Due to the holidays, this is 1/2 exercise sheet

- **4.1.** Let $T^2 = \mathbb{C}/\Lambda$ be the quotient of the complex plane under a lattice $\Lambda = \{ae_1 + be_2 \mid a, b \in \mathbb{Z}\}$ where $e_1, e_2 \in \mathbb{C}$ are linearly independent over \mathbb{R} . The standard hermitian metric on \mathbb{C} induces a hermitian metric on the holomorphic tangent bundle of T^2 . Compute the curvature of the Chern connection for this metric.
- **4.2.** Now let us assume for simplicity that $e_1 = 1, e_2 = i$. A holomorphic involution of a complex manifold M is a holomorphic map $\iota : M \to M$ such that $\iota^2 = \text{Id}$.
 - (a) Show that the map $z \to -z$ is an involution of \mathbb{C} which induces an involution of T^2 , again denoted by ι .
 - (b) Show that the quotient T^2/ι has a natural structure of Riemann surface which is biholomorphic to $\mathbb{C}P^1$.
 - (c) Show that the pull-back of the tautological bundle over $\mathbb{C}P^1$ is a line bundle over \mathbb{T}^2 . Does it have a nontrivial holomorphic section?