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This set of notes is based on [1] §12.2 and §2.4.

1 The Eliashberg-Gromov Theorem

Our goal is to prove the following theorem, assuming the existence of a symplectic
capacity.

Theorem 1 (Eliashberg-Gromov Theorem). For every symplectic manifold (M, w)
the group Symp(M,w) is C°-closed in Diff(M). !

In other words, if a sequence {p;} of symplectomorphisms converges to ¢ uni-
formly and ¢ is a diffeomorphism, then ¢ is a symplectomorphism.

The proof of the theorem is based on the following facts, which will be proved
in later sections.

Definition 1 (Ellipsoids). An ellipsoid is of the form
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for some 0 <7ry < -+ <rp.
Facts. (1) Existence of a symplectic capacity c.

(2) A homeo of R?" which is a limit of ellipsoid-capacity-preserving (ecp) continu-
ous self-maps, under the uniform convergence on compact sets, on R?" is also
ecp. (Lemma 12.2.3) See Section 2

Let M, N be topological spaces. Let C° (M, N) be the set of continuous maps M — N. Let
B={V(K,U)| K C M compact,U C N open},

where
V(K,U)={f € C°(M,N)| f(K)CU}.

The C°-topology is the topology with B as a subbase.



(3) An ecp diffeomorphism of R?" is either a symplectomorphism or an anti-
symplectomorphism. (Proposition 12.2.2) See Section 3.

This follows from its affine version: Endomorphisms of R?" that preserve linear
symplectic width of ellipsoids are (anti-)symplectic. (Theorem 2.4.2, Theorem
2.4.4)

For Fact (1), an example is given by the following. The Gromov width
¢(M,w) := sup{nr? | B*(r) embeds symplectically in M}

is a symplectic capacity, in the sense that it assigns to each symplectic manifold
(M,w) a nonnegative number or oo and satisfies the following properties.

(monotonicity) If there is a symplectic embedding (M7, w) < (Ms,wz) and dim M; = dim Mo,
then ¢(Mi,w1) < c(Ma,ws).

(conformality) c(M,  \w) = \e(M,w).
(normalized) c(B?*(1),wq) = c¢(Z*"(1),wp) = 7.

We can extend it to define a capacity which assigns an arbitrary subset A C (R?", wy)
a nonnegative number or oo by

c(A) == inf{c(U,wo|y) | A € U, and U open in R*"}.
Then c satisfies the extended monotonicity property
ACB = ¢(A4) <c¢B).

Theorem (Eliashberg-Gromov Theorem, [1] Theorem 12.2.1). For every symplectic
manifold (M, w) the group Symp(M,w) is C%-closed in Diff(M).

Proof. 1t suffices to prove it for (RQ”,wo). Suppose a sequence of symplectomor-
phisms ¢ : R2" — R?" converges to ¢ : R?" — R?" uniformly and ¢ is a diffeomor-
phism.

Consider a symplectic capacity. By monotonicity, the maps ¢; preserve the
capacity of ellipsoids. Thus, by (2), ¢ preserves the Gromov width of ellipsoids.

By (3), ¢ is either a symplectomorphism or an anti-symplectomorphism. Sup-
pose, to the contrary, that ¢ is an anti-symplectomorphism. Then v; := ¢; x Id €
Symp(R?™ x R?™, w := wy X wp) converges uniformly to 1) = ¢ xId € Diff (R?" x R?").
By the same argument, ¢*w € {£w}. However, the antisymplecity of ¢ implies

((p X Id)*(wO X w()) = (—wo) X W,

which is neither £(wp X wp). O



2 Proof of Fact (2)

It remains to prove (2) and (3).

Lemma 1 (Fact (2), [1] Lemma 12.2.3). Let ¢ be a nomalized symplectic capacity
on R?". Let Py R?" — R?" be a sequence of continuous maps converging to
a homeomorphism 1 : R*® — R?", uniformly on compact sets. Assume that )
preserves the capacity of ellipsoids for every j. Then 1 preserves the capacity of
ellipsoids.

Proof. WLOG, consider ellipsoids centered at zero. We claim that, for every ellipsoid
F and VA < 1, there exists a jp > 0 such that

i (AE) CY(E) C;(AT'E) Vi = jo. (1)

Denote f; := 11 ot;. Then f; — Id uniformly on compact sets. Thus, for j large,
we have f;(AE) C E, implying the first inclusion

Pi(AE) CP(E).

Suppose the second inclusion fails. Then there exists yo € E and ¢(yp) €
Y(E) \ ¥;(A\71E) for all large j; i.e. yo € E and

fi(z) #yo Yz e N 'E.
Then the map Fj : A 1OE — §27~ 1 defined by
fiz) —
Fi(r) = ————
= @) wl
can be extended to all of A\™'E, thus havmg degree 0.
On the other hand, since A < 1 and f; ﬂ> Id, there exists jg such that Vj > jo,

reNTOFE = fi(x)¢E.

Then F} is homotopic to

Gy A oE - 5 Gy = A1)
’ ’ £ ()]
But G; has degree 1. Contradiction. Therefore, the claim holds.
Since 1); preserves the capacity of ellipsoids, and by conformality of a capacity
¢, we have c(¥;(AE)) = A2¢(E), and c(1;(A"1E)) = A~2¢(E). By monotonicity, we
have

Ne(E) < c($(E)) < A7 %¢(E).
Since this holds for all A < 1, we get c¢(¢¥(E)) = ¢(E). O



3 Proof of Fact (3)

Definition 2 (linear symplectic width). The linear symplectic width of an arbitrary
subset A C R?" is defined by

wr(A) = sup{mr? | (¥ + 20)(B?"r) C A V¥ € Sp(2n), Vzo € R*™}.

Definition 3 (Linear nonsqueezing property). A matrix U € G Layx2,(R) is said to
have the linear nonsqueezing property if, for every linear symplectic ball B of radius
r and every linear symplectic cylinder Z of radius R, we have VB C Z = r < R.

Lemma 2 (Affine rigidity, [1] Theorem ). Let ¥ € GLa,x2,(R) be a nonsingular
matrix such that ¥ and ¥~! have the linear nonsqueezing property. Then W is
either symplectic or anti-symplectic.

Sketch of proof. Assume that ¥ is neither symplectic nor anti-symplectic. Then we
may find some uy,v; € R?" such that

0 < A2 = |wo (T uy, ¥Tv1)| < wo(ug,v1) =1
for some 0 < A < 1. Let
uf) = N0l vh = A1y,
Complete u1, v, and u},v] to symplectic bases
B = {u1,v1,...,Up,vn}, B' = {u},v],...,ul,, v}

of R?", respectively.
Let @, ®’" € Sp(2n) be the matrices mapping the standard basis {e1, f1,...,en, fn}
to B and B, respectively. Then A = (®')~' U7 ® satisfies

Ael = )\61, Afl = )\fl

This implies that A7 maps B?"(1) to the cylinder Z2"(\) with A < 1. This contra-
dicts that ¥ has the linear nonsqueezing property. O

Theorem 2 (Affine version of Fact (3), Theorem 2.4.4). Let ¢ : R*™ — R?" be a
linear map. Then the following are equivalent.

(i) W preserves the linear symplectic width of ellipsoids centered at zero.
(ii) The matrix is either symplectic or anti-symplectic; i.e. ¥*wy = +wyp.

Sketch of proof. ((ii) = (i)) Follows from affine non-squeezing ([1] Theorem 2.4.1).
((i) = (ii)) Assume (i) . We want to show that both ¥ and ¥~! have the linear
nonsqueezing property.



Let B be a linear symplectic ball of radius r and Z a linear symplectic cylinder of
radius R such that U(B) C Z. Then wr(B) = wr(¥B) < wr(Z) = 7R?, implying
r<R.

Note that ¥ is nonsingular because otherwise wy(¥B) = 0, which contradicts
that U preserves the linear symplectic width.

Moreover, ¥~! also preserves wy, because wr (E) = wr, (V¢ 1E) = wr, (¥ ~1(E)).
So ¥~ also satisfies the linear nonsqueezing property.

By Lemma 2, this implies (ii). O

Corollary 1 (Fact (3), [1] Proposition 12.2.2). Let ¢ : R*™ — R?" be a diffeomor-
phism and let ¢ be a symplectic capacity on R?". Then the following are equivalent.

(i) 1 preserves the capacity of ellipsoids; i.e. it satisfies ¢(¢)(F)) = ¢(FE) for every
ellipsoid E c R?".

(ii) 4 is either a symplectomorphism or an anti-symplectomorphism; i.e. it satisfies
P*wg = twy.

Sketch of proof. We will only show ((i) =-(ii)). Let ¢ be a symplectic capacity on
R?™. Let ¢ : R?*™ — R?" be a diffeomorphism that preserves the capacity of el-
lipsoids. We may assume 1 (0) = 0. Then there exists a sequence of ecp diffeo-
morphisms 9, of R?" that converges uniformly on compact sets to ¥ = D). Here
we may take ;(z) = 11)(tz). By Fact (2), ¥ preserves the capacity of ellipsoids.
By Theorem 2, ¥*wg = +wp. Similarly, (D.v)*wy = +wp for any z € R*". By

continuity, the sign is independent of z. O
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