eilenberg–MacLane spectrum for the constant global functor Z, see Propositions 5.3.9 and 5.3.12
of [18]. However, for compact Lie groups G of positive dimension, the group πG∗ (Sp

∞) are typically not
concentrated in dimension 0, and the ring πG0 (Sp

∞) need not be isomorphic to Z. For example, πT1 (Sp
∞) ∼=

Q, see [18, Theorem 5.3.16], and the abelian group π
SU(2)
0 (Sp∞) has rank 2, see [17, Example 4.16].
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We detect the classes ((sh dim) ◦ eig♮)∗(σk) in geometric fixed points. For an orthogonal representation
V of a connected compact Lie group G, the map

Sp∞(SV
G

) −→ (Sp∞(SV ))G

induced by the fixed point inclusion V G −→ V is a homeomorphism by [18, Proposition B.42]. So the
G-geometric fixed point spectrum of Sp∞ is an Eilenberg–MacLane spectrum for Z. In particular, the ring
ΦG0 (Sp

∞) is isomorphic to Z whenever G is connected.

The class dk = [Sνk ∧ δk] in πU(k)
1 (Σ∞U) was defined in (1.20). Because νk has trivial U(k)-fixed points,

(Sνk)U(k) = S0, and the class ΦU(k)(dk) is thus represented by the map

δk = ζk∗ ◦ ∂ ◦ c : S1 −→ U(u(νk))
U(k) = ((Σ∞U)(u(νk)))

U(k)

that sends x ∈ S1 to the unitary automorphism of u(νk)C that is multiplication by c(x) on the image
of the C-linear monomorphism ζk : νk −→ u(νk)C, and the identity on its orthogonal complement. The

morphism eig♮ : Σ∞U −→ shku extracts eigenvalues and eigenspaces; and as the name suggests, the
morphism dim: ku −→ Sp∞ takes a configuration of vector spaces to the configuration of the dimensions.
So the class ((sh dim) ◦ eig♮)∗(ΦU(k)(dk)) is represented by the map

S1 −→ (Sp∞(Sνk⊕R))U(k) = (sh(Sp∞)(u(νk)))
U(k) , x 7−→ k · (0, x) ,

the point (0, x) ∈ Sνk⊕R with multiplicity k. This map represents sh(k ·1), the k-fold multiple of the shifted

multiplicative unit in Φ
U(k)
1 (sh(Sp∞)) ∼= Z. Consequently,

ΦU(k)(((sh dim) ◦ eig♮)∗(σk)) = ((sh dim) ◦ eig♮)∗(ΦU(k)(σk))

= ((sh dim) ◦ eig♮)∗(ΦU(k)(dk)) = sh(k · 1) ̸= 0 .

The second equation is Theorem 1.21 (ii). This proves that ((sh dim) ◦ eig♮∗(σk)) ̸= 0.

4. The global Segal–Becker splitting

In this section we construct the global Segal–Becker splitting c : BUP −→ Ω•(Σ∞
+ P), see (4.7). This

morphism comes into existence as a global loop map, the delooping being the morphism d : U −→ Ω•(Σ∞
+ P∧

S1) adjoint to the morphism a : Σ∞U −→ Σ∞
+ P∧S1 defined in (3.9). The fact that the morphisms d and c

are indeed sections to Ω•(η∧S1) : Ω•(Σ∞
+ P∧S1) −→ Ω•(KU∧S1) and to Ω•(η) : Ω•(Σ∞

+ P) −→ Ω•(KU),
respectively, are proved in Theorem 4.2 and Corollary 4.8.

Construction 4.1 (The deloop of the global Segal–Becker splitting). The morphism a : Σ∞U −→ Σ∞
+ P∧

S1 was defined in (3.9), essentially as the projection of the global stable splitting (1.1) onto the summand
indexed by k = 1. As a Quillen adjoint functor for the global model structures, the pair (Σ∞,Ω•) derives
to an adjoint functor pair at the level of global homotopy categories. The stable morphism a from (3.9) is
thus adjoint to an unstable morphism in the homotopy category of based global spaces

d : U −→ Ω•(Σ∞
+ P ∧ S1) .

This morphism is our deloop of the global Segal–Becker splitting.

We can now prove Theorem A from the introduction:

Theorem 4.2. The composite

U
d−−→ Ω•(Σ∞

+ P ∧ S1)
Ω•(η∧S1)−−−−−−→ Ω•(KU ∧ S1)

is a global equivalence.
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Proof. We take the commutative diagram established in Theorem 3.10 and pass to adjoints for the adjunc-
tion (Σ∞,Ω•). We obtain a commutative diagram in the unstable global homotopy category:

U
d //

eig

��

Ω•(Σ∞
+ P ∧ S1)

Ω•(η∧S1) // Ω•(KU ∧ S1)

Ω•(λKU)∼
��

Ω•(shku)
Ω•(sh j)

// Ω•(shKU)

The composite Ω•(sh j) ◦ eig : U −→ Ω•(shKU) is a global equivalence by [18, Theorem 6.4.21]. The
morphism λKU : KU ∧ S1 −→ shKU is a global equivalence of orthogonal spectra by [18, Proposition
4.1.4 (i)]; hence the right vertical morphism Ω•(λKU) is a global equivalence of orthogonal spaces. Thus
Ω•(η ∧ S1) ◦ d : U −→ Ω•(KU ∧ S1) is a global equivalence, as claimed. □

Now we construct the actual global Segal–Becker splitting c : BUP −→ Ω•(Σ∞
+ P), essentially by looping

the morphism d : U −→ Ω•(Σ∞
+ P ∧ S1).

Construction 4.3 (The global Segal–Becker splitting). The orthogonal space

GrC =
∐

k≥0
GrCk

made from the complex Grassmannians of varying dimensions is an ultra-commutative monoid under direct
sum, compare [18, Example 2.3.16]. The ultra-commutative monoid BUP is the complex analog of the
ultra-commutative monoid BOP introduced in [18, Example 2.4.1]. So the values of BUP are

BUP(V ) =
∐

n≥0
GrCn(V

2
C ) ,

the full Grassmannian of complex subspace of V 2
C . The structure map BUP(φ) : BUP(V ) −→ BUP(W )

associated with a linear isometric embedding φ : V −→W is given by

BUP(φ)(L) = φ2
C(L) + ((W − φ(V ))C ⊕ 0) .

The ultra-commutative monoids BUP and ΩU are two global group completions of GrC, see Theo-
rems 2.5.33 and 2.5.40 of [18]; this fact is witnessed by specific morphisms of ultra-commutative monoids

i : GrC −→ BUP and β : GrC −→ ΩU defined in (2.4.3) and (2.5.38) of [18], respectively. The former is
given by

(4.4) i(V ) : GrC(V ) = GrC(VC) −→ GrC(V 2
C ) = BUP(V ) , i(V )(L) = VC ⊕ L .

The value of the latter at an inner product space V

(4.5) β(V ) : GrC(V ) = GrCn(VC) −→ Ω(U(VC)) = (ΩU)(V )

sends a complex subspace L ⊂ VC to the loop β(V )(L) : S1 −→ U(VC) such that β(V )(L)(x) is multiplication
by c(x) ∈ U(1) on L, and the identity on the orthogonal complement of L.

Since i : GrC −→ BUP and β : GrC −→ ΩU are both global group completions, there is a unique
morphism in the homotopy category of ultra-commutative monoids

(4.6) γ : BUP
∼−−→ ΩU

such that γ ◦ i ∼ β : GrC −→ ΩU. Moreover, the morphism γ is a global equivalence, and it witnesses a
global form of equivariant Bott periodicity. In [18, Theorem 2.5.41], the morphism γ is realized by a zizag
of two global equivalences in the model.

Another ingredient is a natural global equivalence of orthogonal spaces

ξX : Ω•X
∼−−→ Ω(Ω•(X ∧ S1)) ,
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where X is an orthogonal spectrum. Its value at an inner product space V is adjoint to the assembly map

(Ω•X)(V ) ∧ S1 = map∗(S
V , X(V )) ∧ S1 −→ map∗(S

V , X(V ) ∧ S1) = (Ω•(X ∧ S1))(V ) .

We can then define the global Segal–Becker splitting

(4.7) c : BUP −→ Ω•(Σ∞
+ P)

as the unique morphism in the unstable global homotopy category that makes the following diagram com-
mute:

BUP
c //

γ ∼
��

Ω•(Σ∞
+ P)

ξΣ∞
+

P∼
��

ΩU
Ωd

// Ω(Ω•(Σ∞
+ P ∧ S1))

The next corollary verifies the fact that global Segal–Becker splitting is indeed a splitting of the mor-
phism Ω•(η) : Ω•(Σ∞

+ P) −→ Ω•(KU). In Theorem 5.15 will we show that the global Segal–Becker realizes
the ‘classical’ equivariant Segal–Becker splittings at the level of equivariant cohomology theories, thereby
justifying its name.

Corollary 4.8. The composite

BUP
c−−→ Ω•(Σ∞

+ P)
Ω•(η)−−−−→ Ω•(KU)

is a global equivalence.

Proof. We consider the commutative diagram in the homotopy category of based global spaces:

BUP
c //

γ ∼
��

Ω•(Σ∞
+ P)

ξΣ∞
+

P ∼
��

Ω•(η) // Ω•(KU)

ξKU∼
��

ΩU
Ωd

// Ω(Ω•(Σ∞
+ P ∧ S1))

Ω(Ω•(η∧S1))

// Ω(Ω•(KU ∧ S1))

The lower horizontal composite is an equivalence by Theorem 4.2. Since the left and right vertical morphisms
are equivalences, this proves that the upper horizontal composite is an equivalence. □

Remark 4.9 (No section deloops twice). Since Ω•(η) : Ω•(Σ∞
+ P) −→ Ω•(KU) is a global infinite loop map

with an unstable section, one can wonder how often one can deloop an unstable section. Our construction
of the section c : BUP −→ Ω•(Σ∞

+ P) presents it as a global loop map, the deloop being the morphism
d : U −→ Ω•(Σ∞

+ P ∧ S1). However, one cannot do better than this, not even non-equivariantly, as we now
recall.

The loop structure on the infinite unitary group U coming from Bott periodicity coincides with the
group structure. Under the Pontryagin product, the integral homology H∗(U ;Z) is an exterior F2-algebra
on classes ai ∈ H2i+1(U ;F2) for i ≥ 0. In contrast, H∗(Ω

∞(Σ∞
+ CP∞ ∧ S1);F2) is a polynomial F2-algebra

on the iterated Kudo–Araki operations on a basis of H̃∗(CP∞
+ ∧ S1;F2), see for example [9, Theorem 5.1].

So the epimorphism of graded-commutative rings

(Ω∞(η ∧ S1))∗ : H∗(Ω
∞(Σ∞

+ CP∞ ∧ S1);F2) −→ H∗(Ω
∞(KU ∧ S1);F2) ∼= H1(U ;F2)

does not admit a multiplicative section. Hence the map Ω∞(η ∧S1) : Ω∞(Σ∞
+ CP∞ ∧S1) −→ Ω•(KU ∧S1)

does not have a section that is an H-map, much less a loop map.
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We conclude this section with some calculations that will ultimately allow us to determine the effect of
the global Segal–Becker splitting and the global Adams operations on equivariant K-theory. We assign to a
unitary representationW of a compact Lie groupG a class in πG0 (BUP) as follows. The image of the C-linear
and G-equivariant isometric embedding ζW : W −→ (uW )C from (1.7) is a G-invariant C-linear subspace of
(uW )C. So the subspace (uW )C⊕ im(ζW ) of (uW )2C is a G-fixed point of BUP(uW ) =

∐
n≥0Gr

C
n((uW )2C).

We write

(4.10) {W} = [(uW )C ⊕ im(ζW )] ∈ πG0 (BUP)

for the homotopy class represented by this element of (BUP(uW ))G. The construction is additive in the
sense that {V ⊕W} = {V }+ {W}.

The next theorem relates the image of the class {νk} under the map

c∗ : π
U(k)
0 (BUP)

c∗−−→ π
U(k)
0 (Ω•(Σ∞

+ P)) = π
U(k)
0 (Σ∞

+ P)

to the class dk ∈ π
U(k)
1 (Σ∞U) defined in (1.20) and to the stable tautological class eT ∈ πT0 (Σ

∞
+ P) defined

in (3.5).

Theorem 4.11. Let k ≥ 1.

(i) The relation

c∗{νk} ∧ S1 = a∗(dk)

holds in π
U(k)
1 (Σ∞

+ P ∧ S1).
(ii) The relation

c∗{νk} = tr
U(k)
U(1,k−1)(q

∗(eT ))

holds in π
U(k)
0 (Σ∞

+ P), where q : U(1, k − 1) −→ U(1) = T is the projection to the first block.

Proof. (i) The following diagram commutes by the definition of the morphism c : BUP −→ Ω•(Σ∞
+ P) from

the morphism d : U −→ Ω•(Σ∞
+ P∧S1), which in turn was defined as the adjoint of a : Σ∞U −→ Σ∞

+ P∧S1:

πG0 (GrC)
i∗ //

β∗ ++

πG0 (BUP)
c∗ //

∼= γ∗

��

πG0 (Σ
∞
+ P)

−∧S1∼=
��

πG0 (ΩU) ∼=
// πG1 (U)

σG
//

d∗

22
πG1 (Σ

∞U)
a∗ // πG1 (Σ

∞
+ P ∧ S1)

The map σG : πG1 (U) −→ πG1 (Σ
∞U) is the stabilization map [18, (3.3.12)]. The image of ζk : νk −→ u(νk)C

is a U(k)-fixed point of GrC(u(νk)), and we write ⟨νk⟩ for its homotopy class in π
U(k)
0 (GrC). By inspection

of definitions, the map β∗ : π
U(k)
0 (Gr) −→ π

U(k)
0 (ΩU) sends the class ⟨νk⟩ to the homotopy class of the map

S1 ∂◦c−−→ U(k)
ζk∗−→ U(u(νk)) .

Comparing with (1.20) shows that

dk = σU(k)(β∗⟨νk⟩) .
Since the map i∗ : π

U(k)
0 (Gr) −→ π

U(k)
0 (BUP) sends ⟨νk⟩ to {νk}, the commutativity of the above diagram

thus shows the desired relation.
(ii) We argue by induction on k. For k = 1, we have

c∗{ν1} ∧ S1 = a∗(d1) = a∗(σ1) = eT ∧ S1 .

by part (i), Theorem 1.21 (i) and the definition of the morphism a. Since the suspension isomorphism
is bijective, this proves that c∗{ν1} = eT . Now we suppose that k ≥ 2. The geometric fixed point
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homomorphisms ΦH : π
U(k)
0 (Σ∞

+ P) −→ ΦH0 (Σ∞
+ P) are jointly injective asH ranges over all closed subgroups

of U(k), see [18, Theorem 3.3.15 (ii)]. In other words: it suffices to show the desired relation after taking
H-geometric fixed points for all closed subgroups H of U(k). To this end we distinguish two cases.

Case 1: The group H is subconjugate to U(i, k−i) for some 1 ≤ i ≤ k−1. We disambiguate our notation
by writing qk : U(1, k − 1) −→ U(1) for the projection to the first block, i.e., we also record the size of the
ambient group. Then

res
U(k)
U(i,k−i)(tr

U(k)
U(1,k−1)(q

∗
k(eT ))) = tr

U(i,k−i)
U(1,i−1,k−i)(res

U(1,k−1)
U(1,i−1,k−i)(q

∗
k(eT )))

+ tr
U(i,k−i)
U(i,1,k−i−1)((i+ 1, i, . . . , 2, 1)⋆(res

U(1,k−1)
U(1,i,k−i−1)(q

∗
k(eT ))))

= tr
U(i,k−i)
U(1,i−1,k−i)(pr

∗
1(eT )) + tr

U(i,k−i)
U(i,1,k−i−1)(pr

∗
2(eT ))

= p∗1(tr
U(i)
U(1,i−1)(q

∗
i (eT ))) + p∗2(tr

U(k−i)
U(1,k−i−1)(q

∗
k−i(eT ))) .

Here pr1 : U(1, i − 1, k − i) −→ U(1) and pr2 : U(i, 1, k − i − 1) −→ U(1) are the projections to the first
and second block, respectively. And p1 : U(i, k − i) −→ U(i) and p2 : U(i, k − i) −→ U(k − i) are the
projections to the first and second block, respectively. The first equation is the double coset formula for

res
U(k)
U(i,k−i) ◦ tr

U(k)
U(1,k−1), see [20, Proposition 1.3]. The third equation is the compatibility of transfers with

inflation, see [18, Proposition 3.2.32]. We use the inductive hypothesis to obtain

res
U(k)
U(i,k−i)(tr

U(k)
U(1,k−1)(q

∗
k(eT ))) = p∗1(tr

U(i)
U(1,i−1)(q

∗
i (eT ))) + p∗2(tr

U(k−i)
U(1,k−i−1)(q

∗
k−i(e)))

= p∗1(c∗{νi}) + p∗2(c∗{νk−i}) = c∗(p
∗
1{νi}+ p∗2{νk−i})

= c∗{p∗1(νi)⊕ p∗2(νk−i)}) = c∗(res
U(k)
U(i,k−i){νk}) = res

U(k)
U(i,k−i)(c∗{νk}) .

We have exploited that the map c∗ is additive because c is a global loop map. Since the classes c∗{νk} and

tr
U(k)
U(1,k−1)(q

∗
k(eT )) have the same restrictions to U(i, k − i), they also have the same geometric fixed points

for all closed subgroups of U(i, k − i), and hence for all those that are subconjugate to U(i, k − i).
Case 2: The group H is not subconjugate to U(i, k − i) for any 1 ≤ i ≤ k − 1. We will show that for

such groups, the H-geometric fixed points of both sides of the equation vanish. On the one hand, since H

is not subconjugate to U(1, k− 1), we have ΦH ◦ trU(k)
U(1,k−1) = 0, see for example [18, Proposition 3.1.11 (i)].

In particular, ΦH(tr
U(k)
U(1,k−1)(q

∗(eT ))) = 0. On the other hand,

ΦH(c∗{νk}) ∧ S1 = ΦH(c∗{νk} ∧ S1) = ΦH(a∗(dk))

= a∗(Φ
H(dk)) = a∗(Φ

H(σk)) = ΦH(a∗(σk)) = 0 .

The second equation is part (i). The fourth equation is Theorem 1.21 (ii). The final equation is a defining
property (3.9) of a. Since the suspension isomorphism is bijective, this proves that ΦH(c∗{νk}) = 0. This
completes the inductive step, and hence the proof of the theorem. □

Construction 4.12. The unstable tautological class uT ∈ πT0 (P) was defined in (3.5). Since the pair
(P, uT ) represents the functor πT0 , we can define a morphism h : P −→ BUP in the unstable global
homotopy category by the requirement that

h∗(uT ) = {ν1}
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in πT0 (BUP). The following diagram commutes on the unstable tautological class in πT0 (GrC1 ):

GrC1

incl
��

ℓ
∼

// P

h

��
GrC

i
// BUP

Hence the diagram commutes in the unstable global homotopy category, which shows that the morphism h
represents the inclusion of line bundles into virtual vector bundles.

Theorem 4.11 (ii) shows that
c∗(h∗(uT )) = c∗{ν1} = eT .

The adjunction unit P −→ Ω•(Σ∞
+ P) also sends the unstable tautological class uT ∈ πT0 (P) to the stable

tautological class eT . Since the pair (P, uT ) represents the functor πT0 on the unstable homotopy category,
this proves:

Corollary 4.13. The composite

P
h−−→ BUP

c−−→ Ω•(Σ∞
+ P)

is the unit of the adjunction (Σ∞
+ ,Ω

•).

5. Explicit Brauer induction and G-equivariant Segal–Becker splitting

In this section we show that our global Segal–Becker splitting c : BUP −→ Ω•(Σ∞
+ P) induces the Boltje–

Symonds ‘explicit Brauer induction’ on equivariant homotopy groups, and that it rigidifies and globalizes
the ‘classical’ equivariant Segal–Becker splittings at the level of equivariant cohomology theories. The
first fact is Theorem C of the introduction, and Theorem 5.7 below; the second fact is Theorem D of the
introduction, and Theorem 5.15 below.

Remark 5.1 (Explicit Brauer induction). Brauer showed in [6, Theorem I] that the complex represen-
tation ring of a finite group is generated, as an abelian group, by representations that are induced from
1-dimensional representations of subgroups. Segal generalized this result to compact Lie groups in [23,
Proposition 3.11 (ii)], where ‘induction’ refers to the smooth induction. We write A(T,G) for the free
abelian group with a basis the symbols [H,χ], where H runs over all conjugacy classes of closed subgroup
of G with finite Weyl group, and χ : H −→ T = U(1) runs over all characters of H. The Brauer–Segal
theorem can then be paraphrased as the fact that the maps

(5.2) A(T,G) −→ R(G)

that sends [H,χ] to trGH(χ∗[ν1]) are surjective. Informally speaking, an ‘explicit Brauer induction’ is a
collection of sections to the maps (5.2) that are specified by a direct recipe, for example an explicit formula,
and with naturality properties as the group G varies. So such maps give an ‘explicit and natural’ way to
write virtual representations as sums of induced representations of 1-dimensional representations. What
qualifies as ‘explicit’ is, of course, in the eye of the beholder.

The first explicit Brauer induction was Snaith’s formula [27, Theorem 2.16]; however, Snaith’s maps
are not additive and not compatible with restriction to subgroups. Boltje [5] specified a different explicit
Brauer induction formula for finite groups by purely algebraic means; Symonds [28] gave a topological
interpretation of the same section in the context of compact Lie groups. Symonds’ construction [28, §4] of
the sections

(5.3) bG : R(G) −→ A(T,G)

is designed so that

(5.4) bU(k)[νk] = [U(1, k − 1), q] in A(T,U(k))
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for all k ≥ 1, where q : U(1, k − 1) −→ U(1) = T is the projection to the first block. The Boltje–Symonds
maps are additive and natural for restriction along continuous group homomorphisms; and the value of bG
at a 1-dimensional representation with character χ : G −→ T is given by

bG[χ] = [G,χ] ∈ A(T,G) .

The Boltje–Symonds maps (5.3) are not (and in fact cannot be) in general compatible with transfers.

The next theorem shows that our global Segal–Becker splitting (4.7) induces the Boltje–Symonds explicit
Brauer induction on equivariant homotopy groups. To make sense of that statement, we use a specific
isomorphism

(5.5) {−} : R(G) ∼= πG0 (BUP) .

In construction (4.10) we assigned to a unitary representation W of a compact Lie group G a class {W} in
πG0 (BUP). This class only depends on the isomorphism class of W and satisfies {V }+ {W} = {V ⊕W}.
Since the abelian monoid πG0 (BUP) is a group, there is a unique group homomorphism (5.5) that sends the
class of a unitary G-representation W to {W}. The homomorphism (5.5) is an isomorphism by the unitary
analog of [18, Theorem 2.4.13].

Since the orthogonal space P is a global classifying space for the circle group T , the global functor
π0(Σ

∞
+ P) is represented by T , see [18, Proposition 4.2.5]. In more down-to-earth terms, this means that

the abelian group πG0 (Σ
∞
+ P) is free, with a basis given by the classes trGH(χ∗(eT )), for (H,χ) ranging over all

conjugacy classes of closed subgroups H of G with finite Weyl group, and all continuous homomorphisms
χ : H −→ T ; see [18, Corollary 4.1.13]. The group A(T,G) was defined as a free abelian group with a
corresponding basis, so the map

(5.6) A(T,G) −→ πG0 (Σ
∞
+ P) , [H,χ] 7−→ trGH(χ∗(eT ))

is an isomorphism of abelian groups.

Theorem 5.7. For every compact Lie group G, the following square commutes:

R(G)
bG //

∼=(5.5)

��

A(T,G)

∼= (5.6)

��
πG0 (BUP)

c∗
// πG0 (Σ

∞
+ P)

Proof. We start with the tautological representation of the group U(k). By (5.4), the composite through

the upper right corner of the square takes [νk] to tr
U(k)
U(1,k−1)(q

∗(eT )). Theorem 4.11 (ii) provides the relation

c∗{νk} = tr
U(k)
U(1,k−1)(q

∗(eT )) .

So the square commutes for G = U(k) on the class of νk. Every unitary representation of a compact Lie
group G is isomorphic to ρ∗(νk) for some k ≥ 0 and some continuous homomorphism ρ : G −→ U(k). So
naturality for ρ proves the case (G, [ρ∗(νk)]). The claim follows for virtual representations by additivity. □

Now we proceed to prove Theorem D of the introduction, saying that our global Segal–Becker splitting
induces the classical equivariant Segal–Becker at the level of equivariant cohomology theories.

Construction 5.8 (The equivariant Segal–Becker splitting). We let G be a compact Lie group, and we
let A be a finite G-CW-complex. We write KG(A) for the G-equivariant K-group of A, i.e., the group
completion of the abelian monoid, under Whitney sum, of isomorphism classes of G-vector bundles over A.
We recall the equivariant Segal–Becker splitting

(5.9) ϑG,A : KG(A) −→ [A,Ω•(Σ∞
+ P)]G
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via equivariant transfers due to Iriye–Kono [11, §3], following Crabb’s presentation [8]. Crabb denotes
the circle group T = U(1) by T, and he writes BGT for any classifying space for G-equivariant principal
T -bundles; we may thus take BGT = P(UG). In Crabb’s exposition, the target of the morphism ϑG,A is
presented slightly differently, namely as ω0

G{A+, (BGT)+}, the group of morphisms from Σ∞
+ A to Σ∞

+ BGT
in the G-equivariant stable homotopy category. Since A is a finite G-CW-complex, that group is isomorphic
to

colimV ∈s(UG)[A,Ω
V (SV ∧P(V )+)]

G = [A,Ω•(Σ∞
+ P)]G .

We let ξ : E −→ A be a G-vector bundle. We denote by

(5.10) Pξ : PE −→ A

the projectivized bundle; its fiber over a ∈ A is the projective space of the complex vector space Ea =
ξ−1({a}). The projection (5.10) has an associated transfer, a morphism in the homotopy category of
genuine G-spectra from Σ∞

+ A to Σ∞
+ PE. Since A is a finite G-CW-complex, this transfer is represented by

some continuous based G-map

τ(Pξ) : SV ∧A+ −→ SV ∧ (PE)+ ,

for some G-representation V . The tautological G-equivariant line bundle over PE is classified by a contin-
uous G-map

k : PE −→ P(W )

for some sufficiently large G-subrepresentation W of UG. By enlarging, if necessary, we may assume that
W = V . We write

ϑ(ξ) ∈ [A,Ω•(Σ∞
+ P)]G

for the class of the adjoint to the composite

SV ∧A+
τ(Pξ)−−−−→ SV ∧ (PE)+

SV ∧k+−−−−−→ SV ∧P(V )+ .

In the classical sources one finds a verification that the class ϑ(ξ) only depends on the isomorphism class
of the G-vector bundle ξ. Slightly less obvious is that the resulting map

ϑ : VectG(A) −→ [A,Ω•(Σ∞
+ P)]G

is additive for the Whitney sum of vector bundles, see [8, Lemma 2.6]. The map thus extends uniquely to an
additive map (5.9) on the group completion KG(A) of VectG(A). The equivariant Segal–Becker splittings
(5.9) are natural for continuous G-maps in A, and for restriction along continuous group homomorphisms
between compact Lie groups. Moreover, they satisfy a normalization property on line bundles.

The Boltje–Symonds map (5.3) is a special case of the equivariant Segal–Becker splitting (5.9), namely
when A = ∗ is a one-point G-space, in the sense that the composite

R(G) = KG(∗)
ϑG,∗−−−→ [∗,Ω•(Σ∞

+ P)]G = πG0 (Σ
∞
+ P) ∼=(5.6) A(T,G)

agrees with bG : R(G) −→ A(T,G). Indeed, we will argue in Example 5.11 below that the two coincide on
the class of the tautological U(k)-representation on νk. Since both are additive and natural in continuous
group homomorphisms, they coincide on all virtual unitary representations of compact Lie groups. Theorem
D is thus a special case of Theorem C; but we deduce Theorem D from Theorem C by global functoriality.

Example 5.11. We calculate the U(k)-equivariant Segal–Becker splitting on class of the tautological U(k)-
representation νk, considered as a U(k)-equivariant vector bundle over a point. The construction of the
class ϑU(k),∗[νk] involves the projective space P (νk) of the tautological representation. This projective space
is a homogeneous space: the group U(k) acts transitively on P (νk), and the complex line

l = C · (1, 0, . . . , 0)
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spanned by the first basis vector has stabilizer group U(1, k − 1). So the equivariant transfer

τ(P (νk)) : S −→ Σ∞
+ P (νk)

associated with the unique U(k)-map P (νk) −→ ∗ sends 1 ∈ π
U(k)
0 (S) to the class

tr
U(k)
U(1,k−1)(σ

U(1,k−1)[l]) ∈ π
U(k)
0 (Σ∞

+ P (νk)) ,

where [l] ∈ π0(P (νk)
U(1,k−1)) is the class represented by the U(1, k − 1)-fixed point l, and

σU(1,k−1) : π0(P (νk)
U(1,k−1)) −→ π

U(1,k−1)
0 (Σ∞

+ P (νk))

is the stabilization map [18, (3.3.12)].
The group U(1, k − 1) acts on the invariant line l through the homomorphism q : U(1, k − 1) −→ T , so

the classifying U(k)-map
k : P (νk) −→ P(UU(k))

for the tautological line bundle satisfies

k∗[l] = q∗(uT ) in π
U(1,k−1)
0 (P) ,

where uT ∈ πT0 (P) is the unstable tautological class (3.5). Thus

(Σ∞
+ k)∗(σ

U(1,k−1)[l]) = σU(1,k−1)(k∗[l]) = σU(1,k−1)(q∗(uT )) = q∗(σT (uT )) = q∗(eT ) ,

where eT = σT (uT ) ∈ πT0 (Σ
∞
+ P) is the stable tautological class (3.5). Combining these observations yields

ϑU(k),∗[νk] = ((Σ∞
+ k) ◦ τ(P (νk)))∗(1) = (Σ∞

+ k)∗(tr
U(k)
U(1,k−1)(σ

U(1,k−1)[l]))(5.12)

= tr
U(k)
U(1,k−1)((Σ

∞
+ k)∗(σ

U(1,k−1)[l])) = tr
U(k)
U(1,k−1)(q

∗(eT ))

in π
U(k)
0 (Σ∞

+ P).

Construction 5.13. To give rigorous meaning to the claim that our morphism c : BUP −→ Ω•(Σ∞
+ P)

realizes the classical equivariant Segal–Becker splittings, we recall the natural isomorphism

(5.14) {−} : KG(A) ∼= [A,BUP]G

that is inverse to the complex analog of the isomorphism specified in [18, Theorem 2.4.10]. Here G is a
compact Lie group, and A is a finite G-CW-complex.

Given a complex G-vector bundle ξ : E −→ A, we can choose a classifying G-map

f : A −→ GrC(V ) =
∐

n≥0
GrCn(VC)

for some sufficiently large orthogonal G-representation V , i.e., such that ξ is isomorphic to the pullback
along f of the tautological vector bundle (of non-constant rank) over GrC(V ). We write

⟨ξ⟩ ∈ [A,GrC]G

for the class represented by the classifying map f . This class only depends on the isomorphism class ξ,
and the construction satisfies ⟨ξ⟩+ ⟨ζ⟩ = ⟨ξ ⊕ ζ⟩. Since the abelian monoid [A,BUP]G is a group, we can
define (5.14) by additive extension to group completions, i.e., as the unique homomorphism that sends the

class of ξ to i∗⟨ξ⟩, with i : GrC −→ BUP being the group completion morphism (4.4). The homomorphism
(5.14) is an isomorphism by the complex analog of [18, Theorem 2.4.10]. When A is a single point, then
KG(∗) = R(G), [∗,BUP]G = πG0 (BUP), and the isomorphism (5.14) specializes to the isomorphism (5.5).

Theorem 5.15. Let G be a compact Lie group and A a finite G-CW-complex. Then the composite

KG(A) ∼=(5.14) [A,BUP]G
[A,c]G−−−−→ [A,Ω•(Σ∞

+ P)]G

coincides with the G-equivariant Segal–Becker splitting ϑG,A defined in (5.9).
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Proof. We precompose the maps [A, c]G ◦ (5.14) and the Segal–Becker splitting ϑG,A with the map

VectkG(A) −→ KG(A)

that sends a rank k vector bundle to its K-theory class. Letting G and A vary yields two global transfor-
mations from Vectk to Ω•(Σ∞

+ P) in the sense of Definition A.8. Theorem 5.7 shows that

c∗{νk} = ((5.6) ◦ bU(k))[νk] =(5.4) tr
U(k)
U(1,k−1)(q

∗(eT )) =(5.12) ϑU(k),∗[νk] .

So the two global transformations coincide on the class of the tautological U(k)-representation νk. Thus
the global transformations coincide for all equivariant rank k vector bundles, over all compact Lie groups
and all finite equivariant CW-complexes, by Corollary A.9.

This shows that maps [A, c]G ◦ (5.14) and ϑG,A coincide on all classes in KG(A) that are represented
by an equivariant vector bundle of constant rank. Since the morphism c is a loop map, the induced map
[A, c]G is additive. The map ϑG,A is additive by [8, Lemma 2.6]. Since vector bundles of constant rank
generate KG(A) as an abelian group, this proves the theorem. □

6. Global Adams operations

In this section we give an application of the global Segal–Becker splitting: we construct global equivariant
rigidifications (6.4) of the unstable Adams operations in equivariant K-theory. By design, the Adams
operations will arise as global loop maps.

Construction 6.1 (Adams operations in equivariant K-theory). We let G be a compact Lie group. We
recall the construction of the λ-operations and Adams operations on the Grothendieck ring of G-equivariant
vector bundles over a compact G-space. For all G-vector bundles ξ and ζ over the same base, the G-vector
bundle Λn(ξ ⊕ ζ) is isomorphic to

⊕n
i=0 Λ

i(ξ)⊗ Λn−i(ζ). So the map

Λ : VectG(A) −→ KG(A)JtK , [ξ] 7−→
∑

n≥0
[Λn(ξ)] · tn

takes addition in the abelian monoid of isomorphism classes of G-vector bundles to multiplication in the
power series ring KG(A)JtK. All these power series moreover have constant term Λ0(ξ) = 1, and are thus
invertible. So Λ defines a monoid homomorphism from VectG(A) to the multiplicative group of the ring
KG(A)JtK. The universal property of the Grothendieck construction thus yields an extension to a monoid
homomorphism

Λ : KG(A) −→ (KG(A)JtK)× .

The λ-operations λi : KG(A) −→ KG(A) are then defined by

Λ(x) =
∑

i≥0
λi(x) · ti .

By design, these operations extend the exterior powers on classes of actual G-vector bundles. The λ-
operations make the ring KG(A) into a special λ-ring, see [1, Theorem 1.5 (i)]. Every special λ-ring
supports Adams operations, i.e., ring homomorphisms ψn : R −→ R for n ≥ 1 that satisfy ψn ◦ ψm = ψnm

for all n,m ≥ 1, as well as the congruence ψp(x) ≡ xp modulo (p) for every prime p, see [1, §5]. We are
particularly interested in these Adams operation

ψn : KUG(A) −→ KUG(A)

in the case of equivariant K-theory. One key property of these operations is that on the class of a line
bundle ξ, the Adams operation is given by

ψn[ξ] = [ξ⊗n] .

Taking exterior power of vector bundles in natural both forG-maps in A, and for restriction along continuous
homomorphisms in the group G. Hence the λ-operations and the Adams operations inherit both kinds of
naturalities.
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We shall now use the power endomorphisms of P to define the global Adams operations on BUP, by
employing our splitting to ‘retract’ them off the induced endomorphisms of Σ∞

+ P.

Construction 6.2 (Global Adams operations). We let n ≥ 1 be a positive natural number. We write

µn : T −→ T , µn(λ) = λn

for the n-th power homomorphism. Since the pair (P, uT ) represents the functor πT0 , we can define a
morphism ϕn : P −→ P in the unstable global homotopy category by the requirement that

ϕn∗ (uT ) = µ∗
n(uT )

in πT0 (P). The morphism ϕn then represents raising a line bundle to its n-th power. We define

(6.3) κn : U −→ U

as the unique morphism in the unstable global homotopy category making the following diagram commute:

U

d
��

κn
// U

∼ Ω•(η∧S1)◦d
��

Ω•(Σ∞
+ P ∧ S1)

Ω•(Σ∞
+ ϕn∧S1)

// Ω•(Σ∞
+ P ∧ S1)

Ω•(η∧S1)

// Ω•(KU ∧ S1)

The global equivalence γ : BUP
∼−→ ΩU was defined in (4.6). We define the n-th global Adams operation

(6.4) ψn : BUP −→ BUP

as the unique morphism in the unstable global homotopy category making the following diagram commute:

BUP

γ ∼
��

ψn

// BUP

∼ γ

��
ΩU

Ω(κn)
// ΩU

Clearly, the morphism ϕ1 is the identity of P, κ1 is the identity of U, and thus ψ1 is the identity of BUP.

The next proposition verifies a globally-coherent version of the design criterion for Adams operations,
namely that on line bundles, ψn is the n-th tensor power. The morphism of global spaces h : P −→ BUP
was defined in Construction 4.12 by the property h∗(uT ) = {ν1} in πT0 (BUP); it represents the inclusion
of line bundles into virtual vector bundles.

Proposition 6.5. For every n ≥ 1, the following diagram commutes in the unstable global homotopy
category:

P
ϕn

//

h
��

P

h
��

BUP
ψn

// BUP
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Proof. The following diagram commutes by Corollary 4.13 and naturality of the adjunction unit:

P
ϕn

//

h

xx
unit

��

P

h

&&
unit

��

BUP

c %%

BUP

c

xx
Ω•(η)◦c∼
��

Ω•(Σ∞
+ P)

Ω•(Σ∞
+ ϕn)

// Ω•(Σ∞
+ P)

Ω•(η)
// Ω•(KU)

Expanding the definition of ψn and using that the morphism d : U −→ Ω•(Σ∞
+ P∧S1) deloops c : BUP −→

Ω•(Σ∞
+ P) proves the claim. □

Example 6.6. The second Adams operation ψ2 : KG(A) −→ KG(A) is given on the class of a G-vector
bundle ξ : E −→ A by the formula

ψ2[ξ] = [Sym2(ξ)] − [Λ2(ξ)] ,

where Sym2(ξ) and Λ2(ξ) are, respectively, the second symmetric and exterior power of ξ. Indeed, this
formula has the correct behavior on line bundles, is additive for Whitney sum in ξ, and natural in (G,A).
So the various naturality properties force ψ2 to be given by this formula. In general, ψn can be described
on vector bundles by certain alternating sums of certain polynomial functors, but the general formula is
not as simple. The formula for ψ2 shows that the Adams operations do not generally send vector bundles
(other than line bundles) to vector bundles, but rather to virtual vector bundles. So the global Adams

operations ψn : BUP −→ BUP do not restrict to endomorphisms of GrCk for k ≥ 2.

The next theorem justifies the name ‘global Adams operation’ for the morphism ψn : BUP −→ BUP.

Theorem 6.7. For every compact Lie group G, every finite G-CW-complex A and every n ≥ 1, the
following square commutes:

KG(A)

(5.14) ∼=
��

ψn

// KG(A)

(5.14)∼=
��

[A,BUP]G
ψn

∗

// [A,BUP]G

Proof. We observe that

ψn∗ {ν1} = ψn∗ (h∗(uT )) = h∗(ϕ
n
∗ (uT )) = h∗(µ

∗
n(uT ))

= µ∗
n(h∗(uT )) = µ∗

n{ν1} = {µ∗
n(ν1)} = {ψn[ν1]} .

The second equation is Proposition 6.5.
Next we consider the T k-representation p∗1(ν1)⊕ · · ·⊕ p∗k(ν1), where pi : T k −→ T denotes the projection

to the i-th factor. Then

ψn∗ {p∗1(ν1)⊕ · · · ⊕ p∗k(ν1)} =
∑

i=1,...,k

p∗i (ψ
n
∗ {ν1})

=
∑

i=1,...,k

p∗i {ψn[ν1]} = {ψn[p∗1(ν1)⊕ · · · ⊕ p∗k(ν1)]} .

The first equation uses that the maps ψn∗ and {−} are additive and compatible with restriction along
continuous homomorphisms, because ψn : BUP −→ BUP is a global loop map. The third equation use that
the Adams operations ψn are additive and compatible with restriction along continuous homomorphisms.
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For the tautological U(k)-representation νk, we then obtain

res
U(k)

Tk (ψn∗ {νk}) = ψn∗ {res
U(k)

Tk (νk)} = {ψn(resU(k)

Tk [νk])} = res
U(k)

Tk {ψn[νk]} .

The second equation uses the previous case and the fact that res
U(k)

Tk (νk) = p∗1(ν1)⊕ · · · ⊕ p∗k(ν1). Because

the restriction homomorphism res
U(k)

Tk : R(U(k)) −→ R(T k) is injective, this proves the relation ψn∗ {νk} =
{ψn[νk]}.

Now we prove the theorem. We precompose the two composites in the statement of the theorem with
the map

j : VectkG(A) −→ KG(A)

that sends a rank k equivariant vector bundle to its K-theory class. Letting G and A vary yields two
global transformations from Vectk to BUP in the sense of Definition A.8. We just showed that these two
global transformations coincide on the class of the tautological U(k)-representation νk. So the two global
transformations coincide for all equivariant rank k vector bundles, for all compact Lie groups and over all
finite equivariant CW-complexes, by Corollary A.9. Since the morphism ψn is a loop map, the induced
map ψn∗ is additive. So both composites in the diagram are additive. Since vector bundles of constant rank
generate KG(A) as an abelian group, this proves the theorem. □

Remark 6.8. The Adams operations in equivariant K-theory satisfy the relation ψm ◦ ψn = ψmn for all
m,n ≥ 1. So by Theorem 6.7, the morphisms of global spaces

ψm ◦ ψn, ψmn : BUP −→ BUP

induce the same map on [A,BUP]G for all finite G-CW-complexes A. We do not know if in fact ψm ◦ψn =
ψmn as endomorphisms of BUP in the unstable global homotopy category. Or even better, if the deloopings
(6.3) of the global Adams operations satisfy κm ◦ κn = κmn : U −→ U.

Appendix A. Global transformations of equivariant homotopy sets

In the body of this paper, we verify that the global Segal–Becker splitting c : BUP −→ Ω•(Σ∞
+ P)

induces the classical equivariant Segal–Becker splittings on equivariant cohomology theories; and we verify
that global Adams operation ψn : BUP −→ BUP induces the classical Adams operation on equivariant K-
groups. In both cases we are dealing with ‘global’ natural transformations from the functor of isomorphism
classes of complex vector bundles of some fixed rank. In this appendix we develop a general tool to
characterize such global natural transformations by their effect on certain universal classes, see Corollary
A.9.

Equivariant complex vector bundles of rank k arise from equivariant U(k)-principal bundles, and are
thus represented by the global classifying space BglU(k), in the sense of [18, Proposition 1.1.30]. This fact
makes the representability result for vector bundles a special case of a representability result for global
transformations between the equivariant homotopy sets of orthogonal spaces, see Theorem A.6.

Construction A.1 (Equivariant homotopy sets). We recall the equivariant homotopy sets defined by
orthogonal spaces, discussed in more detail in [18, Section 1.5]. We let E be an orthogonal space, we let G
be a compact Lie group, and we let A be a G-space. We set

[A,E]G = colimV ∈s(UG)[A,E(V )]G .

On the right, [−,−]G denotes the set of equivariant homotopy classes of continuous G-maps, and the colimit
is taken over the poset of finite-dimensional G-subrepresentations of the complete G-universe UG. If the
G-space A is compact and the orthogonal space E is closed in the sense of [18, Definition 1.1.16], i.e., all
structure maps are closed embeddings, then the canonical map

[A,E]G −→ [A,E(UG)]G
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is bijective, see [18, Proposition 1.5.3], for E(UG) = colimV ∈s(UG)E(V ).

The sets [A,E]G are contravariantly functorial for continuous G-maps in A by precomposition, and
they are contravariantly functorial for continuous homomorphisms in G: a continuous homomorphism
α : K −→ G of compact Lie groups induces a restriction map

α∗ : [A,E]G −→ [α∗(A), E]K

by restriction of actions along α, much like in [18, (1.5.9)]. When A is a finite G-CW-complex, then the
assignment E 7→ [A,E]G sends global equivalences of orthogonal spaces to bijections, see [18, Proposition
1.5.3 (iii)].

Construction A.2 (Induction isomorphisms). We let E be an orthogonal space, and we let H be a closed
subgroup of a compact Lie group G. For an H-space B, we write

[1,−] : B −→ G×H B , y 7−→ [1, y]

for the unit of the adjunction (G×H −, resGH), an H-equivariant continuous map. The adjunction bijections

[G×H B,E(V )]G ∼= [B,E(V )]H

and the fact that the underlying H-universe of UG is a complete H-universe provide an induction isomor-
phism: the composite

(A.3) [G×H B,E]G
resGH−−−→ [G×H B,E]H

[1,−]∗−−−−→ [B,E]H

is bijective.

If H is a closed subgroup of a compact Lie group G of smaller dimension, then the underlying H-space
of a G-CW-complex need not admit an H-CW-structure; an example is given by Illman in [10, Section 2].
Nevertheless, the underlying H-space of a finite G-CW-complex is always H-homotopy equivalent to a finite
H-CW-complex, see [10, Corollary B]. Consequently, for every continuous homomorphism α : K −→ G of
compact Lie groups, the restriction functor α∗ takes G-spaces of the G-homotopy type of a finite G-CW-
complex to K-spaces of the K-homotopy type of a finite K-CW-complex.

Definition A.4 (Global transformations). We let E and F be orthogonal spaces. A global transformation
τ from F to E consists of maps

τG,A : [A,F ]G −→ [A,E]G

for all compact Lie groups G and all G-spaces A of the G-homotopy type of a finite G-CW-complex that
are natural for restriction along G-maps in A, and natural for restriction along continuous homomorphisms
in G.

Construction A.5. We let K be a compact Lie group, and we let B be a K-space. We choose a faithful
K-representation V and define the global quotient orthogonal space as

K\\B = L(V,−)×K B .

In [18, Example 1.1.24] we use the more precise notation LK,VB for K\\B. However, the orthogonal space
K\\B is independent of the choice of faithful representation up to a preferred zigzag of global equivalences,
see the remark immediately after [18, Definition 1.1.27], which justifies the simplified notation that does
not record the representation V . The continuous map

B
[IdV ,−]−−−−−→ L(V, V )×K B = (K\\B)(V )

is K-equivariant, so it represents a class

uK,B ∈ [B,K\\B]K ,

the tautological class.
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Theorem A.6. Let E be an orthogonal space, let K be a compact Lie group, and let B be a finite K-CW-
complex. For every class y in [B,E]K , there is a unique global transformation τ from K\\B to E such that
the map

τK,B : [B,K\\B]K −→ [B,E]K

sends the tautological class uK,B to y.

Proof. We start with uniqueness, and we let τ be any global transformation from K\\B to E. We let V
be the faithful K-representation that is implicit in the definition of K\\B. We let W be an inner product
space and φ : V −→ W a linear isometric embedding. The group O(W ) acts transitively on L(V,W )/K,
and the stabilizer of φK is the subgroup

O[φ] = {A ∈ O(W ) : there is k ∈ K such that Aφ = φ ◦ lk} .
We write α : O[φ] −→ K for the continuous epimorphism that sends A ∈ O[φ] to the unique element
α(A) ∈ K such that Aφ = φ ◦ lα(A).

The identity of (K\\B)(W ) represents a class [Id(K\\B)(W )] in [(K\\B)(W ),K\\B]O(W ). By design, the
map φ : α∗(V ) −→ K is O[φ]-equivariant. So

[φ,−]∗(res
O(W )
O[φ] [Id(K\\B)(W )]) = [φ : α∗(V ) −→W,−]

= [(K\\B)(φ)[Idα∗(V ),−]] = [Idα∗(V ),−] = α∗(uK,B)

in [α∗(B),K\\B]O[φ]. The naturality properties of the global transformation τ yield the relation

[φ,−]∗(res
O(W )
O[φ] (τO(W ),(K\\B)(W )[Id(K\\B)(W )])) = τO[φ],α∗(B)([φ,−]∗(res

O(W )
O[φ] [Id(K\\B)(W )]))

= τO[φ],α∗(B)(α
∗(uK,B)) = α∗(τK,B(uK,B))(A.7)

in [α∗(B), E]O[φ]. The map

O(W )×O[φ] α
∗(B) −→ L(V,W )×K B = (K\\B)(W ) , [A, b] 7−→ [Aφ, b]

is an O(W )-equivariant homeomorphism, so the induction isomorphism (A.3) shows that the composite

[(K\\B)(W ), E]O(W )
res

O(W )

O[φ]−−−−−→ [(K\\B)(W ), E]O[φ] [φ,−]∗−−−−→ [α∗(B), E]O[φ]

is bijective. Since [φ,−]∗ ◦ res
O(W )
O[φ] is bijective, the relation (A.7) shows that, and how, the class

τO(W ),(K\\B)(W )[Id(K\\B)(W )] in [(K\\B)(W ), E]O(W ) is determined by the class τK,B(uK,B).

Now we let G be any compact Lie group, and we let x ∈ [A,K\\B]G be a homotopy class. We represent
x by a continuous G-map f : A −→ (K\\B)(W ) for some G-representation W . If A = ∅, then [A,E]G has
only one element, and there is nothing to show. If A is nonempty, then also (K\\B)(W ) is nonempty, and
there exists a linear isometric embedding φ : V −→ W . If ρ : G −→ O(W ) parameterizes the G-action on
W , then

f∗(ρ∗[Id(K\\B)(W )]) = [f ] = x .

The naturality properties of the global transformation τ then yield the relation

f∗(ρ∗(τO(W ),(K\\B)(W )[Id(K\\B)(W )])) = τG,A(f
∗(ρ∗[Id(K\\B)(W )])) = τG,A(x)

in [A,E]G. Since τO(W ),(K\\B)(W )[Id(K\\B)(W )] is determined by τK,B(uK,B) by (A.7), this relation shows
that the class τG,A(x) is also determined by τK,B(uK,B). This completes the proof of injectivity.

For surjectivity we represent the class y ∈ [B,E]K by a continuous K-map g : B −→ E(U), for some
K-representation U . The class E(i1) ◦ g : B −→ E(U ⊕ V ) then also represents y. The Yoneda lemma
provides a unique morphism of orthogonal spaces g♭ : L(U ⊕ V,−)×K B −→ E such that the composite

B
[IdU⊕V ,−]−−−−−−−→ L(U ⊕ V,U ⊕ V )×K B

g♭(U⊕V )−−−−−−→ E(U ⊕ V )
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equals E(i1) ◦ g. The associated global transformation from L(U ⊕ V,−) ×K B to E then sends the class
[IdU⊕V ,−] in [B,L(U ⊕ V,−) ×K B]K to the class y. Restriction of linear isometric embeddings along
i2 : V −→ U ⊕ V is a global equivalence of orthogonal spaces

ρ : L(U ⊕ V,−)×K B
∼−−→ L(V,−)×K B = K\\B .

Moreover,
ρ∗[IdU⊕V ,−] = [IdV ,−] = uK,B

in [B,K\\B]K . As a global equivalence, the induced global transformation from L(U ⊕V,−)×K B to K\\B
is bijective. So the composite global transformation from K\\B through L(U ⊕ V,−)×K B to E sends the
tautological class uK,B ∈ [B,K\\B]K to the class y. □

� We alert the reader that Theorem A.6 is reminiscent of, but different from, another representability
result for [B,E]K . For a fixed finite K-CW-complex B, the functor [B,−]K takes global equivalences

of orthogonal spaces to bijections, by [18, Proposition 1.5.3 (ii)]. So we can consider [B,−]K as a functor on
the unstable global homotopy category. As such, it is represented by the pair (K\\B, uK,B). In other words:
for every orthogonal space E and every class y in [B,E]K , there is a unique morphism ψ : K\\B −→ E
in the unstable global homotopy category such that ψ∗(uK,B) = y. The morphism ψ induces a global
transformation that takes uK,B to y, which is the surjectivity part of Theorem A.6. The additional power of
Theorem A.6 is the injectivity part, and that it is about global transformations, as opposed to morphisms
in the unstable global homotopy category. This is relevant for our applications because the equivariant
Segal–Becker splitting (5.9) and the Adams operations in equivariant K-theory come to us are precisely as
global transformations.

Now we use Theorem A.6 to deduce a representability statement for vector bundles, by exploiting that
rank k complex vector bundles are represented by the global classifying space

BglU(k) = U(k)\\∗ = L(u(νk),−)/U(k) .

Definition A.8. We let E be an orthogonal space and k ≥ 1. A global transformation τ from Vectk to E
consists of maps

τG,A : VectkG(A) −→ [A,E]G

for all compact Lie groups G and all G-spaces A of the G-homotopy type of a finite G-CW-complex that
are natural for restriction along G-maps in A, and natural for restriction along continuous homomorphisms
in G.

For every compact Lie group G and every paracompact G-space A, the associated vector bundle con-
struction passes to a natural bijection

PrinGU(k)(A)
∼=−−→ VectkG(A)

between isomorphism classes of G-equivariant U(k)-principal bundles and G-equivariant rank k complex
vector bundles. If moreover A is a finite G-CW-complex, then [18, Proposition 1.1.30] provides a natural
bijection

[A,BglU(k)]G ∼= PrinGU(k)(A) .

For varying (G,A), the composite natural bijections

VectkG(A)
∼= [A,BglU(k)]G

are moreover natural for restriction along continuous homomorphisms in G. So they form a bijective global
transformation from Vectk to BglU(k). Unraveling all definitions shows that for G = U(k) and A = ∗,
the bijection VectkU(k)(∗) ∼= [∗, BglU(k)]G taked the tautological U(k)-representation, considered as a U(k)-
vector bundle over a point, to the tautological class

uU(k),∗ ∈ [∗, U(k)\\∗]U(k) = π
U(k)
0 (BglU(k)) .
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We can thus specialize Theorem A.6 to K = U(k) and B = ∗, and deduce the following corollary:

Corollary A.9. Let E be an orthogonal space, and k ≥ 0. For every class y in π
U(k)
0 (E), there is a unique

global transformation τ from Vectk to E such that the map

τU(k),∗ : VectkU(k)(∗) −→ π
U(k)
0 (E)

sends the class [νk] to y.
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