- **6.1.** Let X be a smooth (local) section of $T\mathbb{C}^n \otimes_{\mathbb{R}} \mathbb{C}$.
 - (a) Show that X is holomorphic if and only if it can be written in the form

$$X = \sum_{i} a_i \frac{\partial}{\partial z_i}$$

with holomorphic functions a_i .

- (b) The Lie bracket $[X^1, X^2]$ of two vector fields X^1, X^2 is the vector field defined by $[X^1, X^2](f) = X^1(X^2(f)) - X^2(X^1(f))$ for every smooth function f. Compute this is local coordinates for vector fields $X^k = \sum_j a_j^k \frac{\partial}{\partial x_j} + \sum_j b_j^k \frac{\partial}{\partial y_j}$ (here $z_j = x_j + iy_j$, k = 1, 2) and use this to show that the Lie bracket is bilinear.
- (c) Use (a) and (b) and \mathbb{C} -bilinear extension to compute (in local coordinates): If X is holomorphic then [X, iY] = i[X, Y] for all vector fields Y (ie X automorphic).
- **6.2.** Let $\omega = \frac{i}{2\pi} \sum_{j} dz_j \wedge d\bar{z}_j$ be the standard Kähler form on \mathbb{C}^n .
 - (a) Find for any point in \mathbb{C}^n an explicit function ϕ such that $\omega = \frac{i}{2\pi} \partial \bar{\partial} \phi$.
 - (b) Let h be the standard Hermitian metric on \mathbb{C}^n . Show that any smooth real function f on \mathbb{C}^n such that the metric $e^f h$ is Kähler is constant.
- **6.3.** The canonical embedding $\mathbb{C}^n \to \mathbb{C}^{n+1}$ induces an embedding $\mathbb{C}P^{n-1} \to \mathbb{C}P^n$. Show that the restriction to $\mathbb{C}P^{n-1}$ of the Fubini Study metric on $\mathbb{C}P^n$ is the Fubini Study metric on $\mathbb{C}P^{n-1}$.
- **6.4.** Let M, N be two Kähler manifolds. Show that $M \times N$ admits a Kähler metric.