2.1. (a) Let $f: U \subset \mathbb{C}^n \to \mathbb{C}$ be a holomorphic function. Show that the differential df of f, viewed as a \mathbb{C} -valued one-form on \mathbb{C}^n , is of the form

$$df = \sum_{i=1}^{n} a_i dz_i$$

with holomorphic functions a_i .

(b) Let $f:U\subset \mathbb{C}^n\to \mathbb{C}$ be a continuously differentiable map. Show that f is holomorphic if

$$df = \sum_{i=1}^{n} a_i dz_i$$

for some continuous functions a_i .

- **2.2.** (a) Show that the complex projective line $\mathbb{C}P^1$ is biholomorphic to the sphere $\mathbb{C} \cup \{\infty\}$.
 - (b) (harder) Let 1, *i* be the standard basis of \mathbb{C} as a vector space over \mathbb{R} . Define $\Lambda_1 = \{k + i\ell \mid k, \ell \in \mathbb{Z}\}$ and $\Lambda_2 = \{k + e^{\pi i/\sqrt{2}}\ell \mid k, \ell \in \mathbb{Z}\}$. Are the two-tori $T_1 = \mathbb{C}/\Lambda_1$ and $T_2 = \mathbb{C}/\Lambda_2$ biholomorphic? Justify your answer.
- **2.3.** Let M be a complex manifold, with universal covering \tilde{M} . Show that the deck group acts as a group of biholomorphic transformations on \tilde{M} .
- **2.4.** Show that any invertible linear map $A \in GL(n+1, \mathbb{C})$ acts as a biholomorphic transformation on $\mathbb{C}P^n$.