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Overview 1/2: Range characterisations in inverse problems

Inverse problems are typically posed in terms of a forward operator

F : X → Y.

Often F−1 is not available, so we ask for injectivity, stability, ...

... & the range:
Problem: Characterise/understand the range F(X ) ⊂ Y.

Examples:
1. Helgason-Ludwig (1964): F = linear X-ray transform on Rn //

range is characterised by moment conditions;
2. Pestov-Uhlmann (2004): F = linear X-ray transform on simple

surface // range is parametrised by boundary operator;
3. Sharafutdinov (2011): F arising from Calderón problem on disk //

elements of the range are related by conjugation;
4. Burago-Ivanov (2014): F = boundary distance map for Finsler

metrics on n-ball // range is open under suitable perturbations;
5. This talk: F = non-Abelian X-ray transform on simple surface //

nonlinear version of Pestov-Uhlmann result.
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Overview 2/2: Connections to complex geometry

Common theme for some of these characterisations in 2D: Based on hard
transitivity theorem with complex geometric interpretation.

Transitivity theorem Complex geometry

Calderón problem any g is conformally flat Riemann mapping
on the disk theorem

Linear X-ray ∃ "scalar holomorphic H0,1

∂̄
(Z) = 0

on simple surface integrating factors"

Non-Abelian X-ray ∃ "matrix holomorphic Transport Oka-Grauert
on simple surface integrating factors" principle: M(Z) = 0︸ ︷︷ ︸ ︸ ︷︷ ︸

⇐⇒ transitivity of a We introduce a novel
certain group action transport twistor space Z

Structure of talk:     →     ( ; Gabriel’s talk)
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 ### The non-Abelian X-ray transform

Let (M, g) be a compact Riemannian surface with boundary ∂M . Assume
that ∂M is strictly convex and that M is non-trapping (⇒M ≈ disk).

On SM = {(x, v) ∈ TM : g(v, v) = 1} consider the transport equation

(X + A)R = 0 on SM, (TE)

with X = geodesic vector field and A ∈ C∞(SM,Cn×n) an attenuation.

Note: R ∈ C∞(SM,Cn×n) solves (TE), iff ∀ geodesics γ : [0, τ ]→M ,

d

dt
R(γ(t), γ̇(t)) + AR(γ(t), γ̇(t)) = 0. (TE’)

Let ∂±SM = {(x, v) ∈ SM : x ∈ ∂M,±g(v, ν(x)) ≥ 0} = influx /outflux.

Definition
Let R = unique solution of (TE) with R|∂−SM = Id, define:

CA = R|∂+SM ∈ C
∞(∂+SM,GL(n,C)) ; scattering data of A;

A 7→ CA ; non-Abelian X-ray trafo.
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  ## The non-Abelian X-ray transform – Injectivity

Examples:
I Scalar case (n = 1): CA = exp(IA), where I = linear X-ray transform;
I Connections: If A(x, v) = Ax(v) for 1-form A ∈ Ω1(M), then

CA = parallel transport of connection d+A on M × Cn;

I Polarimetric Neutron Tomography: If A(x, v) = Φ(x) ∈ so(3), then

CΦ = spin rotation in SO(3) of neutrons after traversing ~B field.

Theorem (Paternain-Salo-Uhlmann 2012 & 2020)

Let (M, g) be simple (i.e. ∂M strictly convex, non-trapping & no conjugate
points). Suppose A(x, v) = Ax(v) + Φ(x) and B = Bx(v) + Ψ(x) are s.th.

CA = CB.

Then there exists a gauge ϕ ∈ C∞(M,GL(n,C)) with ϕ = Id on ∂M and

Φ = ϕ−1Ψϕ, A = ϕ−1dϕ+ ϕ−1Bϕ.
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   # The non-Abelian X-ray transform – Range characterisation

Theorem (B.-Paternain)

Let (M, g) be a simple surface and q ∈ C∞(∂+SM,U(n)), then TFAE:
1. q = CA for some u(n)-valued A = Φ +A;
2. q lies in the range of a boundary operator

P : C∞(∂+SM,Cn×n) ⊃ D(P )→ C∞(∂+SM,U(n)).

I Nonlinear version of Pestov-Uhlmann (2004);
I P defined in terms of Birkhoff factorisation; morally its domain is

D(P ) ≈ Hermitian metrics
on ∂+SM × Cn ≈ Radiative/dispersive

degrees of freedom (DOF);

I Analogy with Ward correspondence by Mason (2006):

Solutions to
ASDYM

1:1←→
{

Solitonic
DOF

}
×
{

Radiative/dispersive
DOF

}
I TOG principle: @ nontrivial holomorphic vector bundles on Z.
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    The non-Abelian X-ray transform – Definition of P

Hern+ = Hermitian positive definite n× n matrices;
G = {F ∈ C∞ (SM,GL(n,C)) : F, F−1 are fibrewise holomorphic};
α = scattering relation of (M, g).

Theorem (Symmetric Birkhoff factorisation)

For any H ∈ C∞(SM,Hern+) there exists F ∈ G such that H = F ∗F.

How to generate elements in the range of C∞(M, u(n)) 3 Φ 7→ CΦ:

1. Start with w ∈ D(P ) := C∞α (SM,Hern+);
2. extend to first integral w] ∈ C∞(SM,Hern+);
3. factor as w] = F ∗F (unique after requiring F0 = Id);
4. let Φ = −(XF )F−1 ∈ C∞(M, u(n)), then

CΦ = Pw := F |∂SM ◦ (F−1|∂SM ◦ α) on ∂+SM.

I To get the whole range, need to solve (X + Φ)F with F ∈ G (; HIF );
I we prove existence of HIF using injectivity of IΦ and Nash-Moser IFT.
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 ### Transport twistor space

We set up a correspondence for any orientable Riemannian surface:

(M, g) ; (degenerated) complex surface Z;

A ; holomorphic vector bundle over Z.

Idea: Fill in the disks in SM and extend X to Cauchy-Riemann operator.

Theorem (The transport twistor space)

The 4-manifold Z = {(x, v) ∈ TM : g(v, v) ≤ 1} supports a unique complex
rank 2 distribution D ⊂ TCZ with the following properties:
1. D is involutive (that is, [D,D] ⊂ D);

2. D ∩ D̄ = 0 on Z\SM and D ∩ D̄ = spanCX on SM ;

3. the fibres Σx = Z ∩ TxM ∼= D are holomorphic (that is, T 0,1Σx ⊂ D).
In particular, Z int is a complex surface with T 0,1Z int = D.

I Construction extends to other flows on SM (e.g. magnetic flows);
I Z is branched double cover of classical twistor space from

Dubois-Violette (1983), O’Brian-Rawnsley (1985),
LeBrun-Mason (2002).
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  ## Transport twistor space – Definition of D

Example: Suppose M ⊂ C with Euclidean metric, then

SM = {(z, µ) ∈ C2 : z ∈M, |µ| = 1}.

Write z = x+ iy and µ = cos θ + i sin θ, then

X = cos θ · ∂x + sin θ · ∂y = µ∂z + µ̄∂z̄ = µ̄
(
µ2∂z + ∂z̄

)
.

Definition
On Z = {(z, µ) ∈ C2 : z ∈M, |µ| ≤ 1} we define D ⊂ TCZ by

D = spanC
{
µ2∂z + ∂z̄, ∂µ̄

}
.

Say f ∈ C∞(U) is holomorphic iff (µ2∂z + ∂z̄)f = ∂µ̄f = 0 on U ⊂ Z open.

I [D,D] = 0 and D ∩ D̄ = spanCX for |µ| = 1 are immediate;
I to incorporate different geometries/flows, replace X with F = X + λV .

If µ2λ(z, µ) is µ-holomorphic, then D is well defined by

D = spanC
{
µ2∂z + ∂z̄ + iµ2λ∂µ, ∂µ̄

}
;

I description in isothermal coordinates, but D is defined invariantly.
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   # Transport twistor space – Correspondence principles

Notions of complex geometry (e.g. ∂̄-complex, Dolbeaut cohomology,
holomorphic vector bundles) are defined on Z smooth up to the boundary.
Let uk be the kth vertical Fourier mode of a function u on SM .

⊕k≥k0Ωk = {u ∈ C∞(SM) : uk = 0 for k < k0};
0 = {A ∈ C∞(SM,Cn×n) : Ak = 0 for k < −1}

Theorem (Correspondence principles)

The twistor space of any orientable Riemannian surface (M, g) satisfies:

A) H0,p

∂̄
(Z) ∼=


{u ∈ ⊕k≥0Ωk : Xu = 0} p = 0,

⊕k≥−1Ωk/X(⊕k≥0Ωk) p = 1,

0 p ≥ 2.

B) Mn(Z) ≡
{

holomorphic vector bundle structures
on Z × Cn, up to isomorphism

}
∼= 0/G.

Theorem (TOG principle for simple surfaces)

I H0,1

∂̄
(Z) ∼= M1(Z) = 0 — Salo-Uhlmann (2011)

I Mn(Z) = 0 for n ≥ 2 — B.-Paternain
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    Transport twistor space – Slogan and open problems

Cohomology computations & TOG-principle suggest the following slogan:
The twistor space of a simple surface behaves like a (con-
tractible) Stein surface.

Open questions:

I If M, g) is simple, is Z int an actual Stein surface?
I If (M, g1) and (M, g2) are both simple, do we have Z1

∼= Z2?
I Which holomorphic vector bundles exist in the non-simple case?

Thank you for your attention & happy birthday Gunther!

arXiv:2108.05125
B bohr@maths.cam.ac.uk

https://www.dpmms.cam.ac.uk/~jb2206
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Appendix: The blow down map β

Recall: The Cauchy Riemann equations on Z(R2) ≡ Cz × Dµ are

(µ2∂z + ∂z̄)f = 0 and ∂µ̄f = 0.

The blow down map
The following map is holomorphic:

β : Z → C2, β(z, µ) = (z − µ2z̄, µ)

It has a partial inverse given by

β−1(w, µ) =

(
w

1 + |µ|2 +
2 Re(µ̄w)

1− |µ|4 , µ

)
, (w, µ) ∈ β(Z)\{|µ| = 1}.

I Original approach of Eskin-Ralston (2004) to obtain HIF: Use β to
desingularise Z and apply the classical Oka-Grauert principle on β(Z).


