- **6.1.** Call an isometry $A \in SO(3, 1)^+ = PSL(2, \mathbb{C})$ elliptic if it is not the identity and fixes at least one point in \mathbb{H}^3 .
 - (a) Show that an elliptic isometry fixes at least two points in $\partial \mathbb{H}^3 = S^2$.
 - (b) Show that an isometry $A \in PSL(2, \mathbb{C})$ is elliptic if and only if |tr(A)| < 2.
- **6.2.** Call an isometry $A \in PSL(2, \mathbb{C})$ hyperbolic if |tr(A)| > 2. Show that the following are equivalent.
 - (i) A is hyperbolic.
 - (ii) A preserves a unique geodesic $\tilde{\gamma} \subset \mathbb{H}^3$ and acts on it as a translation.
 - (ii) A preserves some biinfinite quasi-geodesic and acts on it as a translation.
 - (vi) The infimum $\delta(A) = \inf\{d(x, Ax) \mid x \in \mathbb{H}^3\}$ is assumed, and it is positive,
- **6.3.** Let S be a closed hyperbolic surface and let γ be a simple closed separating geodesic on S as in the lecture. Let θ be sufficiently small that the bending Γ_{θ} of the group $\Gamma = \pi_1(S) \subset PS(2, \mathbb{C})$ at γ with bending angle θ is discrete.
 - (a) Show that any element $g \in \Gamma_{\theta}$ can be represented in $M_{\theta} = \Gamma_{\theta} \setminus \mathbb{H}^3$ by a closed geodesic whose length does not exceed the length of the corresponding closed geodesic in S.
 - (b) Show that for fixed $g \in \Gamma$, the length of the corresponding geodesic in M_{θ} as in (b) depends continuously on θ .
 - (c) Characterize those elements whose length in M_{θ} coincides with their length in S.
- **6.4.** Show that for every $\theta > 0$ there exists a piecewise geodesic path $\alpha : \mathbb{R} \to \mathbb{H}^2$ which consists of geodesic segments meeting with a breaking angle smaller than θ which is not a quasi-geodesic.

The student council of mathematics will organize the math party on 01/06 in N8schicht. The presale will be held on Mon 29/05, Tue 30/05 and Wed 31/05 in the mensa Poppelsdorf. Further information can be found at fsmath.uni-bonn.de ;http://fsmath.uni-bonn.de/ \dot{z}