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In this note we review Austin’s proof [Aus11] of the density Hales-Jewett (DHJ) theorem

[FK91] via sated extensions. After translating DHJ into a measure-theoretic problem Fursten-

berg and Katznelson obtained a suitable invariance of the measure using the Carlson-Simpson

theorem. In this note we shall use the Graham-Rothschild theorem instead.

In order to make the notation less heavy we identify natural numbers with finite von

Neumann ordinals, i.e. k = {0, . . . , k− 1}. Expressions like kn usually denote not the integer

exponentiation but the set-theoretic one, thus kn is the set of functions from {0, . . . , n− 1}
to {0, . . . , k− 1} or the set of words of length n on the alphabet {0, . . . , k− 1}. The integer

expression kn is the cardinality of our set kn.

1 Density Hales-Jewett

Let (X ,Σ) be a standard Borel space. A law is a sequence of Borel probability measures (µn)∞n=0

on (X kn

,Σ⊗kn

). Note that Borel probability measures on Polish spaces are Radon (TODO: find

some measure theory book where it is proved), thus form a weakly compact metrizable set.

A law µ̃ on (X̃ , Σ̃) together with a Borel map ϕ : X̃ → X is an extension of µ if for every n

we have (ϕ⊗kn

)∗µ̃= µ.

1.1 Stationary laws

For an n-dimensional combinatorial subspace Sn : kn→ km one has a pullback map Sn
∗ : X km

→
X kn

and a pushforward map Sn
∗∗ : M(X km

)→ M(X kn

). A law is called strongly stationary (s.s.) if

for every n and every n-dimensional combinatorial subspace Sn : kn→ km one has Sn
∗∗µ

m = µn.

Lemma 1. For every law µ there exists a sequence of combinatorial subspaces (Sm) such that the

laws (Sm)∗∗µ converge in the product weak topology (i.e. each of the measures constituting these

laws converges weakly) to a s.s. law as m→∞.

Proof. Pick a sequence of natural numbers (nm)m in which each number occurs infinitely often

and pick a metric on the compact metrizable space M(X kn

) for each n. We construct the

sequence (Sm)m inductively as follows. Begin with S0 = id.

At step m > 0 partition the compact metric space M(X knm
) into finitely many sets of

diameter at most 2−m. To each nm-dimensional subspace Snm : knm → kN associate the

measure (Snm)∗∗((Sm−1)∗∗µ)
N . By the Graham-Rothschild theorem there exists a subspace

S = (Sn : kn→ kN(n))n such that, for every n, the measures associated to all nm-dimensional

subspaces of each Sn(kn) lie in the same cell of the partition.

By the pigeonhole principle one of the cells occurs infinitely often. Replacing each Sn by

a subspace of some Sn′ with n′ ≥ n that corresponds to this cell we may assume that the cell

does not depend on n. This property is evidently preserved under taking subspaces.

Define Sm = Sm−1 ◦ S.

Since each n occurs infinitely often in the sequence (nm)m, we obtain for the resulting

sequence of subspaces that the measures corresponding to n-dimensional subspaces eventually

lie in a 2−m-ball in M(X kn

), for any m ∈ N.

This shows that ((Sm)∗∗µ)
n does converge weakly for each n and that the limit is s.s. (since

the pushforward operation on measures is weakly continuous).

1.2 Relative independence

Proposition 2 (See [Tao07, Appendix]). Two σ-algebras B1 and B2 are called relatively inde-

pendent over B (under a measure µ) if one of the following equivalent conditions holds:
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1. For all f1 ∈ L∞(B1), f2 ∈ L∞(B2) we have E( f1 f2|B) = E( f1|B)E( f2|B),

2. For all f1 ∈ L1(B1) we have E( f1|B ∨ B2) = E( f1|B),

3. For all f1 ∈ L2(B1) we have ‖E( f1|B ∨ B2)‖2 = ‖E( f1|B)‖2,

4. For all characteristic functions f1 ∈ L2(B1) we have ‖E( f1|B ∨ B2)‖2 = ‖E( f1|B)‖2.

Proposition 3. If B ⊂ B1 then the above statements are equivalent to any of the following.

1. For all f1 ∈ L2(B1) such that f1 ⊥ B we have f1 ⊥ B ∨ B2,

2. For all f1 ∈ L2(B1) such that f1 6⊥ B ∨ B2 we have f1 6⊥ B.

Proof. The third statement above clearly implies the first here, and the two statements are

clearly equivalent. Assuming the first statement take f1 ∈ L2(B1) and write

f1 = E( f1|B) + ( f1−E( f1|B)).

By definition of the conditional expectation the expression in parentheses is orthogonal to B

and by the assumption B ⊂ B1 it is B1-measurable. Hence it is also orthogonal to B ∨ B2. Since

E( f1|B) is also B ∨ B2-measurable, we obtain E( f1|B ∨ B2) = E( f1|B). By density this implies

the second statement above.

1.3 Sated laws

Definition 4. Let µ be a s.s. law and e ⊂ k. The e-insensitive σ-algebra Σe ⊂ Σ is defined by

A∈ Σe :⇐⇒ µ1(π−1
i (A)∆π

−1
j (A)) = 0 for every i, j ∈ e.

An up-set is a subset I ⊂
� k

≥1

�
such that if e ∈ I and e ⊂ e′ ⊂ k then e′ ∈ I . For an up-set I

define ΣI := ∨e∈IΣe.

A s.s. law is called I -sated if for every s.s. extension ϕ : µ̃→ µ the algebras ϕ−1(Σ) and Σ̃I

are relatively independent over ϕ−1(ΣI ). A s.s. law is called fully sated if it is sated for every I .

Proposition 5. Every s.s. law µ admits a fully sated extension.

Proof. The fully sated extension is constructed as an inverse limit of extensions (X(m),Σ(m),µ(m))

starting with (X(0),Σ(0),µ(0)) = (X ,Σ,µ). Let also ( f(0,p))p be a dense sequence in L2(X ,Σ,µ0).

Let (rm, pm, Im)m be a sequence in N×N×
� k

≥1

�
such that rm ≤ m and such that each triple

occurs infinitely often.

Let (X(m),Σ(m),µ(m)) be given and choose a s.s. extension

ϕ(m+1) : (X(m+1),Σ(m+1),µ(m+1))→ (X(m),Σ(m),µ(m))

in such a way that ‖E( f(rm,pm)
|Σ(m+1),Im

)‖2 differs from its maximal possible value by at most

2−m. Let also ( f(m+1,p))p be a dense sequence in L2(X(m+1),Σ(m+1),µ
0
(m+1)

).

Let (X(ω),Σ(ω),µ(ω)) be the inverse limit of this tower of extensions. (TODO: verify strong

stationarity) We claim that this inverse limit is fully sated.

Indeed, let ϕ̃ : (X̃ , Σ̃, µ̃)→ (X(ω),Σ(ω),µ(ω)) be a s.s. extension. We have to verify that, for

every f ∈ L∞(X(ω),Σ(ω),µ
0
(ω)
) and I ⊂
� k

≥1

�
, we have

E( f ◦ ϕ̃|Σ̃I) = E( f |Σ(ω),I) ◦ ϕ̃.
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By the martingale convergence theorem and continuity of the expectation operator it suffices

to consider functions f = f(r,q).

Let m be such that r = rm, q = qm, I = Im. By definition of X(m+1) we have

‖E( f ◦ ϕ̃|Σ̃I)‖2 ≤ 2−m+ ‖E( f ◦ϕ(m+1)|Σ(m+1),I)‖2 ≤ 2−m+ ‖E( f ◦ϕ(ω)|Σ(ω),I)‖2.

Since m can be chosen arbitrarily large, this implies

‖E( f ◦ ϕ̃|Σ̃I)‖2 ≤ ‖E( f ◦ϕ(ω)|Σ(ω),I)‖2.

Since Σ̃I ⊃ ϕ̃
−1(Σ(ω),I), this implies

E( f ◦ ϕ̃|Σ̃I) = E( f ◦ϕ(ω)|Σ(ω),I) ◦ ϕ̃

as required.

1.4 Joining topology

Let (X i ,µi)i be a countable family of compact Hausdorff spaces with probability Borel measures.

The Borel probability measures on
∏

i X i whose i-th marginals equal µi are called joining

measures. The joining topology on the space of joining measures is the coarsest topology for

which each map

µ 7→

∫
∏

i

fi ◦πidµ, fi ∈ L∞(X i ,µi)

is continuous. This topology is compact since it suffices to consider functions from a countable

L1-dense set of the unit ball of L∞(X i ,µi) for each i.

Using compactness of the joining topology we obtain the following analog of Lemma 1.

Lemma 6. Let λ be a joining of countably many s.s. laws (µ j) j and S0 be a combinatorial

subspace.

Then there exists a sequence of nested combinatorial subspaces (Sm)m starting with S0 such

that the laws (Sm)∗∗λ converge in the joining topology to a s.s. joining of (µ j) j as m→∞.

1.5 Relatively independent σ-algebras associated to fully sated laws

We begin with the construction that will be used to exploit the satedness of a given law.

Definition 7. Let e ⊂ k. The oblique copy Σ†
e of Σe is (the µ1-completion of) the σ-algebra

π−1
i
(Σe) for any i ∈ e (this σ-algebra clearly does not depend on i ∈ e).

For an up-set I let Σ
†
I := ∨e∈IΣ

†
e .

The key feature of fully sated laws is the following independence property they enjoy.

Proposition 8. Let µ be fully sated s.s. law and e, e′ ⊂ k be disjoint. Then the oblique σ-algebras

Σ†
e and ∨ j∈e′Σ

†

{ j} are relatively independent over ∨ j∈e′Σ
†

e∪{ j} under µ1.

Proof. It suffices to show that whenever f ◦πi ∈ L2(Σ†
e) (where i ∈ e) is not orthogonal to

∨ j∈e′Σ
†

{ j} it is also not orthogonal to ∨ j∈e′Σ
†

e∪{ j}. By the assumption we have

0 6= κ=

∫

X k

f ◦πi

∏

j∈e′

h j ◦π jdµ
1
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for some measurable functions h j on X and every i ∈ e. By strong stationarity we have

κ=

∫

X kn

f (xre,i(w)
)
∏

j∈e′

h j(xre, j(w)
)dµn(x)

for any n and every word w ∈ kn in which a letter from e occurs. Here re,i is the operation on

words that replaces each letter from e by the letter i. Using the assumptions on f we obtain

κ=

∫

X kn

f (xw)
∏

j∈e′

h j(xre, j(w)
)dµn(x)

for all w in which a letter from e occurs. Let S0 be a subspace in which every word begins with

i ∈ e (say), so that the above equality holds for every word in this subspace.

Now we construct an extension of X as follows. Let X̃ := X×X e′ with coordinate projections

θe, (θ j) j∈e′ . Let also

ιn : X kn

→ X̃ kn

, (xw)w 7→ (xw , (xre, j(w)
) j∈e′)w

and λn = (ιn)∗µ
n be the pushforward measures.1

Write x̃ = ( x̃w)w∈kn = (xw , (zw, j) j∈e′)w∈kn for elements of X̃ kn

.

Let j ∈ e′ and w ∈ kn be arbitrary. By definition of λn we have

(θ j ◦πw) x̃ = zw, j = xre, j(w)
= (πre, j(w)

◦ θe) x̃ (9)

for λn-a.e. x̃ , so that

(θ j ◦πw)∗λ
n = (πre, j(w)

◦ θe)∗λ
n = (πre, j(w)

)∗µ
n = µ0

by strong stationarity of µ. We also trivially have θe ◦πw = πw ◦ θe, so that

(θe ◦πw)∗λ
n = (πw ◦ θe)∗λ

n = (πw)∗µ
n = µ0.

Thus every marginal of λn on a copy of X equals µ0.

By Lemma 6 there exists a sequence of nested combinatorial subspaces (Sm)m contained in

S0 such that (Sm)∗∗λ converges in the coupling topology to a s.s. law µ̃ as m→∞. Then

θe : (X̃ , Σ̃, (Sm)∗∗λ)→ (X ,Σ, (Sm)∗∗µ)

is an extension for every m, and since (Sm)∗∗µ = µ by strong stationarity, the limit law is again

an extension

θe : (X̃ , Σ̃, µ̃)→ (X ,Σ,µ).

Recalling (9) we obtain
∫

X̃ kn

f ◦θe◦πw

∏

j∈e′

h j◦θ j◦πwdλn =

∫

X̃ kn

f ◦πw◦θe

∏

j∈e′

h j◦πre, j(w)
◦θedλ

n =

∫

X kn

f ◦πw

∏

j∈e′

h j◦πre, j(w)
dµn = κ

for every word w in the subspace S0. Since each Sm is a subspace of S0 and by convergence in

the coupling topology we have
∫

X̃

f ◦θe

∏

j∈e′

h j ◦ θ j

︸ ︷︷ ︸

=:h̃

dµ̃0 = lim
m

∫

X̃

f ◦θe

∏

j∈e′

h j◦θ jd((S
0
m)∗∗λ

n) = lim
m

∫

X̃ kn

f ◦θe◦πS0
m()

∏

j∈e′

h j◦θ j◦πS0
m()

dλn = κ.

1θ⊗kn

e
is the inverse of ιn up to sets of measure zero
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Let i ∈ e, j ∈ e′ be arbitrary. By (9) we have

θ j ◦πS1
m(i)
= πre, j(S

1
m(i))
◦ θe = πre, j(S

1
m( j))
◦ θe = θ j ◦πS1

m( j)

a.s. w.r.t. λ, so that θ j ◦πi = θ j ◦π j a.s. w.r.t. (Sm)∗∗λ for every m. Passing to the limit (in the

coupling topology!) we see that θ−1
j
(Σ) is e ∪ { j}-insensitive w.r.t µ̃.

In particular the function h̃ is ∨ j∈e′Σ̃e∪{ j}-measurable. By satedness of µ we obtain

κ=

∫

X̃

f ◦ θeh̃dµ̃0 =

∫

X̃

f ◦ θeE(h̃|θ
−1
e (∨ j∈e′Σe∪{ j}))dµ̃

0.

The latter expectation is a lift under θe of a ∨ j∈e′Σe∪{ j}-measurable function on X that correlates

with f .

We are now in position to obtain relative independence for more sophisticated oblique

copies.

Lemma 10. Let µ be a fully sated s.s. law and I , I ′, I ′′ ⊂
� k

≥1

�
be up-sets such that I ′ = I ′′ ∪ {e}

and e 6∈ I .

For minimal elements a ∈ I ∪ I ′ let Ξa ⊂ Σa be arbitrary sub-σ-algebras and let also Ξa = Σa

for other a ∈
� k

≥1

�
. Define Ξ†

e and Ξ
†
J analogously to Σ†

e and Σ
†
J , respectively.

Then Σ
†
I and Ξ

†

I ′
are relatively independent over Ξ

†

I ′′
under µ1.

Proof. The conclusion is trivial if e ∈ I ′′, so assume e 6∈ I ′′. Then for every a ∈ I ∪ I ′′ there

exists j(a) ∈ a \ e.

Given f ∈ L2(Σ
†
I )⊂ L2(∨a∈IΣ

†

{ j(a)}) such that f 6⊥ L2(Ξ
†

I ′
) we have to show f 6⊥ L2(Ξ

†

I ′′
).

By the assumption there exist functions h ∈ L∞(Ξ
†

I ′′
)⊂ L∞(∨a∈I ′′Σ

†

{ j(a)}) and g ∈ L∞(Ξ†
e)⊂

L∞(Σ†
e) such that

0 6= κ=

∫

f ghdµ1.

Now the product f h is ∨a∈I∪I ′′Σ
†

{ j(a)}-measurable, hence

κ=

∫

f hE(g| ∨a∈I∪I ′′ Σ
†

{ j(a)})dµ
1.

By Proposition 8 with e′ = j(I ∪ I ′′) this expectation is measurable w.r.t. the σ-algebra

∨a∈I∪I ′′Σ
†

e∪{ j(a)} ⊂ Ξ
†

I ′′
, so that f 6⊥ L2(Ξ

†

I ′′
) as required.

Lemma 11. Let B, B′, B∩ ⊂ B′′ be σ-algebras such that B and B′ are relatively independent over

B′′ and B and B′′ are relatively independent over B∩. Then B and B′ are relatively independent

over B∩.

Proof. Let f ∈ L1(B′). Then

E( f |B ∨ B∩) = E(E( f |B ∨ B′′)|B ∨ B∩) = E(E( f |B′′)|B ∨ B∩) = E(E( f |B′′)|B∩) = E( f |B∩),

where we have used inclusion, relative independence, relative independence and inclusion,

respectively.

Theorem 12. Let µ be a fully sated s.s. law and I , I ′ ⊂
� k

≥1

�
be two up-sets. Then Σ

†
I and Σ

†

I ′
are

relatively independent over Σ
†

I∩I ′
under µ1.
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Proof. By induction on the size of I∆I ′′ using Lemma 10 with Ξa = Σa and Lemma 11.

Theorem 13. Let µ be a fully sated s.s. law and I ⊂ I ′ ⊂
� k

≥d

�
be up-sets.

For e ⊂ d with |e| = d let Ξe ⊂ Σe be arbitrary sub-σ-algebras and let also Ξe = Σe if |e|> d.

Then Σ
†
I and Ξ

†

I ′
are relatively independent over Ξ

†
I under µ1.

Proof. By induction on the size of I ′ \ I using Lemma 10 and Lemma 11.

1.6 The infinitary removal lemma

Theorem 14. Let µ be a fully sated s.s. law and 1 ≤ d ≤ k. Then for any positive functions

fi ∈ L∞(ΣIi,d
), i ∈ k where Ii,d := 〈i〉 ∩

� k

≥d

�
we have

∫

X k

∏

i∈k

fi ◦πidµ
1 = 0 =⇒

∫

X

∏

i∈k

fidµ
0 = 0.

Proof. We use descending induction on d. The case d = k is clear. Assume that the statement

is known for d + 1 and let fi∈k ∈ L∞(ΣIi,d
) be as in the hypothesis. Replacing fi by the

characteristic function of its support we may assume fi = 1Ai
with Ai ∈ ΣIi,d

.

For each e ∈
�k

d

�
let (Ξe,n)n be an increasing sequence of finite σ-algebras that to-

gether generate Σe and for e ∈
� d

≥d+1

�
let Ξe,n = Σe. Let δ > 0 be chosen later and

Bi,n := {E(Ai |ΞIi,d ,n) > 1 − δ}, so that Bi,n → Ai (in L1, say). Here and later we identify

sets with their characteristic functions.

By definition of the algebra ΞIi,d ,n each set Bi,n ∈ ΞIi,d ,n can be written as a finite union of

sets of the form

∩
e∈〈i〉∩(kd)

Ci,e ∩ Ãi

with Ci,e ∈ Ξe and Ãi ∈ ΣIi,d+1
. Assume for the moment that µ1(∩iBi,n ◦πi) = 0, so that

0=

∫

X k

∏

i∈k

∏

e∈〈i〉∩(kd)

Ci,e ◦πi · Ãi ◦πidµ
1 =

∫

X k

∏

e∈(kd)

∏

i∈e

Ci,e ◦π j(e) ·
∏

i∈k

Ãi ◦πidµ
1,

where j(e) ∈ e is arbitrary, and by Theorem 12 we obtain

0=

∫

X k

∏

e∈〈i〉∩(kd)

E(
∏

i∈e

Ci,e|Σ〈e〉∩( k

≥d+1)
) ◦π j(e) ·
∏

i∈k

Ãi ◦πidµ
1.

Here we may replace the function E(
∏

i∈e Ci,e|Σ〈e〉∩( k

≥d+1)
) by its support that is a set in

Σ〈e〉∩( k

≥d+1)
⊂ ΣI j(e),d+1

. The induction hypothesis implies

0=

∫

X

∏

e∈∩(kd)

suppE(
∏

i∈e

Ci,e|Σ〈e〉∩( k

≥d+1)
) ·
∏

i∈k

Ãidµ
0 ≥

∫

X

∏

e∈(kd)

∏

i∈e

Ci,e ·
∏

i∈k

Ãidµ
0

since suppE(
∏

i∈e Ci,e|Σ〈e〉∩( k

≥d+1)
)⊇
∏

i∈e Ci,e. Therefore µ0(∩iBi,n) vanishes, being a sum of

finitely many such terms, and we obtain

µ0(∩iAi) = lim
n
µ0(∩iBi,n) = 0.
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It remains to be seen that the set Fn :=
∏

i Bi,n ◦πi is µ1-null. For every i we have

µ1(Fn \π
−1
i (Ai)) =

∫

X k

(Bi,n \ Ai) ◦πi

∏

i′ 6=i

Bi′,n ◦πi′ =

∫

X k

E(Bi,n \ Ai |ΞIi,d ,n) ◦πi

∏

i′ 6=i

Bi′,n ◦πi′

since Σ
†
Ii,d

and Ξ
†

( k

≥d),n
are relatively independent over Ξ

†
Ii,d ,n by Theorem 13. Note that

E(Bi,n \ Ai |ΞIi,d ,n) = Bi,n(1−E(Ai |ΞIi,d ,n))≤ δBi,n,

so that

µ1(Fn \π
−1
i (Ai))≤ δµ

1(Fn).

Therefore

µ1(Fn)≤ µ
1(∩i∈kπ

−1
i (Ai)) +
∑

i∈k

µ1(Fn \π
−1
i (Ai))≤ 0+
∑

i∈k

δµ1(Fn).

If δ < 1/k this implies µ1(Fn) = 0.

Corollary 15. Let µ be a law on {0, 1} (with discrete topology) such that µn(π
−1
w (1))≥ δ > 0 for

every n and every word w of length n. Then there exists an n and a combinatorial line S : k1→ kn

such that µn(∩i∈kπ
−1
S(i)
(1))> 0.

Proof. Let (Sm)m be the sequence of combinatorial subspaces given by Lemma 1. It suffices to

obtain the conclusion with S being the identity subspace S : k1→ k1 and some law (Sm)∗∗µ.

Since {1} is clopen, it suffices to obtain the conclusion for the s.s. law given by Lemma 1,

thus we may assume that µ is strongly stationary.

Clearly it suffices to obtain the conclusion for any extension of µ, so by Proposition 5 we

may assume that µ is also fully sated. Now the result follows from Theorem 14 with d = 1.

The density Hales-Jewett theorem follows by [FK91, Proposition 2.1].

Polynomials

The obvious polynomial generalization of the proof of Proposition 8 fails because one cannot

conclude

κ=

∫

X kn

f (xre,i(w)
)
∏

j∈e′

h j(xre, j(w)
)dµn(x)

since the points re, j(w) in general do not lie on a combinatorial line in knd

.
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