11.1. Let $p(z) = \sum a_i z^i$ be a polynomial of degree $d \ge 1$.

- (a) Show that p induces a branched self-covering $\mathbb{C}P^1\to\mathbb{C}P^1$ and compute its degree.
- (b) Show that for any compact Riemann surface M and any number n > 0, there exists a holomorphic map $M \to \mathbb{C}P^1$ of degree at least n.
- **11.2.** Let M be a compact Riemann surface and let $\mathcal{H}^{1,0}$ be the vector space of holomorphic one-forms on M. Show that the map

$$B: \mathcal{H}^{1,0} \times H^{0,1}_{\bar{\partial}} \to \mathbb{C}$$

defined by $B(\alpha, [\theta]) = \int_M \alpha \wedge \theta$ is well defined and induces an isomorphism $\mathcal{H}^{1,0} \to H^{0,1}_{\bar{\partial}}$.

- **11.3.** Let D be an effective divisor on a compact RIemann surface M and let L(D) be the holomorphic line bundle defined by D. Show that as $k \to \infty$, the dimension of the vector space of holomorphic sections of $L(D)^k$ (k-fold tensor product) tends to infinity.
- 11.4. An origami is defined as follows. Let $k \ge 1$ and consider a collection of k unit squares in \mathbb{C} (side lengths one) so that two sides are parellel to the real axis, two sides are parallel to the imaginary axis and if two squares intersect then they intersect along a common side. Each square has a bottom, top, right and left side. Pair the open right sides with the open left sides and the open top sides with the open bottom sides and glue the sides from a pair by a translation. Assume that the resulting space is connected.
 - (a) Show that this space M is a Riemann surface, equipped with a natural holomorphic one-form.
 - (b) Show that M admits a natural holomorphic map onto a two-torus.
 - (c) Show that for any $g \ge 1$, there exists a Riemann surface of genus g which can be obtained with this construction (computing the Euler characteristic is the easiest way to see this, if you don't know this then draw some pictures!). For a given number $g \ge 2$, can you roughly find out how many squares you need, i.e. what is a rough lower bound on the number?