The Transport OKA-Grauert Principle for SIMPLE SURFACES

Jan Bohr
Joint work with Gabriel Paternain

Roscoff - Conference on Rigidity, Hyperbolic Dynamics \& Inverse Problems

7 March 2022

UNIVERSITY OF CAMBRIDGE

Overview 1/2: Range characterisations in inverse problems

Inverse problems are typically posed in terms of a forward operator

$$
\mathcal{F}: \mathcal{X} \rightarrow \mathcal{Y}
$$

Often \mathcal{F}^{-1} is not available, so we ask for injectivity, stability, ...
... \& the range:
Problem: Characterise/understand the range $\mathcal{F}(\mathcal{X}) \subset \mathcal{Y}$.

Examples:

1. Helgason-Ludwig (1964): $\mathcal{F}=$ linear X-ray transform on $\mathbb{R}^{n} / /$ range is characterised by moment conditions;
2. Pestov-Uhlmann (2004): $\mathcal{F}=$ linear X-ray transform on simple surface // range is parametrised by boundary operator;
3. Sharafutdinov (2011): \mathcal{F} arising from Calderón problem on disk // elements of the range are related by conjugation;
4. Burago-Ivanov (2014): $\mathcal{F}=$ boundary distance map for Finsler metrics on n-ball // range is open under suitable perturbations;
5. This talk: $\mathcal{F}=$ non-Abelian X-ray transform on simple surface // nonlinear version of Pestov-Uhlmann result.

Overview 2/2: Connections to complex geometry

Common theme for some of these characterisations in 2D: Based on hard transitivity theorem with complex geometric interpretation.

	Transitivity theorem	Complex geometry
Calderón problem on the disk	any g is conformally flat	Riemann mapping theorem
Linear X-ray on simple surface	\exists "scalar holomorphic integrating factors"	$H_{\bar{\partial}}^{0,1}(Z)=0$
Non-Abelian X-ray on simple surface	\exists "matrix holomorphic integrating factors"	Transport Oka-Grauert principle: $\mathfrak{M}(Z)=0$
	\Longleftrightarrow transitivity of a certain group action	We introduce a novel transport twistor space Z
Structure of talk: $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \bigcirc \bigcirc \bigcirc$		

Let (M, g) be a compact Riemannian surface with boundary ∂M. Assume that ∂M is strictly convex and that M is non-trapping ($\Rightarrow M \approx$ disk).
On $S M=\{(x, v) \in T M: g(v, v)=1\}$ consider the transport equation

$$
\begin{equation*}
(X+\mathbb{A}) R=0 \text { on } S M \tag{TE}
\end{equation*}
$$

with $X=$ geodesic vector field and $\mathbb{A} \in C^{\infty}\left(S M, \mathbb{C}^{n \times n}\right)$ an attenuation.
Note: $R \in C^{\infty}\left(S M, \mathbb{C}^{n \times n}\right)$ solves (TE), iff \forall geodesics $\gamma:[0, \tau] \rightarrow M$,

$$
\begin{equation*}
\frac{d}{d t} R(\gamma(t), \dot{\gamma}(t))+\mathbb{A} R(\gamma(t), \dot{\gamma}(t))=0 \tag{TE'}
\end{equation*}
$$

Let $\partial_{ \pm} S M=\{(x, v) \in S M: x \in \partial M, \pm g(v, \nu(x)) \geq 0\}=$ influx /outflux.

Definition

Let $R=$ unique solution of (TE) with $\left.R\right|_{\partial_{-} S M}=\mathrm{Id}$, define:

$$
\begin{aligned}
C_{\mathbb{A}}=\left.R\right|_{\partial_{+} S M} \in C^{\infty}\left(\partial_{+} S M, G L(n, \mathbb{C})\right) & \sim \text { scattering data of } \mathbb{A} ; \\
\mathbb{A} \mapsto C_{\mathbb{A}} & \sim \text { non-Abelian X-ray trafo. }
\end{aligned}
$$

Examples:

- Scalar case $(n=1): C_{\mathbb{A}}=\exp (I \mathbb{A})$, where $I=$ linear X-ray transform;
- Connections: If $\mathbb{A}(x, v)=A_{x}(v)$ for 1-form $A \in \Omega^{1}(M)$, then

$$
C_{A}=\text { parallel transport of connection } d+A \text { on } M \times \mathbb{C}^{n}
$$

- Polarimetric Neutron Tomography: If $\mathbb{A}(x, v)=\Phi(x) \in \mathfrak{s o}(3)$, then

$$
C_{\Phi}=\text { spin rotation in } S O(3) \text { of neutrons after traversing } \vec{B} \text { field. }
$$

Theorem (Paternain-SALo-Uhlmann 2012 \& 2020)

Let (M, g) be simple (i.e. ∂M strictly convex, non-trapping $\&$ no conjugate points). Suppose $\mathbb{A}(x, v)=A_{x}(v)+\Phi(x)$ and $\mathbb{B}=B_{x}(v)+\Psi(x)$ are s.th.

$$
C_{\mathbb{A}}=C_{\mathbb{B}}
$$

Then there exists a gauge $\varphi \in C^{\infty}(M, G L(n, \mathbb{C}))$ with $\varphi=\mathrm{Id}$ on ∂M and

$$
\Phi=\varphi^{-1} \Psi \varphi, \quad A=\varphi^{-1} d \varphi+\varphi^{-1} B \varphi
$$

Theorem (B.-Paternain)

Let (M, g) be a simple surface and $q \in C^{\infty}\left(\partial_{+} S M, U(n)\right)$, then TFAE:

1. $q=C_{\mathbb{A}}$ for some $\mathfrak{u}(n)$-valued $\mathbb{A}=\Phi+A$;
2. q lies in the range of a boundary operator

$$
P: C^{\infty}\left(\partial_{+} S M, \mathbb{C}^{n \times n}\right) \supset D(P) \rightarrow C^{\infty}\left(\partial_{+} S M, U(n)\right) .
$$

- Nonlinear version of Pestov-Uhlmann (2004);
- P defined in terms of Birkhoff factorisation; morally its domain is

$$
D(P) \approx \underset{\text { Hermitian metrics }}{\text { on } \partial_{+} S M \times \mathbb{C}^{n}} \approx \approx \begin{aligned}
& \text { Radiative/dispersive } \\
& \text { degrees of freedom (DOF); }
\end{aligned}
$$

- Analogy with Ward correspondence by Mason (2006):

- TOG principle: \nexists nontrivial holomorphic vector bundles on Z.

Matrix holomorphic integrating factors

Any $F \in C^{\infty}\left(S M, \mathbb{C}^{n \times n}\right)$ has vertical Fourier decomposition $F=\sum_{k \in \mathbb{Z}} F_{k}$. We call F fibrewise holomorphic, iff $F_{k}=0$ for $k<0$. Define

$$
\mathbb{G}=\left\{F \in C^{\infty}(S M, G L(n, \mathbb{C})): F, F^{-1} \text { are fibrewise holomorphic }\right\}
$$

Definition

A holomorphic integrating factor for \mathbb{A} is a solution $F \in \mathbb{G}$ to $(X+\mathbb{A}) F=0$.

- Why: Gauge respecting Fourier support \& P yields only $\mathbb{A}^{\prime} s$ with HIF;
- existence for $n=1$ on simple surfaces due to Salo-Uhlmann (2011);
- existence for $n \geq 2$ was largely open (weak solutions in Euclidean setting due to Novikov (2002) and Eskin-Ralston (2004));
- necessary condition (satisfied for $\mathbb{A}=A+\Phi$): \mathbb{A} lies in the set

$$
\mho=\left\{\mathbb{A} \in C^{\infty}\left(S M, \mathbb{C}^{n \times n}\right): \mathbb{A}_{k}=0 \text { for } k<-1\right\}
$$

Theorem (B.-Paternain)
Let (M, g) be simple. Then any $\mathbb{A} \in \mho$ has holomorphic integrating factors.

Recall:

$$
\begin{aligned}
\mathbb{G} & =\left\{F \in C^{\infty}(S M, G L(n, \mathbb{C})): F, F^{-1} \text { are fibrewise holomorphic }\right\} \\
\mho & =\left\{\mathbb{A} \in C^{\infty}\left(S M, \mathbb{C}^{n \times n}\right): \mathbb{A}_{k}=0 \text { for } k<-1\right\}
\end{aligned}
$$

Proof of theorem.

- \mathbb{G} is a group that acts on \mho via $(\mathbb{A}, F) \mapsto F^{-1}(X+\mathbb{A}) F$ such that

\mathbb{A} admits HIF	$\Longleftrightarrow \mathbb{A}$ lies on same \mathbb{G}-orbit as 0,
Theorem	$\Longleftrightarrow \mathbb{G}$ acts transitively on $\mho ;$

- Key step: The derivative of $F \mapsto \mathbb{A} . F$ at Id, given by

$$
T_{\mathrm{Id}} \mathbb{G} \rightarrow \mho, \quad H \mapsto X H+[\mathbb{A}, H]
$$

is onto and has a tame right inverse. This uses results on the attenuated X-ray transform $I_{\mathbb{A}}$ \& microlocal analysis of $I_{\mathbb{A}}^{*} I_{\mathbb{A}}$;

- Nash-Moser IFT $\Longrightarrow \mathbb{G}$-orbits are open \Longrightarrow action is transitive.

Note: Original motivation for matrix HIF was to prove injectivity of $I_{\mathbb{A}}$ (up to gauge); we go the other way!

We set up a correspondence for any orientable Riemannian surface:

$$
\begin{aligned}
(M, g) & \sim \text { (degenerated) complex surface } Z \\
\mathbb{A} & \sim \text { holomorphic vector bundle over } Z .
\end{aligned}
$$

Idea: Fill in the disks in $S M$ and extend X to Cauchy-Riemann operator.

The transport twistor space

The 4-manifold $Z=\{(x, v) \in T M: g(v, v) \leq 1\}$ supports a natural complex distribution $D \subset T_{\mathbb{C}} Z$ of rank 2 that is involutive and satisfies

$$
D \cap \bar{D}= \begin{cases}\operatorname{span}_{\mathbb{C}} X & \text { on } S M \\ 0 & \text { on } Z \backslash S M\end{cases}
$$

In particular, $Z^{\text {int }}$ is a complex surface with $T^{0,1} Z^{\text {int }}=D$.

- Construction extends to other flows on $S M$ (e.g. magnetic flows);
- Z is branched double cover of classical twistor space from Dubois-Violette (1983) and O'Brian-Rawnsley (1985).

Transport twistor space - Definition of D

Example: Suppose $M \subset \mathbb{C}$ with Euclidean metric, then

$$
S M=\left\{(z, \mu) \in \mathbb{C}^{2}: z \in M,|\mu|=1\right\} .
$$

Write $z=x+i y$ and $\mu=\cos \theta+i \sin \theta$, then

$$
X=\cos \theta \cdot \partial_{x}+\sin \theta \cdot \partial_{y}=\mu \partial_{z}+\bar{\mu} \partial_{\bar{z}}=\bar{\mu}\left(\mu^{2} \partial_{z}+\partial_{\bar{z}}\right)
$$

Definition

On $Z=\left\{(z, \mu) \in \mathbb{C}^{2}: z \in M,|\mu| \leq 1\right\}$ we define $D \subset T_{\mathbb{C}} Z$ by

$$
D=\operatorname{span}_{\mathbb{C}}\left\{\mu^{2} \partial_{z}+\partial_{\bar{z}}, \partial_{\bar{\mu}}\right\}
$$

Say $f \in C^{\infty}(U)$ is holomorphic iff $\left(\mu^{2} \partial_{z}+\partial_{\bar{z}}\right) f=\partial_{\bar{\mu}} f=0$ on $U \subset Z$ open.

- $[D, D]=0$ and $D \cap \bar{D}=\operatorname{span}_{\mathbb{C}} X$ for $|\mu|=1$ are immediate;
- to incorporate different geometries/flows, replace X with $F=X+\lambda V$. If $\mu^{2} \lambda(z, \mu)$ is μ-holomorphic, then D is well defined by

$$
D=\operatorname{span}_{\mathbb{C}}\left\{\mu^{2} \partial_{z}+\partial_{\bar{z}}+i \mu^{2} \lambda \partial_{\mu}, \partial_{\bar{\mu}}\right\} ;
$$

- description in isothermal coordinates, but D is defined invariantly.

Transport twistor space - Cohomology

Notions of complex geometry (e.g. $\bar{\partial}$-complex, Dolbeaut cohomology, holomorphic vector bundles) are defined on Z smooth up to the boundary.

Let $\oplus_{k \geq k_{0}} \Omega_{k}=\left\{u \in C^{\infty}(S M): u_{k}=0\right.$ for $\left.k<k_{0}\right\}$ and note that

$$
X: \oplus_{k \geq 0} \Omega_{k} \rightarrow \oplus_{k \geq-1} \Omega_{k} .
$$

Theorem (Correspondence principle A)

The twistor space of any Riemannian surface (M, g) satisfies

$$
H_{\bar{\partial}}^{0, p}(Z) \cong \begin{cases}\left\{u \in \oplus_{k \geq 0} \Omega_{k}: X u=0\right\} & p=0, \\ \oplus_{k \geq-1} \Omega_{k} / X\left(\oplus_{k \geq-1} \Omega_{k}\right) & p=1, \\ 0 & p \geq 2 .\end{cases}
$$

- $p=0$: fibrewise holomorphic first integrals;
- $p=1$: solvability of $X u=f$ for fibrewise holomorphic u;
- Salo-Uhlmann $(2011) \leftrightarrow$ if (M, g) is simple, then $H_{\bar{\rho}}^{0,1}(Z)=0$;
- trapping produces non-trivial elements in degree $p=1$;

Transport twistor space - Holomorphic vector bundles

Assume for simplicity that $M \approx$ disk, such that all vector bundles are topologically trivial.

Theorem (Correspondence principle B)

1. For any attenuation $\mathbb{A} \in \mathcal{Z}$ there exists a holomorphic vector bundle $E_{\mathbb{A}} \rightarrow Z$ such that $H^{p}\left(Z, E_{\mathbb{A}}\right)$ is given in terms of $(X+\mathbb{A})$;
2. any holomorphic vector bundle is isomorphic to $E_{\mathbb{A}}$ for some $\mathbb{A} \in \mho$;
3. the moduli space of holomorphic vector bundles equals

$$
\mathfrak{M}(Z) \equiv\left\{\begin{array}{l}
\text { holomorphic rank } n \text { vector bundles } \\
\text { on } Z, \text { up to isomorphism }
\end{array}\right\} \cong \mho / \mathbb{G} .
$$

Theorem (TOG principle, B.-Paternain)

If Z is the twistor space of a simple surface (M, g), then $\mathfrak{M}(Z)=0$.

- Oka-Grauert principle: On a Stein manifold, the classification of holomorphic vector bundles equals that of topological vector bundles.

Transport twistor space - Slogan

Cohomology computations \& TOG-principle suggest the following slogan:
The twistor space of a simple surface behaves like a (contractible) Stein surface.

Question: In the simple case, is $Z^{\text {int }}$ actually a Stein surface?

Examples:

- If $M=\mathbb{R}^{2}$, then there is explicit blow down map $\beta: Z \rightarrow \mathbb{C}^{2}$, s.th.

$$
Z^{\text {int }} \cong \beta\left(Z^{\text {int }}\right)=\text { polydisk in } \mathbb{C}^{2} \Longrightarrow Z^{\text {int }} \text { is Stein } ;
$$

- if Z is the twistor space of a constant magnetic field on \mathbb{R}^{2}, then

$$
Z^{\text {int }} \backslash 0 \cong \mathbb{C}^{2} \backslash\left\{\bar{w}_{1}=w_{2}\right\} \quad \Longrightarrow \quad Z^{\text {int }} \text { is not Stein }
$$

Thank you for your attention!

```
    arXiv:2108.05125
    | bohr@maths.cam.ac.uk
https://www.dpmms.cam.ac.uk/~jb2206
```


Appendix A: Birkhoff factorisation \& definition of P

Let $\operatorname{Her}_{+}^{n}=$ Hermitian positive definite $n \times n$ matrices.
Theorem (Symmetric Birkhoff factorisation)
For any $H \in C^{\infty}\left(S M, \operatorname{Her}_{+}^{n}\right)$ there exists $F \in \mathbb{G}$ such that $H=F^{*} F$.
Let $\alpha: \partial S M \rightarrow \partial S M$ be the scattering relation.
How to generate elements in the range of $C^{\infty}(M, \mathfrak{u}(n)) \ni \Phi \mapsto C_{\Phi}$:

1. Start with $w \in D(P):=C_{\alpha}^{\infty}\left(S M, \operatorname{Her}_{+}^{n}\right)$;
2. extend to first integral $w^{\sharp} \in C^{\infty}\left(S M, \operatorname{Her}_{+}^{n}\right)$;
3. factor as $w^{\sharp}=F^{*} F$ (unique after requiring $F_{0}=\mathrm{Id}$);
4. let $\Phi=-(X F) F^{-1} \in C^{\infty}(M, \mathfrak{u}(n))$, then

$$
C_{\Phi}=P w:=\left.F\right|_{\partial S M} \circ\left(\left.F^{-1}\right|_{\partial S M} \circ \alpha\right) \quad \text { on } \partial_{+} S M .
$$

Appendix B: The blow down map β

Recall: The Cauchy Riemann equations on $Z\left(\mathbb{R}^{2}\right) \equiv \mathbb{C}_{z} \times \mathbb{D}_{\mu}$ are

$$
\left(\mu^{2} \partial_{z}+\partial_{\bar{z}}\right) f=0 \quad \text { and } \quad \partial_{\bar{\mu}} f=0
$$

The blow down map

The following map is holomorphic:

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(z-\mu^{2} \bar{z}, \mu\right)
$$

It has a partial inverse given by

$$
\beta^{-1}(w, \mu)=\left(\frac{w}{1+|\mu|^{2}}+\frac{2 \operatorname{Re}(\bar{\mu} w)}{1-|\mu|^{4}}, \mu\right), \quad(w, \mu) \in \beta(Z) \backslash\{|\mu|=1\}
$$

- Original approach of Eskin-Ralston (2004) to obtain HIF: Use β to desingularise Z and apply the classical Oka-Grauert principle on $\beta(Z)$.

