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Four inverse problems in two-dimensions — what is the range?

(1) Linear X-ray

1-form f on M
+

Integrals along geodesics

(2) Non-Abelian X-ray

Connection A on M x C"

1

Parallel transport along geodesics

(3) Calderon problem

Riemannian metric g on M

1
DN-map of Ay

(4) Scattering problem

Riemannian metric g on M

1

Scattering relation of geodesic flow



Four inverse problems in two-dimensions — what is the range?

(1) Linear X-ray (2) Non-Abelian X-ray
1-form f on M Connection A on M x C"
1 \
Integrals along geodesics Parallel transport along geodesics
(3) Calderon problem (4) Scattering problem
Riemannian metric g on M Riemannian metric g on M
{ {
DN-map of Ay Scattering relation of geodesic flow

» Simple setting: Injectivity of {unknown} — {data} is understood.
» Upshot: for (1),(2),(3) we also understand the range, but (4) is harder

» New: B.-PATERNAIN: THE TRANSPORT OKA-GRAUERT PRINCIPLE FOR
SIMPLE SURFACES — JOURNAL DE L’ECOLE PoryTECHNIQUE, 2023



Setting

Throughout (M, g) is a simple surface, that is,
» OM is strictly convex;
» all geodesics reach the boundary (non-trapping);

» there are no conjugate points.
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SM = {(z,v) €eTM :g(v,v) =1}
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X = generator of the geodesic flow
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«a = scattering relation of the geodesic flow
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Qe = {ueC®(SM): u(z,e'v) =e*u(z,v)}, keZ



Setting

Throughout (M, g) is a simple surface, that is,

» OM is strictly convex;

» all geodesics reach the boundary (non-trapping);

» there are no conjugate points.

Protagonists:
SM

0+ SM

X

Qi

{(z,v) € TM : g(v,v) =1}

{(z,v) € OSM : +g(v(x),v) > 0}

generator of the geodesic flow

(X: C®(SM) — C°°(SM))

scattering relation of the geodesic flow

(a € Diff(aSM))

{u € C®(SM) : u(z,ev) = e* u(z,v)}, k€ Z

» Rko: X: Qp — Q1P Qk+1
» Def.: Call w € C*°(SM) fibrewise holomorphic if w € @p>oQk.



Linear X-ray — |Pestov—Uhlmann, 2004|

Definition (X-ray transform on 1-forms, valued in u(1) = R)

We define I : C°(M,T"M @ u(l)) — C*°(9+SM,u(1)) by

I f(x,v) = Integral of f along geodesic vz,
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Definition (X-ray transform on 1-forms, valued in u(1) = R)
We define I : C°(M,T"M @ u(l)) — C*°(9+SM,u(1)) by

I f(x,v) = Integral of f along geodesic vz,

Step 1: Smoothly structure the range
If fo, f1 € COO(M, "M ®u(1)) C Q-1 &, then

> solve(
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» restrict to OSM:
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(t) TaM.: X: C*®°(SM) — C*°(SM) is onto



Linear X-ray — |Pestov—Uhlmann, 2004|

Definition (X-ray transform on 1-forms, valued in u(1) = R)
We define I : C=(M, T* M @ u(1)) — C (84 SM, u(1)) by

I f(x,v) = Integral of f along geodesic vz,

Step 2: Holomorphically structure the range

If f07f1 S COO(M7T*M®U(1)) c Q1 EBQ1, then
> solve(

— w € C*(SM)
w fibrewise holomorphic (+even)

» restrict to OSM:

w € C=(dSM)

‘ Lfitwoa=w+hifo ‘ w fibrewise holomorphic (+even)

(f) TEM.: X: ®r>0 ok = Pr>—1Q2k+1 is onto [Salo-Uhlmann, 2011]



Linear X-ray — |Pestov—Uhlmann, 2004|

Definition (X-ray transform on 1-forms, valued in u(1) = iR)
We define I : C°(M,T"M ®@ u(l)) — C*°(9+SM,u(1)) by

I f(z,v) = Integral of f along geodesic va,v

Step 3: Parametrise the range

» Fix fo = 0 as anchor, then for any other f € C*°(M,T*M ® u(1)):

w € C(dSM)

‘ i =w — {woe) ‘ w fibrewise holomorphic (+even)

» Given h € C*°(0SM,R) (even), solve Riemann—Hilbert problem:

was above ((~w= J(1d +iH)h)

» Restrict h to 0+SM, then

- . _ Pestov-Uhlmann
Lf=iPh| P=ATH A = boundary operator
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Template

Step 1 Smoothly structure the range
Step 2 Holomorphically structure the range

Step 3 Parametrise the range

Vertices: Points in the range

Figure:
& Edges: Conjugations between them

» Let’s see how far we get with the other problems!



Non-Abelian X-ray — [B.—Paternain, 2023|

Definition (Non-Abelian X-ray transform on unitary connections)

We define C: C*°(M,T*M ® u(n)) — C*(0+SM,U(n)) by

Ca(z,v) = Parallel transport of connection d + A along vz,



Non-Abelian X-ray — [B.—Paternain, 2023|

Definition (Non-Abelian X-ray transform on unitary connections)
We define C: C*°(M,T*M ® u(n)) — C*(0+SM,U(n)) by

Ca(z,v) = Parallel transport of connection d + A along vz,

Step 1: Smoothly structure the range
If A, Ay € C°(M, T*M ® u(n)), then
» solve(!)

(W (X + AW = 4| W € O=(SM,GL(n,©))

» restrict to OSM:

|Cay(Woa)=WCa, | W eC®(SM,GL(n,C))

(t) Tam.: C*(SM,GL(n,C)) acts transitively C*°(SM, gl(n,C))



Non-Abelian X-ray — [B.—Paternain, 2023|

Definition (Non-Abelian X-ray transform on unitary connections)
We define C: C°(M,T*M ® u(n)) — C*(9+SM,U(n)) by

Ca(z,v) = Parallel transport of connection d + A along vz,

Step 2: Holomorphically structure the range
If Ao, Ay € C°(M, T*M ® u(n)), then
» solve(l)

1 — W e C*(SM,GL(n,C))
‘ WS A S £ ‘ W, W~ fibrewise holomorphic (+even)

» restrict to OSM:

W e C*(SM,GL(n,C))
W, W~ fibrewise holomorphic (+even)

‘ Ca;(Woa)=WCa,

(t) TaM.: G = {W as above} acts transitively on @g>_1Q2k+1 @ gl(n, C)
[Transport Oka-Grauert Principle]



Non-Abelian X-ray — [B.—Paternain, 2023|

Definition (Non-Abelian X-ray transform on unitary connections)
We define C: C*°(M,T*M @ u(n)) — C*<(0+SM,U(n)) by

Ca(z,v) = Parallel transport of connection d + A along vz,.

Step 3: Parametrise the range

» Fix Ao = 0 as anchor, then for any other A € C*°(M,T*M ® u(n)) :

W € C*°(SM, GL(n, C))

— 1
‘ Ca=WW ™ o) ‘ W, W~ fibrewise holomorphic (+even)

» Given H € C*(dSM,Her;}), solve the Riemann-Hilbert problem

W as above (fv Birkhoff theorem)

» Restrict H to 0+ SM, then:

nonlinear Pestov—Uhlmann

|Ca=P(H) mod CR{(OM,U(n))| P =

boundary operator



Calderén problem — [Sharafutdinov, 2011]

Definition (DN-map)
We define A: Riem(M) — L(C*(0M)) by

Agf =0vu where Agu=0 M
u=f OM.
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Agf =0u where L =0 2
u=f OM.

Step 1: Smoothly structure the range
If go, g1 € Riem(M), then

> Solve(t
) < x

» Restrict to OM:

€ Diffra(0M)

(f) Riemann mapping theorem



Calderén problem — [Sharafutdinov, 2011]

Definition (DN-map)
We define A: Riem(M) — L(C*(0M)) by

Agf =0u where L =0 2
u=f OM.

Step 1: Smoothly structure the range
If go, g1 € Riem(M), then

> Solve(t
) < x

» Restrict to OM:

€ Diffra(0M)

(f) Riemann mapping theorem

> As good as it gets (?)



Scattering problem

Definition (Scattering data)
To a simple metric g we associate the scattering data oy € Diff (OSM,) by

ag(m,v) = (VIaU(T)v;YIyU(T))v (:I,', U) € aJrSMg

agoay, = Id



Scattering problem

Definition (Scattering data)
To a simple metric g we associate the scattering data oy € Diff (OSM,) by

ag(m,v) = (’YIaU(T)v;YEYU(T))v (:I,', ’U) € aJrSMg

agoay, = Id

Step 1: Smoothly structure the range

For two simple metrics go and g1

» solve(

(¢, a) € Diff(SMy,, SMy,) x C*(SM,,)

» restrict to OSM:

\ 0o 0 = B oy, \ ¢ € Diff (0SM,,,0SM,,)

(f) Thm.: The geodesic flows of any two simple metrics are orbit
conjugate.



Scattering problem

Definition (Scattering data)
To a simple metric g we associate the scattering data oy € Diff (OSM,) by

ag(m,v) = (VIaU(T)v;YIYU(T))v (:I,', ’U) € aJrSMg

agoay, = Id

Step 2: Holomorphically structure the range

» Is there a natural notion of fibrewise holomorphicity for
diffeomorphisms ¢: SMy, — SMy,? — Yes

» Can the whole range be reached by conjugation with these? — No(

ntimately connected to the complex geometry of transport twistor
Intimately ted to th lex g try of t t twist
space ~ ongoing work with F. Monard and G.P. Paternain



