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This set of notes is based on [1] §12.2 and §2.4.

1 The Eliashberg-Gromov Theorem

Our goal is to prove the following theorem, assuming the existence of a symplectic
capacity.

Theorem 1 (Eliashberg-Gromov Theorem). For every symplectic manifold (M,ω)
the group Symp(M,ω) is C0-closed in Diff(M). 1

In other words, if a sequence {φj} of symplectomorphisms converges to φ uni-
formly and φ is a diffeomorphism, then φ is a symplectomorphism.

The proof of the theorem is based on the following facts, which will be proved
in later sections.

Definition 1 (Ellipsoids). An ellipsoid is of the form

E(r) = {z ∈ Cn |
n∑

i=1

∣∣∣∣ziri
∣∣∣∣2 ≤ 1}

for some 0 ≤ r1 ≤ · · · ≤ rn.

Facts. (1) Existence of a symplectic capacity c.

(2) A homeo of R2n which is a limit of ellipsoid-capacity-preserving (ecp) continu-
ous self-maps, under the uniform convergence on compact sets, on R2n is also
ecp. (Lemma 12.2.3) See Section 2

1Let M,N be topological spaces. Let C0(M,N) be the set of continuous maps M → N . Let

B = {V (K,U) | K ⊂ M compact, U ⊂ N open},

where
V (K,U) = {f ∈ C0(M,N) | f(K) ⊂ U}.

The C0-topology is the topology with B as a subbase.
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(3) An ecp diffeomorphism of R2n is either a symplectomorphism or an anti-
symplectomorphism. (Proposition 12.2.2) See Section 3.

This follows from its affine version: Endomorphisms of R2n that preserve linear
symplectic width of ellipsoids are (anti-)symplectic. (Theorem 2.4.2, Theorem
2.4.4)

For Fact (1), an example is given by the following. The Gromov width

c(M,ω) := sup{πr2 | B2n(r) embeds symplectically in M}

is a symplectic capacity, in the sense that it assigns to each symplectic manifold
(M,ω) a nonnegative number or ∞ and satisfies the following properties.

(monotonicity) If there is a symplectic embedding (M1, ω1) ↪→ (M2, ω2) and dimM1 = dimM2,
then c(M1, ω1) ≤ c(M2, ω2).

(conformality) c(M,λω) = λc(M,ω).

(normalized) c(B2n(1), ω0) = c(Z2n(1), ω0) = π.

We can extend it to define a capacity which assigns an arbitrary subset A ⊂ (R2n, ω0)
a nonnegative number or ∞ by

c(A) := inf{c(U, ω0|U ) | A ⊂ U, and U open in R2n}.

Then c satisfies the extended monotonicity property

A ⊂ B =⇒ c(A) ≤ c(B).

Theorem (Eliashberg-Gromov Theorem, [1] Theorem 12.2.1). For every symplectic
manifold (M,ω) the group Symp(M,ω) is C0-closed in Diff(M).

Proof. It suffices to prove it for (R2n, ω0). Suppose a sequence of symplectomor-
phisms φj : R2n → R2n converges to φ : R2n → R2n uniformly and φ is a diffeomor-
phism.

Consider a symplectic capacity. By monotonicity, the maps φj preserve the
capacity of ellipsoids. Thus, by (2), φ preserves the Gromov width of ellipsoids.

By (3), φ is either a symplectomorphism or an anti-symplectomorphism. Sup-
pose, to the contrary, that φ is an anti-symplectomorphism. Then ψj := φj × Id ∈
Symp(R2n×R2n, ω := ω0×ω0) converges uniformly to ψ = φ×Id ∈ Diff(R2n×R2n).
By the same argument, ψ∗ω ∈ {±ω}. However, the antisymplecity of φ implies

(φ× Id)∗(ω0 × ω0) = (−ω0)× ω0,

which is neither ±(ω0 × ω0).
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2 Proof of Fact (2)

It remains to prove (2) and (3).

Lemma 1 (Fact (2), [1] Lemma 12.2.3). Let c be a nomalized symplectic capacity
on R2n. Let ψj : R2n → R2n be a sequence of continuous maps converging to
a homeomorphism ψ : R2n → R2n, uniformly on compact sets. Assume that ψj

preserves the capacity of ellipsoids for every j. Then ψ preserves the capacity of
ellipsoids.

Proof. WLOG, consider ellipsoids centered at zero. We claim that, for every ellipsoid
E and ∀λ < 1, there exists a j0 > 0 such that

ψj(λE) ⊂ ψ(E) ⊂ ψj(λ
−1E) ∀j ≥ j0. (1)

Denote fj := ψ−1 ◦ψj . Then fj → Id uniformly on compact sets. Thus, for j large,
we have fj(λE) ⊂ E, implying the first inclusion

ψj(λE) ⊂ ψ(E).

Suppose the second inclusion fails. Then there exists y0 ∈ E and ψ(y0) ∈
ψ(E) \ ψj(λ

−1E) for all large j; i.e. y0 ∈ E and

fj(x) ̸= y0 ∀x ∈ λ−1E.

Then the map Fj : λ
−1∂E → S2n−1 defined by

Fj(x) :=
fj(x)− y0
|fj(x)− y0|

can be extended to all of λ−1E, thus having degree 0.

On the other hand, since λ < 1 and fj
C0

loc−−→ Id, there exists j0 such that ∀j > j0,

x ∈ λ−1∂E ⇒ fj(x) ̸∈ E.

Then Fj is homotopic to

Gj : λ
−1∂E → S2n−1, Gj(x) =

fj(x)

|fj(x)|
.

But Gj has degree 1. Contradiction. Therefore, the claim holds.
Since ψj preserves the capacity of ellipsoids, and by conformality of a capacity

c, we have c(ψj(λE)) = λ2c(E), and c(ψj(λ
−1E)) = λ−2c(E). By monotonicity, we

have
λ2c(E) ≤ c(ψ(E)) ≤ λ−2c(E).

Since this holds for all λ < 1, we get c(ψ(E)) = c(E).
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3 Proof of Fact (3)

Definition 2 (linear symplectic width). The linear symplectic width of an arbitrary
subset A ⊂ R2n is defined by

wL(A) = sup{πr2 | (Ψ + z0)(B
2nr) ⊂ A ∀Ψ ∈ Sp(2n), ∀z0 ∈ R2n}.

Definition 3 (Linear nonsqueezing property). A matrix Ψ ∈ GL2n×2n(R) is said to
have the linear nonsqueezing property if, for every linear symplectic ball B of radius
r and every linear symplectic cylinder Z of radius R, we have ΨB ⊂ Z ⇒ r ≤ R.

Lemma 2 (Affine rigidity, [1] Theorem ). Let Ψ ∈ GL2n×2n(R) be a nonsingular
matrix such that Ψ and Ψ−1 have the linear nonsqueezing property. Then Ψ is
either symplectic or anti-symplectic.

Sketch of proof. Assume that Ψ is neither symplectic nor anti-symplectic. Then we
may find some u1, v1 ∈ R2n such that

0 < λ2 = |ω0(Ψ
Tu1,Ψ

T v1)| < ω0(u1, v1) = 1

for some 0 < λ < 1. Let

u′1 = λ−1ΨTu1, v′1 = λ−1ΨT v1.

Complete u1, v1 and u′1, v
′
1 to symplectic bases

B = {u1, v1, . . . , un, vn}, B′ = {u′1, v′1, . . . , u′n, v′n}

of R2n, respectively.
Let Φ,Φ′ ∈ Sp(2n) be the matrices mapping the standard basis {e1, f1, . . . , en, fn}

to B and B′, respectively. Then A = (Φ′)−1ΨTΦ satisfies

Ae1 = λe1, Af1 = λf1.

This implies that AT maps B2n(1) to the cylinder Z2n(λ) with λ < 1. This contra-
dicts that Ψ has the linear nonsqueezing property.

Theorem 2 (Affine version of Fact (3), Theorem 2.4.4). Let ψ : R2n → R2n be a
linear map. Then the following are equivalent.

(i) Ψ preserves the linear symplectic width of ellipsoids centered at zero.

(ii) The matrix is either symplectic or anti-symplectic; i.e. Ψ∗ω0 = ±ω0.

Sketch of proof. ((ii) ⇒ (i)) Follows from affine non-squeezing ([1] Theorem 2.4.1).
((i) ⇒ (ii)) Assume (i) . We want to show that both Ψ and Ψ−1 have the linear

nonsqueezing property.
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Let B be a linear symplectic ball of radius r and Z a linear symplectic cylinder of
radius R such that Ψ(B) ⊂ Z. Then wL(B) = wL(ψB) ≤ wL(Z) = πR2, implying
r ≤ R.

Note that Ψ is nonsingular because otherwise wL(ΨB) = 0, which contradicts
that Ψ preserves the linear symplectic width.

Moreover, Ψ−1 also preserves wL because wL(E) = wL(Ψψ
−1E) = wL(Ψ

−1(E)).
So Ψ−1 also satisfies the linear nonsqueezing property.

By Lemma 2, this implies (ii).

Corollary 1 (Fact (3), [1] Proposition 12.2.2). Let ψ : R2n → R2n be a diffeomor-
phism and let c be a symplectic capacity on R2n. Then the following are equivalent.

(i) ψ preserves the capacity of ellipsoids; i.e. it satisfies c(ψ(E)) = c(E) for every
ellipsoid E ⊂ R2n.

(ii) ψ is either a symplectomorphism or an anti-symplectomorphism; i.e. it satisfies
ψ∗ω0 = ±ω0.

Sketch of proof. We will only show ((i) ⇒(ii)). Let c be a symplectic capacity on
R2n. Let ψ : R2n → R2n be a diffeomorphism that preserves the capacity of el-
lipsoids. We may assume ψ(0) = 0. Then there exists a sequence of ecp diffeo-
morphisms ψt of R2n that converges uniformly on compact sets to Ψ = D0ψ. Here
we may take ψt(z) = 1

tψ(tz). By Fact (2), Ψ preserves the capacity of ellipsoids.
By Theorem 2, Ψ∗ω0 = ±ω0. Similarly, (Dzψ)

∗ω0 = ±ω0 for any z ∈ R2n. By
continuity, the sign is independent of z.
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