- **5.1.** Consider the complex projective line $\mathbb{C}P^1$.
 - (a) Show that the group of biholomorphic automorphisms of $\mathbb{C}P^1$ is transitive (it is even triply transitive).
 - (b) Use (a) to show that for any pair of points $p \neq q \in \mathbb{C}P^1$ there exists a meromorphic function f on $\mathbb{C}P^1$ with a simple pole at p, a simple zero at q and no other zeros or poles.
 - (c) Use (b) to show the following. Let $D_1 = p$, $D_2 = q$ for points $p, q \in \mathbb{C}P^1$. The line bundles determined by D_1, D_2 are equivalent (=connected by a holomorphic bundle isomorphism).
- **5.2.** For $n \geq 2$ consider the complex projective space $\mathbb{C}P^n$. Let $H = \mathbb{C}P^{n-1} \subset \mathbb{C}P^n$ be a complex projective hyperplane.
 - (a) Show that there exists a holomorphic line bundle $\mathcal{O}(1) \to \mathbb{C}P^n$ with a holomorphic section σ vanishing to first order on H and which does not have any other zero.
 - (b) Show that the first Chern class of $\mathcal{O}(1)$ is not zero.
- **5.3.** Let $\tau \to G(2, n)$ be the universal bundle over the Grassmannian of two-dimensional subspaces in \mathbb{C}^n .
 - (a) Show that the exterior produce $L = \tau \wedge \tau$ is a holomorphic line bundle over G(2, n).
 - (b) Show that the first Chern class of L is non-trivial. (Hint: $G(2,3) \subset G(2,n)$ is biholomorphic to $G(1,3) = \mathbb{C}P^2$)
- **5.4.** Let $\mathcal{O}(1) \to \mathbb{C}P^n$ be the holomorphic line bundle from Exercise 2. For $k \geq 2$ define $\mathcal{O}(k) = \mathcal{O}(1)^{\otimes k}$ (k-fold tensor product). Show that any nontrivial homogeneous polynomial p on \mathbb{C}^{n+1} of degree k (ie we have $p(az_0, \ldots, az_n) = a^k p(z_0, \ldots, z_n)$ for all $a \in \mathbb{C}$ and all z_0, \ldots, z_n) can be viewed as a section of $\mathcal{O}(k)$.