
Sharp weighted estimates for r-variations of

averages and truncated singular integrals on spaces

of homogeneous type

Pavel Zorin-Kranich

December 5, 2017

Abstract

We prove sharp weighted estimates for intrinsic square functions and r-variations

of averages and truncated singular integrals on suitable spaces of homogeneous type,

including homogeneous nilpotent Lie groups.

1 Introduction

Throughout the article (X ,ρ,µ) denotes an (Ahlfors–David) D-regular space of homogeneous

type (definitions of these and other terms are given in Section 2). Variational estimates for

the averaging operators

At f (x) = µ(B(x , t))−1

ˆ

B(x ,t)
f (y)dµ(y) (1.1)

on X = RD have been introduced by Bourgain [Bou89]. A comprehensive theory covering

the full range of Lp spaces and variational exponents r both for averages (1.1) and truncated

singular integrals

Tt f (x) =

ˆ

ρ(x ,y)>t
K(x , y) f (y)dµ(y) (1.2)

has been developed by a number of authors [JRW03; JKRW98; JSW08]. Some of their

estimates have been extended to weighted Lp spaces in [MTX15a; KZK14; MTX15b].

Sparse domination has been developed in [Ler13; Lac15; HRT15] in order to simplify the

proof of the A2 theorem for Calderón–Zygmund (CZ) operators [Hyt12]. In a short period of

time since 2015 this idea has been applied in many settings which go beyond CZ theory, and

we are not going to survey these developments. In the CZ setting it is by now well understood

that sparse domination follows from suitable localized non-tangentional endpoint estimates;

several abstract results formalizing this principle appeared in [Ler16; FSZK16; CACDPO16].

These techniques have been applied to r-variational estimates for truncated singular integrals

in [HLP13] (smooth truncations) and [FSZK16] (sharp truncations).

In this article we extend these r-variational estimates to a class of non-convolution type

singular integrals. We formulate our results on classes of spaces of homogeneous type

that include homogeneous nilpotent Lie groups. In this setting we also obtain some sharp

weighted inequalities for square functions and r-variation of averages.
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Weighted estimates for r-variation of averaging operators (1.1) have been obtained in

[KZK14]. While in retrospect the methods of that article easily imply sparse domination of

r-variations, the endpoint estimate for the jump counting function below requires a new

ingredient.

Theorem 1.3. Suppose that the space X has the small boundary property. Then the operators
f 7→ λ−1
p

Jλ(At f : 0< t <∞) are pointwise controlled by sparse operators uniformly in
λ > 0. Moreover, for every r > 2 the operator f 7→ V r(At f : 0< t <∞) is pointwise controlled
by sparse operators with constant CX r/(r − 2).

Known estimates for sparse operators (see [HL15] for p > 1 and [DSLR16] for p = 1)

yield the following consequences for the jump counting function (and similar ones for

r-variations).

Corollary 1.4. With the hypotheses of Theorem 1.3

‖λ−1
p

Jλ(At( f σ) : t > 0)‖Lp(w) ®X [w,σ]
1/p
Ap
([w]1/p

′

A∞
+ [σ]

1/p
A∞
)‖ f ‖Lp(σ), 1< p <∞,

(1.5)

‖λ−1
p

Jλ(At( f σ) : t > 0)‖Lp,∞(w) ®X [w,σ]
1/p
Ap
[w]1/p′

A∞
‖ f ‖Lp(σ), 1< p <∞,

(1.6)

‖λ−1
p

Jλ(At( f σ) : t > 0)‖L1,∞(w) ®X

1

α− 1

ˆ

X
| f |ML log log L(log log log L)αw, 1< α < 2.

(1.7)

Finally, we obtain r-variational estimates for a class of non-convolution type singular

integral operators.

Theorem 1.8. Suppose that the space X has the small boundary property and the metric ρ
satisfies the Hölder type condition

|ρ(x , z)−ρ(y, z)| ≤ C max(ρ(x , z),ρ(y, z))1−ηρ(x , y)η (1.9)

for some 0< η≤ 1.
Let K : X × X \ {diagonal} → C be a Hölder continuous CZ kernel, that is, a function that

satisfies the size condition
sup
x 6=y
ρ(x , y)D|K(x , y)| ≤ 1, (1.10)

the smoothness estimate

|K(x , y)− K(x ′, y)|+ |K(y, x)− K(y, x ′)| ≤
�ρ(x , x ′)

ρ(x , y)

�η
ρ(x , y)−D (1.11)

for all x , y with ρ(x , y)≥ 2ρ(x , x ′)> 0, and the cancellation condition
ˆ

r<ρ(x ,y)<R
K(x , y)dx =

ˆ

r<ρ(x ,y)<R
K(x , y)dy = 0, 0< r < R<∞. (1.12)

Consider the associated truncated singular integral operators (1.2).
Then for every r > 2 the operator f 7→ V r(Tt f : 0 < t < ∞) is pointwise controlled by

sparse operators with norm CX ,ηr/(r − 2).
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Corollary 1.13. With the hypotheses of Theorem 1.8

‖V r(Tt( f σ) : t > 0)‖Lp(w) ®X

r

r − 2
[w,σ]

1/p
Ap
([w]1/p′

A∞
+ [σ]

1/p
A∞
)‖ f ‖Lp(σ), 1< p <∞,

(1.14)

‖V r(Tt( f σ) : t > 0)‖Lp,∞(w) ®X

r

r − 2
[w,σ]

1/p
Ap
[w]1/p′

A∞
‖ f ‖Lp(σ), 1< p <∞,

(1.15)

‖V r(Tt( f ) : t > 0)‖L1,∞(w) ®X

r

r − 2

1

α− 1

ˆ

X
| f |ML log log L(log log log L)αw, 1< α < 2.

(1.16)

It is known [MS79, Theorem 2] that for every quasimetric ρ there exist α > 0 and

a metric ρ̃ ∼ ρα with the property (1.9). More practically, the property (1.9) holds for

homogeneous metrics on homogeneous nilpotent Lie groups.

The conclusion of Theorem 1.8 has been previously known for convolution type CZ

kernels on RD by [MST15, Theorem A.1] (unweighted Lp estimates), [CJRW03, Theorem B]

(weak type (1, 1)), and [FSZK16] (reduction of weighted to unweighted estimates).

For rough homogeneous kernels on RD variational estimates have been proved in

[CJRW03, Theorem A] (see also [JSW08] and [DHL15]). Quantiative weighted estimates

for rough homogeneous kernels have been recently obtained in [HRT15; CACDPO16] and

extended to their maximal truncations in [Ler17; DPHL17]. It would be interesting to extend

these results to variational truncations and also homogeneous groups as in [Tao99].

2 Notation and tools

2.1 Spaces of homogeneous type

Definition 2.1. A quasi-metric on a set X is a function ρ : X × X → [0,∞) such that

ρ(x , y) = 0 ⇐⇒ x = y that is symmetric and satisfies the quasi-triangle inequality

ρ(x , y)≤ A0(ρ(x , z) +ρ(z, y)) for all x , y, z ∈ X (2.2)

with some A0 <∞ independent of x , y, z.

A measure µ on a quasi-metric space (X ,ρ) is called doubling if there exists A1 <∞ such

that

µ(B(x , 2r))≤ A1µ(B(x , r)) for all x ∈ X , r > 0, (2.3)

A tuple (X ,ρ,µ) consisting of a set X , a quasi-metric ρ, and a doubling measure µ is called

a space of homogeneous type.

A space of homogeneous type (X ,ρ,µ) is called (Ahlfors–David) D-regular, D > 0, if

there exist 0< c, C <∞ such that for all x ∈ X and r > 0 we have

crD ≤ µ(B(x , r))≤ C rD.

A D-regular space necessarily has no atoms. We say that a family D of subsets of X has the

small boundary property if there exist η > 0 and C3 <∞ such that for every Q ∈ D and every

0< τ≤ 1

µ(∂τdiam(Q)Q)≤ C3τ
ηµ(Q), (2.4)
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where

∂τ(Q) = {x ∈Q : dist(x , X \Q)≤ τ} ∪ {x ∈ X \Q : dist(x ,Q)≤ τ}. (2.5)

We say that (X ,ρ,µ) has the small boundary property if the collection of all metric balls has

the small boundary property.

We denote the measure of a set Q by |Q|= µ(Q) and the average of a function f over Q
by



f
�

Q = |Q|
−1
´

Q f dµ.

2.2 Dyadic cubes

Filtrations on spaces of homogeneous type that closely resemble dyadic filtrations on RD

have been first constructed by Christ [Chr90]. We recall their properties.

Definition 2.6. Let (X ,ρ,µ) be a space of homogeneous type. A system of dyadic cubes D
with constants κ > 1, a0 > 0, C1 <∞ consists of collections Dk, k ∈ Z, of open subsets of X
such that and constants κ > 1, a0,η > 0, C1, C2 <∞ with the following properties.

1. ∀k ∈ Z µ(X \ ∪Q∈Dk
Q) = 0,

2. If l ≥ k, Q ∈ Dl , Q′ ∈ Dk, then either Q′ ⊆Q or Q′ ∩Q = ;,

3. For every l ≥ k and Q′ ∈ Dk there exists a unique Q ∈ Dl such that Q ⊇Q′,

4. ∀k ∈ Z,Q ∈ Dk ∃cQ ∈ X : B(cQ, a0κ
k)⊆Q ⊆ B(cQ, C1κ

k).

Abusing the notation we write k(Q) = k if Q ∈ Dk, so that each cube remembers its scale

although the same cube (as a set) may appear in other Dl . We use D to denote the disjoint

union of Dk.

If in addition the collection D has the small boundary property (2.4), then we call D a

Christ system of dyadic cubes.

Theorem 2.7 ([Chr90]). Every space of homogeneous type admits a system of Christ dyadic
cubes.

Remark 2.8. It is known that for every quasimetric ρ there exists 0< α≤ 1 and a metric d
such that d(x , y)∼ ρ(x , y)α, see [MS79] for the first proof and [PS09] for the fact that one

can choose (2C(2.2))
α = 2 (a much more verbose statement of the latter result also appears

in [MMMM13]). It is easy to see that a system of (Christ) dyadic cubes with respest to d is

also a system of (Christ) dyadic cubes with respect to ρ (with different constants). However,

the small boundary property of dyadic cubes seems to be substantially easier to achieve in

the metric setting using the Hardy–Littlewood maximal function on (0,∞) as on [DM00,

p. 146].

Throughout the article we fix a system of Christ dyadic cubes D on (X ,ρ,µ). We

denote by Ek the conditional expectation operator onto the σ-algebra generated by Dk. The

martingale difference operator is denoted by Dk = Ek −Ek+1. The function Dk f is constant

on each cube of scale k and has integral 0 on each cube of scale k+ 1.

Definition 2.9. A finite family (Dα)α of systems of dyadic cubes is called adjacent if all

constants in their definitions coincide and there exists a constant C3 <∞ such that for every

ball B(x , r)⊂ X there exists α and a cube Q ∈ Dα such that B(x , r)⊆Q ⊆ B(x , C3r).
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Theorem 2.10 ([HK13]). Every space of homogeneous type admits a finite collection of
adjacent systems of dyadic cubes.

Remark 2.11. It is also possible to construct adjacent systems of Christ dyadic cubes.

Example 2.12. Let X = RD with the Euclidean distance and the Lebesgue measure. For each

α ∈ {0, 1, 2}D the corresponding shifted system of dyadic cubes is given by

Dα = {2−k([0, 1)D +m+ (−1)k
1

3
α), k ∈ Z, m ∈ ZD}.

Then the systems Dα, α ∈ {0,1,2}D, are adjacent. In fact, on RD one can construct D+ 1

shifted systems of dyadic cubes that are adjacent [Mei03].

2.3 Sparse collections and operators

Definition 2.13. Let D be a system of dyadic cubes. A collection S ⊂ D is called

1. η-sparse if there exist pairwise disjoint subsets E(Q)⊂Q ∈ S with |E(Q)| ≥ η|Q| and

2. Λ-Carleson if one has
∑

Q′⊂Q,Q′∈S µ(Q
′)≤ Λµ(Q) for all Q ∈ D.

It is known that a collection is η-sparse if and only if it is 1/η-Carleson [LN15, §6.1].

The corresponding sparse operator is given by

AS f =
∑

Q∈S

1Q




| f |
�

CQ (2.14)

and sparse square function by

A2
S f =
�
∑

Q∈S

1Q




| f |
�2

CQ

�1/2

(2.15)

The sparse operators (2.14) and square functions (2.15) can be dominated by finite linear

combinations of similar sparse operators/square functions with respect to adjacent dyadic

grids in which the averages of f are taken over Q instead of CQ, cf. [Ler16, Remark 4.3].

Hence the usual estimates for sparse operators [HL15; DSLR16] apply to (2.14) and (2.15).

We say that an operator T is pointwise controlled by a sparse operator (or square

function) with constant C < ∞ if for every function f there exist 1/2-sparse collections

S n ⊂ D, n ∈ N, such that

|T f | ≤ C lim inf
n→∞

AS n f or |T f | ≤ C lim inf
n→∞

A2
S n f ,

respectively, holds pointwise almost everywhere.

We use a version of the sparse domination principle in [Ler16]. Given a dyadic grid D
denote by D2

⊆ the set of pairs (Q′,Q) ∈ D ×D with Q′ ⊆Q. For a function F : D2
⊆→ [0,∞]

let

NQF(x) := sup
x∈Q′⊆Q

F(Q′,Q), N F(x) := sup
x∈Q′⊆Q

F(Q′,Q). (2.16)

In the first definition above the supremum is taken over all Q′ and in the second over all

Q′,Q. We use the convention that the supremum of an empty subset of [0,∞] is 0.

A simple stopping time argument using the doubling condition and starting at a scale k0

gives the following result.
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Lemma 2.17. Let F : D2
⊆→ [0,∞] be a function that is monotonic in the sense that

Q′′′ ⊆Q′′ ⊆Q′ ⊆Q =⇒ F(Q′′,Q′)≤ F(Q′′′,Q)

and ℓr-subadditive for some 0< r <∞ in the sense that

Q′′ ⊆Q′ ⊆Q =⇒ F(Q′′,Q)r ≤ F(Q′′,Q′)r + F(Q′,Q)r .

Suppose that for every dyadic cube Q ∈ D we have

‖NQF‖1,∞ ≤ C‖ f ‖L1(CQ). (2.18)

Then there exist 1/2-sparse collections S k0 ⊂ D of cubes such that

N F ® C lim inf
k0→∞

�
∑

Q∈S k0

1Q




| f |
�r

CQ

�1/r
(2.19)

holds pointwise almost everywhere.

2.4 Bounded r-variation and jump counting

Definition 2.20. Let I be an ordered set and (at)t∈I a family of complex numbers. The

homogeneous r-variation seminorm is denoted by

V̇ r(at : t ∈ I) := sup
t0<t1<···<tJ∈I

�

J
∑

j=1

|at j
− at j−1

|r
�1/r

and the inhomogeneous r-variation norm by

V r(at : t ∈ I) := sup
t∈I
|at |+ V̇ r(at : t ∈ I).

The λ-jump counting function Jλ(at : t ∈ I) is the supremum over all J such that there exist

t0 < t1 < · · ·< tJ with |at j
− at j−1

|> λ for all j = 1, . . . , J .

We refer to [JSW08] for the basic properties of the jump counting function and its

relation to r-variations.

3 Short variations

We will consider two types of short variation operators, both involving a non-tangentional

supremum component introduced in [Kra13]. Ergodic averages will be compared with a

dyadic martingale using the short variations

Sk f (x) := sup
ρ(x ,x ′)≤Cκk

V 2(At f (x ′)−Ek f (x ′) : κk/C ≤ t ≤ Cκk). (3.1)

For a CZ kernel K as in Theorem 1.8 (in fact we only need the cancellation condition in y
and the size estimate, but not the smoothness condition) we define

Sk f (x) := sup
ρ(x ,x ′)≤Cκk

V 2(

ˆ

κk/C<ρ(x ′,y)<t
K(x ′, y) f (y)dy : κk/C ≤ t ≤ Cκk). (3.2)
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The non-tangentional short variation square function is defined by

S f := (
∑

k

(Sk f )2)1/2. (3.3)

In the short variation we can in fact replace 2-variation by r-variation for any r > 1,

see [KZK14]. The following result has been essentially proved in [KZK14] following the

arguments in [JKRW98; JRW03].

Theorem 3.4. Let Sk be given either by (3.1) or by (3.2). Then the operator S given by (3.3)

has weak type (1, 1).

As in [ZK17], Theorem 3.4 immediately implies that S is pointwise controlled by a sparse

square function. Using the results from [HL15] this implies a sharp weighted refinement

of the case p > 1 of [KZK14, Theorem 1.4]. Similarly as in [ZK17] one can also show

‖S f ‖L2(w) ® ‖ f ‖L2(Mw) and ‖S f ‖L1,∞(w) ® ‖ f ‖L1(Mw).

3.1 A reverse Hölder inequality

Lemma 3.5 (cf. [JRW03, Lemma 4.2]). Let Q ⊂ D be a collection of disjoint dyadic cubes of
scale ≤ k. For each Q ∈ Q let bQ be a scalar-valued function supported on Q with

´

bQ = 0.
Then for every α > D−η

2
we have

Sk(
∑

Q∈Q

bQ(x))2 ® (κk)−2D
∑

Q:dist(x ,Q)®κk

(κk/diam(Q))2α‖bQ‖2
1
. (3.6)

Proof. Clearly only cubes with dist(x ,Q) ® κk contribute to the left-hand side, so we

may remove all other cubes from Q. Now the right-hand side of the conclusion becomes

independent of x , so it suffices to estimate the variation at an arbitrary point, which we

again call x .

We consider only the homogeneous variation, in order to get the inhomogeneous variation

it suffices to additionally consider an arbitrary (but fixed) t, which is similar but easier. For

a suitable sequence κk/C ≤ t1 < · · ·< tJ ≤ Cκk we have

Sk(
∑

Q

bQ(x))2 ®
∑

j

|
∑

Q

B bQ(x , t j, t j+1)|
2
,

where B is either a difference between two averages or an integral over an annulus. We

decompose Q = ∪i≤0Qi according to scale: Qi =Q∩Dk+i. Each cube Q can only contribute

to the j-th summand non-trivially in two cases:

1. if Q ∩ (∂ B(x , t)) 6= ; for t = t j or t = t j+1

2. or Q ⊂ B(x , t j+1) \ B(x , t j) in the case (3.2).

The second case can only occur for one index j, and the contribution of this term can be

estimated even without the growing factor in (3.6). In the first case, for a fixed scale k+ i,
i ≤ 0, the small boundary property implies that there are at most O(κkDκiη/κ(k+i)D) =
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O(κi(η−D)) cubes of this kind in Qi, call this collection Qi, j. Splitting the collection Q into

scales and applying Hölder’s inequality we estimate
∑

j

|
∑

i≤0

∑

Q∈Qi

B bQ(x , t j, t j+1)|
2

®
∑

j

�

∑

i≤0

∑

Q∈Qi, j

|κ−αiB bQ(x , t j, t j+1)|
2� ·
�

∑

i≤0

∑

Q∈Qi, j

|καi|2
�

®
∑

j

∑

i≤0

∑

Q∈Qi

|κ−αiB bQ(x , t j, t j+1)|
2

(3.7)

in view of the hypothesis on α and the fact that |Qi, j|® κ
i(η−D). Estimating the 2-variation

norm by the 1-variation norm we obtain

(3.7)®
∑

i≤0

κ−2αi
∑

Q∈Qi

�

∑

j

B bQ(x , t j, t j+1)
�2

® κ−2kD
∑

Q:dist(Q,x)®κk

(κk/diam(Q))2α‖bQ‖2
1
.

Taking the supremum over sequences (t j) j we obtain (3.6).

3.2 Strong type (2, 2)

Lemma 3.8. There exists an ε > 0 such that for all k, j ∈ Z we have

‖Sk(Dk+ j f )‖2 ® 2−ε| j|‖Dk+ j f ‖2. (3.9)

Proof. Rescaling the metric we may assume k = 0.

Consider first j < 0. Then E0D j = 0, and by Lemma 3.5 with Q = D j+1 we obtain

S0D j f (x)®
�
∑

Q∈D j+1:dist(x ,Q)®1

(κ− j)α2‖1QD j f ‖
2

1

�1/2

® (κ− j)α
�
∑

Q∈D j+1:dist(x ,Q)®1

‖1QD j f ‖
2

2
|Q|
�1/2

® κ j(D/2−α)
�

ˆ

dist(x ,y)®1

|D j f (y)|
2
�1/2

,

and the conclusion follows since the averaging operator of scale 1 is bounded on L1 and we

can choose
D−η

2
< α < D

2
.

Consider now j ≥ 0. Then S0 does not vanish only in 1-neighborhoods of boundaries of

Q ∈ D j, and there we can estimate the 2-variation by the 1-variation. In particular,

S0D j f (x)≤
∑

Q∈D j

S0(1QD j f )(x)®
∑

Q∈D j

‖1QD j f ‖11∂1Q(x).

The latter characteristic functions have bounded overlap in view of the doubling property of

our measure space. Hence

‖S0D j f ‖
2

2
®
∑

Q∈D j

‖1QD j f ‖
2

1
|∂1Q|®
∑

Q∈D j

‖1QD j f ‖
2

1
|Q|κ− jη = κ− jη‖D j f ‖

2

2
,

where we have used the small boundary property (2.4) of the dyadic cubes.
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3.3 Weak type (1, 1)

Proof of Theorem 3.4. It follows from Lemma 3.8 that S has strong type (2, 2).

By homogeneity it suffices to prove

|{x : S f (x)> 1}|® ‖ f ‖1.

We use the Calderón–Zygmund decomposition. Let Q ⊂D be disjoint cubes such that such

that ‖ f ‖L∞(X\∪Q) ≤ 1,
∑

Q∈Q |Q|® ‖ f ‖1, and ‖ f ‖L1(Q) ® |Q| for all Q ∈ Q. Let

g(x) =

(

|Q|−1
´

Q f , x ∈Q ∈ Q,

f (x), x 6∈ ∪Q

and

b =
∑

Q∈Q

bQ, bQ(x) =

(

f (x)− |Q|−1
´

Q f , x ∈Q,

0, x 6∈Q.

Then ‖g‖1 ≤ ‖ f ‖1 and ‖g‖∞ ® 1, so we get the required weak type bound for g from the

strong type (2, 2) bound.

With E := ∪Q∈QCQ, where C is sufficiently large in terms of the constants in the definition

of Sk, it suffices to show

|{Sb > 1} \ E|®
∑

Q

|Q|. (3.10)

To this end it suffices to show
ˆ

X\E

∑

k

(Sk b)2 ®
∑

Q

|Q|. (3.11)

Let (D−η)/2 < α < D/2. For x 6∈ E only cubes of scale ≤ k contribute to Sk. Thus by

Lemma 3.5 we have

(Sk b)2(x)® (κk)−2D
∑

Q:dist(x ,Q)®κk

(κk/diam(Q))2α‖bQ‖2
1
.

Hence the left-hand side of (3.11) can be estimated by

ˆ

X\E

∑

k

(κk)−2D
∑

Q

1dist(x ,Q)®κk(κk/diam(Q))2α‖bQ‖2
1
dx

®
∑

Q

∑

k≥k(Q)

(κk)−2D(κk/diam(Q))2α|Q|2
ˆ

X\E
1dist(x ,Q)®κkdx

®
∑

Q

diam(Q)−2α|Q|2
∑

k≥k(Q)

κk(−D+2α)

®
∑

Q

|Q|2diam(Q)−D

®
∑

Q

|Q|.
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4 Averages

The estimate for the jump counting function in Theorem 1.3 will follow from Lemma 2.17

and the next result.

Proposition 4.1. For every f ∈ L1(X ) ∩ L∞(X ), every λ > 0 and kmax < ∞ there exists a
subadditive function Fλ on D2

⊆ such that

λ
p

Jλ(At f (x) : κk(Q′) ≤ t ≤ κk(Q))≤ Fλ(Q
′,Q), x ∈Q′ ⊆Q, k(Q)≤ kmax,

and
µ{NQFλ > ν} ≤ Cν−1‖ f ‖L1(CQ) for all Q ∈ D,ν > 0.

Proof. Fix λ > 0. Note first that, as in [JSW08, Lemma 1.3], we have

λ
p

Jλ(At f (x) : κk(Q′) ≤ t ≤ κk(Q))®
�

k(Q)−1
∑

k=k(Q′)

sup
x ′∈Qk(x)

Sk f (x ′)2
�1/2

+λ
p

Jλ/2(Ek f (x) : k(Q′)≤ k ≤ k(Q)).

The first term on the right-hand side is a subadditive function F of the order interval [Q′,Q],
and its contribution is estimated by Theorem 3.4.

In order to estimate the second term we follow the proof of Lépingle’s inequality for

martingales. We construct the greedy stopping times with jump size λ/8 starting with

l0(x)≡ kmax: given l j(x) let l j+1(x)< l j(x) be the largest number with |(El j+1
−El j

) f (x)|>
λ/8 (or −∞ if no such number exists). Then

λ
p

Jλ/2(Ek f (x) : k0 ≤ k ≤ k1)®
�
∑

j

|(Et j+1(x)−Et j(x))(Ek0
−Ek1

) f (x)|2
�1/2

.

Let F ′
λ
(Q′,Q) denote the right-hand side when x ∈Q′ ⊂Q, k(Q′) = k0, and k(Q) = k1. Then

F ′
λ
(Q′,Q) is clearly a subadditive function of the order interval [Q′,Q]. Moreover,

N F ®
�
∑

j

|MD(Et j+1
−Et j

) f |2
�1/2

,

where MD is the dyadic maximal operator. Hence the operator f 7→ N F ′
λ

has strong type

(2,2) by orthogonality of the operators Et j+1
−Et j

and the martingale maximal inequality.

Standard CZ theory can be applied to show that it also has weak type (1,1) because the

filtration D is doubling. We obtain the claim with Fλ = F + F ′
λ
.

In order to pass to r-variations we need the fact that the p-th power of the Lp,∞ quasi-

metric is equivalent to a metric for 0< p < 1.

Lemma 4.2 (cf. [SW69, Lemma 2.3]). Let 0< p < 1. Then

‖
∑

j

g j‖
p
p,∞ ≤ 2p
�

1+
1

1− p

�
∑

j

‖g j‖
p
p,∞.

10



Proof. It suffices to consider g j ≥ 0. Moreover, by homogeneity we may assume

∑

j

c j = 1, c j = ‖g j‖
p
p,∞.

With this normalization we have to show

|{
∑

j

g j > λ}| ≤ 2p
�

1+
1

1− p

�

λ−p.

To this end decompose g j = l j+m j+u j, where u j = g j1g j>λ/2
and l j = 1g j≤λ/2

min(g j, c jλ/2).

Then
∑

j

|suppu j|=
∑

j

|{g j > λ/2}| ≤
∑

j

c j(λ/2)
−p = (λ/2)−p

and
∑

j

l j ≤
∑

j

c jλ/2≤ λ/2.

Hence it remains to estimate

|{
∑

j

m j > λ/2}| ≤ (λ/2)
−1

ˆ

∑

j

m j ≤ (λ/2)
−1
∑

j

ˆ

(g j − c jλ/2)1c jλ/2≤g j≤λ/2

= (λ/2)−1
∑

j

ˆ λ/2

t=c jλ/2

|{g j > t}|dt ≤ (λ/2)−1
∑

j

ˆ λ/2

t=c jλ/2

c j t
−pdt

≤ (1− p)−1(λ/2)−1
∑

j

c j(λ/2)
1−p ≤

2p

1− p
λ−p.

Corollary 4.3. There exists C <∞ such that for all r > 2 we have

µ{NQF > ν} ≤ C
r

r − 2
ν−1‖ f ‖L1(CQ) for all Q ∈ D,

where
F(Q′,Q) = sup

x ′∈Q′
V̇ r(At f (x ′) : κk(Q′) ≤ t ≤ κk(Q)).

Corollary 4.3 and Lemma 2.17 imply the estimate for r-variations in Theorem 1.3.

Proof. By homogeneity we may normalize ν = 1. Let Fλ be the functions from Proposi-

tion 4.1.

Suppose F(Q,Q′)> 1. Then either F1(Q,Q′)> 1 or all jumps involved in the definition

of r-variation in F(Q,Q′) are bounded by 1. In the latter case

1< F(Q,Q′)r ®
∑

l≥0

2−l rJ2−l ,

so that in either case we obtain

∑

l≥0

2−l(r−2)F2−l (Q′,Q)2 ¦ 1.

11



Hence, using Lemma 4.2, we obtain

µ{NQF > 1} ≤ µ{NQ

�

∑

l≥0

2−l(r−2)F2

2−l

�

¦ 1}

® ‖
∑

l≥0

2−l(r−2)(NQF2−l )2‖1/2
1/2,∞

®
∑

l≥0

‖2−l(r−2)(NQF2−l )2‖1/2
1/2,∞

=
∑

l≥0

2−l(r−2)/2‖NQF2−l‖1,∞

® ‖ f ‖L1(CQ)

∑

l≥0

2−l(r−2)/2

®
r

r − 2
‖ f ‖L1(CQ).

5 Singular integrals

In this section we prove Theorem 1.8. Let ψ be a smooth function supported on the interval

[1/κ,κ] with
∑

kψ(κ
−k x) = 1 for all x ∈ (0,∞). Let

Kk(x , y) = K(x , y)ψ(κ−kρ(x , y))

be the smoothly truncated dyadic pieces of K of scale k and let Tk be the corresponding

integral operators

Tk f (x) =

ˆ

Kk(x , y) f (y)dy.

This coincides with the notation for truncated singular integrals (1.2), but there should be

no confusion between integer parameters k and positive real parameters t. The Hölder

continuity hypothesis (1.9) implies that Kk satisfies the same smoothness condition (1.11)

as K (up to a constant factor). Standard calculations using the cancellation and smoothness

conditions show that

‖T ∗k′Tk‖L2(X )→L2(X )+ ‖Tk′T
∗
k ‖L2(X )→L2(X ) ® 2−ε|k−k′|. (5.1)

Hence by the Cotlar–Stein lemma [Ste93, p. 280] the operator T =
∑

k∈Z Tk is bounded on

L2(X ).

5.1 Short variations

We split
ˆ

r<ρ(x ,y)
K(x , y) f (y)dy =

∞
∑

k=k0(r)

ˆ

Kk(x , y) f (y)dy (5.2)

−

ˆ

κk0(r)−1<ρ(x ,y)<κk0(r)
Kk0(r)(x , y) f (y)dy (5.3)

+

ˆ

r<ρ(x ,y)<κk0(r)
K(x , y) f (y)dy, (5.4)

where k0(r) = ⌈logκ r⌉. The contributions of (5.3) and (5.4) are controlled by the square

function (3.2), so it remains to estimate the contribution of (5.2).

12



5.2 Strong type (2, 2)

Let

F ′(Q′,Q) := sup
x∈Q′

V̇ r(
∑

k≥k0

Tk f (x) : k(Q′)≤ k0 ≤ k(Q)).

First we show that the operator f 7→ N F ′ has strong type (2, 2). Following [DF86, p. 548]

we decompose
∑

k≥k0

Tk =
∑

l∈Z,k≥k0

Dl Tk =
∑

k∈Z,l≥k0

Dl Tk −
∑

l≥k0,k<k0

Dl Tk +
∑

l<k0,k≥k0

Dl Tk =: I + I I + I I I .

The contribution of I to N F ′(x) is bounded by

V̇ r(
∑

l≥k0

Dl T f (x) : k0 ∈ Z).

Notice that the supremum over x ∈ Q′ disappeared because functions in the image of Dl

are constant on dyadic cubes of scale ≤ l. This operator is bounded on L2(X ) with norm

® r/(r − 2) since T is bounded on L2(X ) and by Lépingle’s inequality for martingales in the

form [Bou89, Lemma 3.3].

The remaining two terms will be estimated by square functions.

Estimate for I I

As in the estimate for I we remove the supremum over x ∈ Q′. Then we estimate the

r-variation by the ℓ2 norm. Using Minkowski’s inequality for the sum over m and Cauchy–

Schwarz inequality for the sum over k we estimate

�
∑

k0∈Z

|
∑

l≥k0,k<k0

Dl Tk f |2
�1/2

=
�
∑

k0∈Z

|
∑

m≥1

∑

k∈Z

1k<k0≤k+mDk+mTk f |2
�1/2

≤
∑

m≥1

�
∑

k0∈Z

m
∑

k∈Z

|1k<k0≤k+mDk+mTk f |2
�1/2

=
∑

m≥1

m
�
∑

k∈Z

|Dk+mTk f |2
�1/2

.

Hence it suffices to find an estimate for the square function on the right-hand side that

decays sufficiently quickly with m. By orthogonality

‖
�
∑

k∈Z

|Dk+mTk f |2
�1/2

‖2 = ‖
∑

k∈Z

Dk+mTk f ‖2.

For each k we have

‖Dk+mTk‖L2(X )→L2(X ) = ‖T
∗
kDk+m‖L2(X )→L2(X ) ® 2−εm

since T ∗k 1Q is bounded by a universal constant and supported on ∂CκkQ for every Q ∈ Dk+m

in view of the cancellation condition.

Also, for all k 6= k′ we have

(Dk+mTk)
∗Dk′+mTk′ = 0

13



and

‖Dk′+mTk′(Dk+mTk)
∗‖L2(X )→L2(X ) ≤ ‖Tk′T

∗
k ‖L2(X )→L2(X ) ® 2−ε|k−k′|

by (5.1). By the Cotlar–Stein lemma [Ste93, p. 280] it follows that ‖
∑

k∈ZDk+mTk‖L2(X )→L2(X ) ®

2−εm.

Estimate for I I I

This estimate is similar to I I , but this time we have to keep the supremum over x ′ ∈Q′:

�
∑

k0∈Z

∑

Q∈Dk0

1Q(x) sup
x ′∈Q
|
∑

l<k0≤k

Dl Tk f (x ′)|2
�1/2

≤
�
∑

k0∈Z

sup
ρ(x ,x ′)≤Cκk0

|
∑

m≥1

∑

k∈Z

1k−m<k0≤kDk−mTk f (x ′)|2
�1/2

≤
�
∑

k0∈Z

�
∑

m≥1

∑

k∈Z

1k−m<k0≤k sup
ρ(x ,x ′)≤Cκk

|Dk−mTk f (x ′)|
�2�1/2

≤
∑

m≥1

�
∑

k0∈Z

m
∑

k∈Z

�

1k−m<k0≤k sup
ρ(x ,x ′)≤Cκk

|Dk−mTk f (x ′)|
�2�1/2

=
∑

m≥1

m
�
∑

k∈Z

sup
ρ(x ,x ′)≤Cκk

|Dk−mTk f (x ′)|2
�1/2

We view the square sum on the right-hand side as an intrinsic square function. Indeed, the

condition (1.9) implies that Kk also has Hölder type regularity. Notice that Dk−m g(x ′) =
´

ghk−m,x ′ , where hk−m,x ′ is a function with mean 0 and bounded L1 norm supported in

B(x , Cκk−m). It follows that for each x ′ the function y 7→ Dk−mKk(x
′, y), where Dk−m acts in

the first variable, has absolute value O(κ−kDκ−εm). Moreover, it is Hölder continuous since it

is an average of Hölder continuous functions. The required decay in m now comes from the

estimate for the intrinsic square function, [ZK17, Theorem 1.3], with Φ = κ−εm.

5.3 Weak type (1, 1)

By homogeneity it suffices to show

|{N F ′ > 1}|® ‖ f ‖1.

We make a CZ decomposition f = g + b. The good part g is controlled by the L2 estimate.

Let Q ∈ D be a bad cube, bQ the corresponding bad function, and Q̃ ⊃Q a ball containing Q
with a much larger, but still comparable, radius. We estimate

ˆ

X\Q̃
N F ′(bQ)(x)dx ®

ˆ

X\Q̃

∑

k>k(Q)

sup
ρ(x ,x ′)®κk

|Tk bQ(x
′)|dx

®
∑

k>k(Q)

κkD‖Tk bQ‖∞

®
∑

k>k(Q)

κ−ε(k−k(Q))‖bQ‖1

® ‖bQ‖1,

14



where we have used that Tk bQ is supported in a ball or radius O(κk), the mean zero property

of bQ, and Hölder continuity of Kk. Summing over all bad cubes we obtain the claim.

Remark 5.5. The above proof also yields Lp and weak type estimates for the jump counting

function Jλ(Tt f (x) : t > 0), and even its localized non-tangentional maximal version.

However, the jump counting function is not subadditive, and unlike in the case of averages

we have been unable to construct a subadditive majorant that still satisfies the localized

non-tangentional weak type (1, 1) estimate.
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