- 9.1. (a) Show that the free group with two generators is a hyperbolic group.
 - (b) Show that the Gromov boundary of the free group with two generators is a Cantor set (=compact, totally disconnected, no isolated points).
 - (c) Let P be a hyperbolic pair of pants with geodesic boundary. Show that P is the convex core of the quotient of \mathbb{H}^3 by a convex cocompact Kleinian group Γ whose limit set is a Cantor set.
 - (d) Let $\operatorname{Hull}(\Lambda(\Gamma))$ be the convex hull of the limit set of the group Γ as in (c). Show that through every point of $\operatorname{Hull}(\Lambda(\Gamma))$ there passes a geodesic ray which is entirely contained in $\operatorname{Hull}(\Lambda(\Gamma))$. Is there also a geodesic line?
- **9.2.** Let Γ be a convex cocompact Kleinian group, with limit set $\Lambda \neq S^2$ and convex hull Hull(Λ)
 - (a) Show that $\operatorname{Hull}(\Lambda) = \cap H$ where H runs through all closed half-spaces whose closure in $\mathbb{H}^3 \cup S^2$ contains Λ .
 - (b) Show that for every point $x \in \partial \operatorname{Hull}(\Lambda) \subset \mathbb{H}^3$ (ie the boundary of $\operatorname{Hull}(\Lambda)$) there exists a half-space H whose closure contains Λ and so that $x \in \partial H$. The boundary of such a half-space is called a *supporting hyperplane* for $\partial \operatorname{Hull}(\Lambda)$.
 - (c) Show that the closure in $\mathbb{H}^3 \cup S^2$ of any supporting hyperplane contains a point in Λ .
 - (d) Deduce from (c) that through any point $x \in \partial \text{Hull}(\Lambda)$ passes a geodesic ray entirely contained in $\text{Hull}(\Lambda)$.
- **9.3.** Let $\Gamma < PSL(2,\mathbb{R})$ be the fundamental group of a closed hyperbolid surface S and assume that Γ_{θ} is obtained from $\Gamma = \pi_1(S)$ by bending (θ is sufficiently small) at a geodesic γ . Let Λ_{θ} be the limit set of Λ_{θ} . Show that the Γ_{θ} -invariant pleated surface H_{θ} is contained in Hull(Λ_{θ}).
- **9.4.** Notations as in Exercise 9.3. Show that the limit set Λ_{θ} depends continuously on θ in the following sense. Fix a totally geodesic hyperbolic surface Y with geodesic boundary (the universal covering of a component of $S \gamma$) and normalize so that $Y \subset H_{\theta}$ for all θ . Let $x \in Y$ be a fixed point and for each θ let β_{θ} be a geodesic ray issuing from x which is contained in Hull (Λ_{θ}) . Then any accumulation point of β_{θ} in the space of geodesic rays from x is contained in Hull $(\Lambda) \sim \mathbb{H}^2$.