- **5.1.** Show that the curvature of \mathbb{H}^3 equals -1 as follows.
 - (i) Use the action of the isometry group to verify that it suffices to show the following. Intersect the hyperboloid in \mathbb{R}^4 with the subspace $E = \{x_1 = 0\}$ (conventions as in the lecture). Then the length of a circle of radius R about (0,0,0,1) in $E \cap \mathbb{H}^3$ equals $2\pi \sinh(R)$.
 - (ii) Calculate the length of the circle in (i) using the explicit parametrization of a geodesic in $E \cap \mathbb{H}^3$ through (0, 0, 0, 1).
- **5.2.** Using the explicit form of the action of $PSL(2, \mathbb{C})$ on $S^2 = \mathbb{C} \cup \{\infty\}$, show that the subgroup $PSL(2, \mathbb{R})$ equals the stabilizer of the half-space $\{\Im > 0\}$ in $PSL(2, \mathbb{C})$.
- **5.3.** Let $A \in PSL(2, \mathbb{R})$ acting on $\mathbb{H}^2 = \{\Im > 0\} \subset \mathbb{C} \cup \{\infty\}$. Show that the action of A on $\{\Im < 0\}$ is defined by $z \to \overline{A(\overline{z})}$.
- **5.4.** Consider the light cone $\mathcal{L} \subset \mathbb{R}^4$. Show that there is a quadruple of pairwise distinct lines ℓ_i such that any permutation of these lines is the restriction of an isometry of \mathbb{H}^3 (not necessarily orientation preserving). Show that this is not true for every quadruple of pairwise distinct lines in \mathcal{L} .