- **10.1.** Let $x \in \mathbb{H}^3$ be an arbitrary point, let $v \in T^1_x \mathbb{H}^3$ and let $\alpha \in (0, \pi/2)$.
 - (a) Show that the cone $C(v, \alpha) = \{\exp(tw) \mid t \ge 0, \langle v, w \rangle \le \alpha\}$ is convex.
 - (b) Show that for any other $\beta \in (0, \pi/2)$, the cones $C(v, \alpha), C(v, \beta)$ are quasiisometric.
 - (c) Now let $D \subset \mathbb{H}^2 \subset \mathbb{H}^3$ be a closed disk of radius r > 0 and let N be the oriented normal field of \mathbb{H}^2 . Show that the cone $C(v, \alpha)$ is quasi-isometric to $\{\exp(tN(y)) \mid t \geq 0, y \in D\}.$
- **10.2.** Let Γ be a convex cocompact Kleinian group, with non-empty domain of discontinuity $\Omega(\Gamma) = S^2 \Lambda(\Gamma)$, and let $M = \Gamma \setminus \mathbb{H}^3$.
 - (a) Show that there exists a sequence of points $(x_i) \subset M$ such that the pointed hyperbolic manifolds (M, x_i) converge in the geometric topology to \mathbb{H}^3 .
 - (b) Show that every sequence $(x_i) \subset \text{Core}(M)$ has a subsequence so that (M, x_i) converges in the geometric topology to M.
- **10.3.** Let $\Gamma < PSL(2, \mathbb{R})$ be the fundamental group of a closed hyperbolid surface Sand assume that Γ_{θ} is obtained from $\Gamma = \pi_1(S)$ by bending (θ is sufficiently small) at a geodesic γ . Let $\theta_i \to 0$; show that there exists a sequence $y_i \in \Gamma_{\theta_i} \setminus \mathbb{H}^3 = M_{\theta_i}$ so that the pointed manifolds (M_{θ_i}, y_i) converge in the geometric topology to (M, y) where $M = \Gamma \setminus \mathbb{H}^3$.
- 10.4. (Harder) Let (M_i) be a sequence of quasi-fuchsian manifolds whose injectivity radius is bounded from below by some $\delta > 0$. Show that there exists a sequence of points $y_i \in M_i$ so that the sequence of pointed manifolds (M_i, y_i) does not have a subsequence which converges in the geometric topology to \mathbb{H}^3 .