Part 1: for discussion on Oct. 16

- **1.1.** Let $f : U \subset \mathbb{C}^n \to \mathbb{C}$ be a continuous function. Show that the following are equivalent.
 - (a) f is holomorphic.
 - (b) f is continuously differentiable, and for every $x \in U$, the differential df: $T_x \mathbb{C} = \mathbb{C}^n \to T_{f(x)} \mathbb{C} = \mathbb{C}$ is linear over \mathbb{C} .
 - (c) f is smooth, and for every $x \in U$, the differential $df : T_x \mathbb{C} = \mathbb{C}^n \to T_{f(x)} \mathbb{C} = \mathbb{C}$ is linear over \mathbb{C} .
- **1.2.** Let $f : U \subset \mathbb{C}^n \to \mathbb{C}$ be holomorphic. Show that for every $x \in U$, either the rank of df at x equals zero or two. Moreover, if f is not constant, then $\{x \in U \mid df(x) = 0\}$ is discrete.
- **1.3.** Let $f: U \subset \mathbb{C}^n \to \mathbb{C}^n$ be holomorphic. Show that if there exists a point $x \in U$ such that the rank of df at x is maximal, then there exists a neighborhood V of f(x) and a holomorphic map $g: V \to U$ such that $f \circ g = \mathrm{Id}|V$. Furthermore, in this case the set $\{y \in U \mid df(y) \text{ has maximal rank }\}$ is open and dense.
- **1.4. Implicit function theorem** Let $U \subset \mathbb{C}^m$ be an open set and let $f : U \to \mathbb{C}^n$ be holomorphic, where $m \ge n$. Suppose that $z_0 \in U$ is a point such that

$$\det(\frac{\partial}{\partial z_j}(z_0))_{1 \le i,j \le n} \neq 0.$$

Then there exist open subsets $U_1 \subset \mathbb{C}^{m-n}, U_2 \subset \mathbb{C}^n$ and a holomorphic map $g: U_1 \to U_2$ such that $U_1 \times U_2 \subset U$ and $f(z) = f(z_0)$ if and only if $g(z_{n+1}, \ldots, z_m) = (z_1, \ldots, z_n)$.

Part 2: will be collected on Oct. 17

- **1.1.** A map $f: U \to \mathbb{C}$ is open if the image of every open set is open.
 - (a) Show that a non-constant holomorphic function $f: U \subset \mathbb{C} \to \mathbb{C}$ is open.
 - (b) Show that for any $n \ge 1$, any non-constant holomorphic function $f: U \subset \mathbb{C}^n \to \mathbb{C}$ is open.
 - (c) Show that the map $(z, w) \in \mathbb{C}^2 \to (z, zw) \in \mathbb{C}^2$ is holomorphic, but it is not open.

- (d) Let $U \subset \mathbb{C}^n$ be a *domain*, ie an open connected set. Let $\mathcal{O}(U)$ be the set of all holomorphic functions on U. Show that $\mathcal{O}(U)$ is a *ring*, ie for all $f,g \in \mathcal{O}(U)$ and all $c,d \in \mathbb{C}$ we have $cf + dg \in \mathcal{O}(U)$ and $fg \in \mathcal{O}(U)$. Determine the neutral element for addition and multiplication.
- (e) Show that a function $f \in \mathcal{O}(U)$ is constant if there is a point $a \in U$ such that f(z) = 0 for z near a.
- **1.2.** (a) For $a \in \mathbb{C}_* = \mathbb{C} \{0\}$, show that the map $\phi : z \in \mathbb{C} \to z + a$ is biholomorphic.
 - (b) Show that the set $\operatorname{Aut}(\mathbb{C})$ of biholomorpic transformations of \mathbb{C} forms a *group* with respect to composition.
 - (c) Let $\Gamma = \langle \phi \rangle$ be the subgroup of Aut(\mathbb{C}) generated by ϕ . Show that $\mathbb{C}/\langle \phi \rangle$ is a Riemann surface.
 - (d) Show that all Riemann surfaces as in (c) above are biholomorphic.