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Abstract

We prove that the normaliser of the congruence subgroup ¡0(N) inside GLn(Q) is trivial
for n> 2. Since this normaliser was the source of Atkin-Lehner operators for subgroups of
SL2(R), we give a different perspective in order to obtain generalisations of Atkin-Lehner
operators in higher rank. Under this perspective, the only non-trivial operator is the gener-
alised Fricke involution, which provides the dual form in L-function theory.

This note is a draft. Date: 03.08.2021

1 Introduction
Let ¡0n(N) be the subgroup of SLn(Z) consisting of matrices with last row of the form

(0; : : : ; 0; �) (modN);

where � is a unit modulo N . This family of arithmetic subgroups is of great importance in number
theory, lying at the basis of the theory of newforms (s. section 13.8 in [3]). For n=2, the theory of
newforms is intimately related to the theory of Atkin-Lehner operators. Yet for n> 2, definitions
for Atkin-Lehner operators do not seem to be in print, at least not in classical language, i.e. not
representation-theoretic.

It is the purpose of this note to present a possible generalisation of Atkin-Lehner operators to
the Hecke congruence subgroups of SLn(R) with n>2. This generalisation yields the corresponding
Fricke involutions, which sends an automorphic form to the dual form appearing in the functional
equation of its L-function.

According to our definition, there are no other Atkin-Lehner operators apart from the Fricke
involution (and the trivial identity) in the case n>2. This apparent shortcoming of the definition
is, in fact, a meaningful phenomenon. The proof of this negative result applied to the case n=2
shows that this scarcity is an exacerbation of the shortage of Atkin-Lehner operators for powerful
levels, which is a well-known technical difficulty in applications.

2 The normaliser of ¡0(N)

In the theory of autormophic forms on SL2(R), an Atkin-Lehner operator S is obtained by setting
Sf(z)= f(gz) for all z2H, where g lies in the normaliser of ¡02(N) inside SL2(R). This is a natural
method of producing automorphisms of spaces of automorphic forms, since the invariance of f(z)
under a group ¡ is equivalent to the invariance of f(g z) under g¡1¡g. The normaliser has been
computed by Atkin and Lehner in [1] and an example of a non-trivial normalising element is

g=
�

¡1
N

�
;

which induces the so-called Fricke involution .
Thus, searching for symmetries of automorphic forms in higher rank should involve computing

the normalisers of ¡0n(N) for n > 2. Unfortunately, this method can only produce the identity
operator, since these normalisers, in contrast to the case n= 2, are trivial. In the following we
denote by GLn

+(Q) the subgroup of invertible matrices with positive determinant.

Theorem 1. For n > 2, the normaliser of ¡0n(N) inside GLn
+(Q) is trivial, that is, equal to

Q>0 �¡0n(N):

�. This article has been written using GNU TEXMACS [4].
y. University of Bonn. This note can be found at my website: https://www.math.uni-bonn.de/people/toma/.
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For simplicity, we prove the theorem in the case of n=3. Consider the action of G :=GL3
+(Q)

on full Z-lattices in R3. Let L1= he1; e2; e3i be the standard lattice for a basis (e1; e2; e3) of R3 and
consider L=G �L1, the orbit of L1 under the action of G.1

Note that the stabiliser of L1 under this action is the group SL3(Z). More generally, forM 2N,
let LM = he1; e2;M e3i, or in other words,

LM =

0@ 1
1
M

1A�L1:
The stabiliser of LM is

Stab(LM)=

0@ 1
1
M

1AStab(L1)
0@ 1

1
M

1A¡1=
8>>>><>>>>:
0BBBB@ a11 a12

a13
M

a21 a22
a23
M

Ma31 Ma32 a33

1CCCCA:(aij)2SL3(Z)
9>>>>=>>>>;:

It follows that Stab(L1)\Stab(LM)=¡03(M). Since ¡03(N)�¡03(M) for all M jN , we deduce that\
M jN

Stab(LM)=¡03(N):

The following lemma asserts that these lattices are essentially all the lattices fixed by ¡03(N). Intu-
itively, this means that ¡03(N) is quite large and therefore cannot have a much larger normaliser.

Lemma 2. The set of lattices fixed by ¡03(N) is[
M jN

fqLM: q 2Q>0g:

Proof. Let L= g �L12L, where g 2GL3
+(Q), and assume that ¡03(N) fixes L. Then g¡1¡03(N)g

fixes L1, so we must have g¡1¡03(N)g�SL3(Z).
Without loss of generality, that is, by scaling g by a positive rational number, we may assume

that g 2M3�3(Z). Let then H be the Hermite normal form of g, so that

H = gU ;

with U 2 SL3(Z) and H lower triangular. We have HL1= g U L1= g L1=L: So we may further
assume that g=H is lower triangular. More explicitely, write

H =

0@ �1 0 0
�1 �2 0

1 
2 
3

1A2M3�3(Z):

We test the inclusion H¡1
H 2SL3(Z) with various matrices 
 2¡0(N).

H¡1

0@ 1 1
1
1

1AH 2 SL3(Z) implies that
�1
�1
;
�2
�1
;
�1
2¡ 
1�2

�1
3
2Z;

H¡1

0@ 1 1
1
1

1AH 2 SL3(Z) implies that

1
�1
;

2
�1
;

3
�1
2Z;

H¡1

0@ 1
1 1

1

1AH 2 SL3(Z) implies that
�1
�2
;
�1
�2
� 
2

3
2Z;

H¡1

0@ 1
1

N 1

1AH 2 SL3(Z) implies that N
�1

3
2Z:

1. The orbit L is essentially the set of lattices commensurable to L1.
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Since �2
�1
;
�1
�2
2Z, we must have �2

�1
=�1. Since 
3

�1
;N

�1

3
2Z, we must have 
3

�1
=�M jN . Using the

rest of the findings above, we may do column manipulations and obtain

H =�1

0BBBB@
1 0 0
�1
�1

�2
�1

0

1
�1


2
�1


3
�1

1CCCCA=�1

0@ 1
1
M

1AU 0;
with U 02 SL3(Z). Thus L=HL1=LM up to Q>0 scalars. �

Proof of Theorem 1. Let g 2GL3
+(Q) such that g¡1¡03(N)g =¡03(N). Since ¡03(N) fixes the

lattices LM for all divisorsM of N , we find that ¡03(N) must also fix the lattices gLM forM jN . By
the previous lemma, for each divisor M of N there is a rational number qM and a divisor f(M)jN
such that

gLM = qMLf(M); for allM jN:

By the definition of LM and using the fact that Stab(L1)= SL3(Z), we can deduce that

qM
¡1

0BB@ 1
1
f(M)¡1

1CCA� g �
0@ 1

1
M

1A2 SL3(Z); (1)

for all M jN .
Rescaling g by q12Q we may assume that q1=1. Taking M =1 in (1) and applying determ-

inants, we deduce that det(g)= f(M). Applying determinants to all other equations, we find that

qM
3 = f(1)M

f(M)
:

In particular, for M =N , we have qN3f(N)=Nf(1). Since f(N)jN , we must have qN 2Z.
Let us make (1) more explicit. Taking M =1, we have

g=

0@ � � �
� � �

f(1) � f(1) � f(1) �

1A;
where � denotes unknown integers. In particular, the last column of g is integral. If we now take
M =N , we have

g=

0@ qN � qN � �
qN � qN � �

qNf(N) � qNf(N) � �

1A:
Using the properties of the determinant and that � denotes integers, we deduce that qN2 jdet(g)=
f(1):

Let f(1) = qN
2 k for some k 2Z. Now the last row of g is divisible by qN

2 k and the first two
columns are divisible by qN, so by the same method we infer that qN k �qN � qN = qN

3 k divides
det(g)= f(1)= qN

2 k. Therefore qN=1, which implies that f(N)=Nf(1). Since f(N)jN , we have
f(1)= 1 and f(N)=N . Putting everything together, it follows that g 2¡0(N). �

Remark 3. The case n> 3 can be done similarly. In essence, what makes the case n= 2 differ
from the rest is the imbalance between the number of columns with divisibility conditions and the
number of rows wich such conditions. This leads to the different exponents of qN in the proof and
ultimately to the triviality of the solutions to our equations.

Remark 4. We believe that a similar proof with slight adjustments can show that the normaliser
inside GLn(R) is also trivial.
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3 The Atkin-Lehner operators

3.1 A different perspective
We have seen in the last section that n = 2 is singular in the sequence of families ¡0n(N) of
congruence subgroups. To arrive at a general definition of Atkin-Lehner operators, it is useful to
note another way in which the group SL2(R) is distinguished, as described below.

A very important automorphism of matrices in SLn(R) is the map g 7! g¡T , sending a matrix to
its inverse transpose. In number theory, this map is used to define the dual form of an automorphic
form for SLn(Z) (s. section 9.2 in [2]), or also to define the contragredient representation. In the
theory of automorphic forms for SL2(Z), dual forms are not usually mentioned because dualising
turns out to be trivial. Indeed, if we take w=

�
¡1

1

�
to be the long Weyl element, then we easily

compute that

wg¡Tw¡1=¡ 1
det(g)

g: (2)

In particular, the map z 7!z¡T induces the identity under the projection SL2(R)!SL2(Z)nSL2(R)/
SO(2).

We can artificially introduce the dual map into the theory of Atkin-Lehner operators. For
instance, one could write the Fricke involution WN as

WN f(z)= f

��
¡1

N

�
z

�
= f

��
¡1

N

�
wz¡Tw

�
= f

��
1
N

�
z¡T

�
:

Though slightly cumbersome in rank 1, this approach leads to the right definition of Atkin-Lehner
operators for n> 2.

Let g 2GLn(R) such that

g¡1¡0n(N)g=¡0n(N)T : (3)

Then the map f(z) 7! f(g z¡T) is an operator on the space of automorphic forms for ¡0n(N), which
we call by definition an Atkin-Lehner operator . As in the previous example, all Atkin-Lehner
operators for n=2 can be construed as above. More precisely, taking a matrix in the normaliser
of ¡02(N) and multiplying from the right by the long Weyl element gives a matrix g satisfying (3).

In this interpretation, the group structure coming from the normaliser is not obvious any
more. Indeed, using this definition, we cannot recover the identity for n> 2, though this is still
possible for n=2 through the special property (2). Finding an ever more general definition proves
difficult, since the available types of automorphisms of invertible matrices are scarce. As explained
in [5], all automorphisms in the case n > 2 are constructed out of inner automorphisms, radial
automorphisms, and the inverse-transpose automorphism. Inner automorphisms cannot contribute,
since we have proved that the normaliser of ¡0n(N) is trivial; radial automorphisms are trivial in
our context, since automorphic forms are invariant under the center of GLn(R); and the inverse-
transpose automorphism is precisely the basis for the definition given in this note.

3.2 The Fricke involution
Nevertheless, this definition does yield an important operator. We define the Fricke involution (of
level N) to be the Atkin-Lehner operator given by the matrix

WN = diag(1; : : : ; 1; N);

which is easily seen to satisfy (3). By slight abuse of notation, we denote this operator by WN as
well. It can be checked that the Fricke involution is indeed an involution. If we consider the space
of automorphic form for ¡0n(N) with character �, then the image of the operator is the space of
automorphic forms with character ��, as expected.

Another expected property of the Fricke involution is that it essentially commutes with Hecke
operators. In fact, not taking characters into consideration, the precise formulation is that TmWN=
WNTm

� , where Tm is the m-th Hecke operator. It is another special feature of SL2(R) that Tm=Tm� ,
but this is no longer true in higher rank (s. Theorem 9.3.6 and its proof in [2]).
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Lemma 5. For g 2Mn(Z) with det(g) =m and last row of the form (0; : : : 0; �)modN, let Tg
denote the Hecke operator on automorphic forms for ¡0n(N) corresponding to the double coset
¡0n(N)g ¡0n(N). Then TgWN =WNTg

�:

Proof. By a variant of the Smith normal form, we may assume that g is diagonal and by a variant
of the transposition anti-automorphism for ¡0n(N) (generalising Lemma 4.5.2 and Theorem 4.5.3
in [6], we may assume that there are matrices �i, i=1; : : : ; k, for some k, such that

¡0n(N) g ¡0n(N)=
[
i

¡0n(N)�i=
[
i

�i¡0n(N):

Then by definition we have

TgWN f(z)=
X
i

WN f(�i z)=
X
i

f(WN ��i¡T z¡T)=
X
i

f(�i �WN � z¡T)=WN

X
i

f(�i z);

where �i=WN �i
¡TWN

¡1:The proof is finished by showing that
S
i ¡0

n(N )�i=¡0n(N) g¡1 ¡0n(N),
since this double coset corresponds to Tg� (s. [Goldfeld 6.4.10]). Indeed,[

i

¡0n(N )�i =
[
i

¡0n(N)WN�i
¡TWN

¡1

=
[
i

WN ¡0n(N)TWN
¡1WN�i

¡TWN
¡1

= WN

�[
i

¡0n(N)�i
�¡T

WN
¡1

= WN ¡0n(N)T g¡1¡0n(N)TWN
¡1

= ¡0n(N) g¡1¡0n(N):

Here we made use of fundamental property (3) of WN and of the fact that g is diagonal. �

Another property of the Fricke involution that we may expect is self-adjointness. This can
easily be seen by using a known fact about the dual map for SLn(Z). Namely, the map f(z) 7!
f(w z¡T w¡1), where w is the long Weyl element, is self-adjoint (one can compute directly in
explicit coordinates given in [2], Proposition 9.2.1 or Proposition 6.3.1). We can interpret the Fricke
involution as

WN f(z)= f(mwz¡Tw¡1);

where m=WNw
¡1, that is, as the composition of the dual map with the left-action of m. Since

the measure on Hn is GLn(R)-invariant, we can make the same explicit computations and change
of coordinates as for the dual map. SinceWN as a matrix is diagonal, we easily deduce the conclusion

WN
�=WN

as operators.
As in the case of n=2, the properties given above should lead to the appearence of the Fricke

involution in the functional equation of automorphic L-functions. From this point of view, our
definition does not give a properly new operator, but rather provides the classical formulation of
an important concept that is already implicitly present in the representation-theoretic language.

3.3 A negative result
The theory of Atkin-Lehner operators for ¡0n(N) shows some weaknesses already in the well-
understood case n=2. Indeed, one can only define Atkin-Lehner operators for divisors M of the
level N , such that M and N /M are coprime. More precisely, there are no operators induced by
matrices with determinant equalM jN , such that (M;N /M)=/ 1 (s. [1], p. 138). This phenomenon
creates difficulties in applications when considering powerful levels. In this section, we see that
these difficulties only get more problematic in higher rank. In fact, the only Atkin-Lehner operator
for n> 2, according to our definition, is the Fricke involution.

The Atkin-Lehner operators 5



Proposition 6. Let g 2GLn
+(Q) satisfy g¡1¡0n(N)g=¡0n(N)T. Then, after scaling by a suitable

rational number, g is integral, the last row and the last column of g are divisible by N, and det(g)=
N. Equivalently, g 2Q>0 �¡0n(N )WN:

Proof. We apply the same ideas as in the proof of Theorem 1. Again the proof is done for n=3,
merely for simplicity. One can check that ¡0(N)T stabilises the lattices

LM¡1= he1; e2;M¡1e3i=diag(1; 1;M¡1)L1

for all divisors M jN . It follows that ¡0(N) must stabilise (up to scalars) the lattices gLM¡1. By
Lemma 2 determining the fixed points of ¡0(N), we have

gLM¡1= qMLf(M);

with f(M)jN . We normalise g by a rational number so that q1=1. The equations above imply that

g 2 qM diag(1; 1; f(M))SL3(Z)diag(1; 1;M); (4)

using that the stabiliser of L1 is SL3(Z). Let us take determinants and deduce that

det g= qM
3 � f(M) �M: (5)

By our assumption, det g= f(1).
Take M =N in (5) and note that

qN
¡3= f(N)N

f(1)
:

Since f(1)jN , we deduce that qN
¡32Z, so d := qN

¡12Z. Using this notation we have d3f(1)= f(N)N:
Now we use the matrix equation for M =1 and M =N to find that

g=

0@
f(1) � f(1) � f(1) �

1A and g=

0BBBBBB@
N

d
�

N

d
�

f(N)

d
� f(N)

d
� f(N)N

d
�

1CCCCCCA; (6)

where the �'s stand for integers and the rest of the matrices are filled by integers.
Notice that djN . Indeed, say there is a prime p such that pkjd, but pk -N . Then pk - f(N) since

f(N)jN , and thus p2k -Nf(N). But we know that d3f(1)=Nf(N), so we must have p3kjNf(N),
which is a contradiction unless k=0.

Now suppose p is a prime dividing d such that pkjj d is the maximal power of p dividing d,
with k> 1. As in the last paragraph, it would follow that p3kjf(N)N and pkjN . Since f(N)jN ,
we deduce that p divides N /d. We now use the divisibility conditions from the right of (6) for the
last column of g and the divisibility conditions from the left of (6) for the first two entries of the
last row of g, so that putting everything together we obtain

g=

0BB@ p �
p �

f(1) � f(1) � f(1)p2 �

1CCA:
It would follow that det g= f(1) � p, but this is a contradiction. Therefore d=1.

We infer that f(1)=Nf(N), so considering divisibility we must have f(1)=N and f(N)= 1.
This implies that det g=N and that the last row and column of g are divisible by N .

Thus g is of the form

g=

0@ �1 �2 N�3
�1 �2 N�3
N
1 N
2 N
3

1A;
with �i; �i; 
i2Z. Since det(g)=N , it must be that 
3 is coprime to N and that (�3; �3; 
3)= 1.
In fact, put these together to have (N�3; N �3; 
3)= 1. Now take x; y; z 2Z such that

xN�3+ yN�3+ z 
3=1:
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Then (xN ; yN ; z)=1, so we can find a matrix u2¡03(N) with last row equal to (xN ; yN ; z). It
follows from the above that the entry in the lower right corner of u � g is equal to N . By doing row
manipulations we can find u02¡03(N) such that

u0 g=

0@ � � 0
� � 0
N � N � N

1A:
In this form, it is obvious that we can find another u002¡03(N) so that u00 g=WN. �

Remark 7. Let us note what changes in the proof in the case n=2 and how this leads to the lack
of Atkin-Lehner operators for powerful level. In the notation above, we would have the equation
d2f(1) = f(N)N , where the exponent of d is equal to n in general. We can still prove that djN ,
yet the next paragraph differs slightly.

We suppose p is a prime dividing d such that pkjjd is the maximal power of p dividing d, with
k> 1. As in the proof above, we deduce that p2kjf(N)N and pkjN . To continue the proof and
deduce that d=1, we need the step showing that p divides N /d. This is not true in general any
more. For example, if N is square free, then k 6 1 and this may not hold for certain choices of
f(N). In fact, solving the matrix equations eventually leads to the matrices found by Atkin and
Lehner (after suitably multiplying by the long Weyl element).

If N is powerful, then we could have that a higher power of p divides N , so that, for certain
choices of d, we can indeed deduce that pjN /d and produce a contradiction. These choices of d
correspond to divisorsM of N , such that (M;N /M)=/ 1. Indeed, suppose that det(g)= f(1) :=M;

pjM and pjN /M . Then p divides d= f(N)N /M . If pkkd, then applying the p-adic valuation to
d2M = f(N)N and recalling that f(N)jN shows that pjN /d. We proceed as in the proof above
and derive a contradiction. This shows that there are no Atkin-Lehner operators for such divisors
M as above.
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