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Abstract

Fix a primitive, positive definite binary quadratic form g with integer coefficients. We prove
asymptotic formulas for sums of the form

∑
rg(n)β and

∑
r∗g(n)β , where β ≥ 0 and rg(n), resp.

r∗g(n), denote the number of inequivalent representations, resp. proper inequivalent representa-
tions, of n by g. These estimates generalize a previous result by Blomer and Granville (2006)
by allowing for non-fundamental discriminants and also clarify some details in the proof of the
positive density conjecture for integral Apollonian circle packings by Bourgain and Fuchs (2011).

Keywords: Quadratic forms, Non-fundamental discriminants, Proper representations,
Apollonian circle packings

1. Introduction

If g(x, y) = ax2+bxy+cy2 is a positive definite binary quadratic form with integer coefficients,
how many numbers smaller than some positive X does g represent and with what multiplicity?
For forms1 with fundamental discriminants, Blomer and Granville [1] answered this question
by giving estimates uniform in the discriminant. One remarkable application of their results is
an important step in the proof of the positive density conjecture for integral Apollonian circle
packings by Bourgain and Fuchs [3].

To recall the estimates in [1], let the form g have discriminant −D < 0 and let Ng(X) be
the number of distinct integers smaller than X that are represented by g. It turns out that
the function Ng(X) changes behaviour depending essentially on the relation between X and the
discriminant. Blomer and Granville identify three ranges and give estimates for Ng(X) in each
of them. This article focuses on the first range, when (logX)2+ε ≤ D = o(X), which is covered
by Theorem 2 in [1]. Given these conditions, the theorem implies that

Ng(X) ∼ Cg
X√
D
, (1)

with an explicit constant Cg depending on the form. The bounds on the error term are also
explicit in their dependence on the discriminant, which makes this result particularly useful
when working with families of quadratic forms with varying discriminant. This idea was used
in [3] to count curvatures in Apollonian circle packings, as explained in the next paragraphs.
This will serve as additional motivation for taking a closer look at the details of Blomer and
Granville’s theory.

1Throughout this article, the words form and quadratic form should be taken to mean positive definite primitive
quadratic form in two variables with integer coefficients.
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Figure 1: An Apollonian circle packing2

An Apollonian circle packing (ACP) is constructed by starting with three mutually tangent
circles. A theorem of the ancient Greek geometer Apollonius of Perga states that there are
precisely two other circles tangent to all three given ones. Intuitively, these are the big circle
enclosing them all and the smaller circle inscribed in the triangular interstice formed between
the three. This new configuration of five circles gives rise to new interstices, in which we can
inscribe unique circles by the same argument. Filling all gaps with circles like this inductively,
we obtain an Apollonian circle packing as the limit of this process (see Figure 1).

By definition, all circles in an integral ACP have integer curvatures (inverses of the radii).
There is an abundance of integral circle packings and there has been a recent increase in interest
towards the arithmetic properties of such packings (see [5] or [6] for an overview). One natural
question that arose is whether the set of curvatures in an arbitrary (bounded) integral ACP has
positive density inside the natural numbers. Bourgain and Fuchs [3] showed that the answer is
affirmative. One of the main ingredients of their proof is an ingenious application of [1, Theorem
2], though, strictly speaking, in a generalized version.

More precisely, for an integral Apollonian circle packing P , let κ(P,X) be the number of
distinct integers up to X occurring as curvatures of circles in P . Theorem 1.2 of [3] states that
there exists a constant c depending on the packing P , such that

κ(P,X)�c X,

for X big enough. The key observation in the proof is that the set of integers appearing as
curvatures in the packing contains the integers properly represented by a family of shifted binary
quadratic forms

fa(x, y)− a,

indexed by certain integers a. This family needs to be chosen carefully in order to apply the
asymptotic in (1) and obtain lower bounds on the cardinality of this union of represented integers.

2This image is reproduced from https://commons.wikimedia.org/wiki/File:Apollonian gasket.svg under
CC BY-SA 4.0 licence.

2



Indeed, Bourgain and Fuchs apply the first step of the inclusion-exclusion principle to obtain

κ(P,X) ≥ #
⋃
a

{n ∈ N : n ≤ X,n represented by fa − a}

≥
∑
a

#{n ≤ X,n represented by fa − a}

−
∑
a 6=a′

#{n ≤ X,n represented by both fa − a and fa′ − a′}.

The problem of bounding the first sum from below almost readily lends itself to Blomer and
Granville’s results, whilst an upper bound for the second sum requires different methods. These
tasks become rather delicate, as one needs to achieve the right balance between the two bounds.
In particular, it is essential to find an appropriate set of indices a over which to sum:3 a bigger
index set gives a better lower bound in the first problem, but weakens the upper bound for the
intersections. Sharpening the methods in the second problem to control this trade-off is a large
part of the labour in [3].

The first sum is bounded from below in [3] (specifically in the proof of Lemma 3.1) using
the estimates provided in [1, Theorem 2]. However, in their article, Blomer and Granville count
representations for forms with fundamental discriminants. They mention that, with some extra
work, the results generalize to non-fundamental discriminants, but the details do no seem to
be in print. On the other hand, Bourgain and Fuchs count proper representations for forms fa
having discriminant −4a2, which is fundamental if and only if the integer a has absolute value
1. Now, since we are interested in a lower bound, requiring representations to be proper is a
non-trivial condition. Moreover, given a positive X, the index a ranges between (logX)2 and
(logX)3, implying that the form fa has a non-fundamental discriminant virtually always. Thus,
Bourgain and Fuchs implicitly use a generalized version of [1, Theorem 2], although they give an
alternative proof for the special case they need in the appendix of [3].

This article intends to make the aforementioned generalizations of [1, Theorem 2] explicit.
This contributes in itself to the theory of binary quadratic forms and is of independent interest,
striving towards a completion of Blomer and Granville’s useful theory. It conveniently comes
with the extra benefit of clarifying some details of the proof in [3]. The main theorem of this
article is a version of [1, Theorem 2] in which non-fundamental discriminants are allowed.

We denote by C(D) the class group of positive definite forms with discriminant −D and let
wD be the number of automorphisms of such forms. Inside C(D) we find the subgroup G(D)
of ambiguous classes, i.e. classes with order at most 2. We may decompose the discriminant as
−D = D0f

2, where D0 is a fundamental discriminant and f is the conductor of D. For each
divisor d of f there is a homomorphism θd : C(D) −→ C(D/d2), which will be made precise
in Section 3. The results of Sun and Williams [7] make this homomorphism an important tool
for us. Using this notation and the convention that rg(n)0 = 0 if rg(n) = 0 and rg(n)0 = 1
otherwise, the main theorem is stated below. The main term looks relatively complicated, but
as we shall discuss in Section 5.1 this is inevitable, at least in general. The error term is smaller
than the main term as soon as (logX)2+ε ≤ |D| = o(X).

Theorem 1. Let g be a binary quadratic form of discriminant −D = D0f
2 < 0 with conductor

f . For each divisor d of f , let aθd(g) be the smallest positive integer represented by θd(g) and let

3N.B. These integers a come with their own restrictions (they are a subset of the curvatures), and one must
first prove that this set is large enough. This already requires a good bound going towards the positive density
conjecture.
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uθd(g) be the smallest positive integer coprime to f/d that can be represented by some form in
the coset θd(g)G(D/d2). For any β ≥ 0 we have:∑

n≤x

rg(n)β =
πx√
D
· 2

wβD

∑
d|f

[
wβ−1D/d2 ·

ϕ(f/d)

f

(
1 +

2β−1 − 1

uθd(g)

)]
+ Eβ(x,D),

where

Eβ(x,D)�



∑
d|f

2ω(f/d)

d

√
x

aθd(g)
+ τ(f2) + τ(D)

(
x log x

D
+

x

D3/4

)
, 0 ≤ β ≤ 2,

∑
d|f

2ω(f/d)

d

√
x

aθd(g)
+ τ(f2) + τ(D)

x(log x)(2/q)(2
(β−2)q+1−1)+1

D(3/4)(1−1/q) , β > 2,

for any real q > 1, where τ(D) denotes the number of divisors of D. The implied constants
depend at most on β and q.

Similar results are given for counting proper representations in Section 4, though not as
general. Nevertheless, these results suffice for the application to the proof of the positive density
conjecture for integral Apollonian circle packings, as shown at the end of Section 4.

2. Representing integers coprime to the conductor

At the most basic level, the main tool used by Blomer and Granville to prove [1, Theorem 2] is
the well-known correspondence between classes of quadratic forms and ideal classes. Forms with
fundamental discriminants correspond to ideals in the ring of integers of quadratic number fields.
For non-fundamental discriminants, we must regard more general, i.e. non-maximal, quadratic
orders and restrict the notion of ideals to proper ideals. In both cases, this correspondence
induces a bijection between representations of integers and ideals with certain norms, as in the
next lemma (see [2, Chap. 2, Sect. 7, Theorem 5]).

Lemma 2. Let g be a form with discriminant −D < 0 and let OD be the quadratic order of
discriminant −D. There is a bijection between inequivalent solutions to g(x, y) = n > 0 and
proper OD-ideals of norm n in a class Cg.

In essence, Blomer and Granville decompose the ideals corresponding to representations into
two factors and estimate the possibilities for each factor. Finding this decomposition relies
heavily on prime ideal factorization, this being the main difficulty in the generalization to non-
fundamental discriminants. Indeed, non-maximal quadratic orders do not have unique prime
factorization of ideals and the best way to recover this property is to restrict to the ideals
coprime to the conductor (see [4, Sect. 7.C]). Therefore, we first prove a weaker version of the
main theorem following the proof of Theorem 2 in [1], restricting to integers coprime to the
conductor.

Theorem 3. For a binary quadratic form g having discriminant −D = D0f
2
D < 0 with conductor

fD, let ag be the smallest positive integer that is represented by g, and let ug be the smallest
positive integer coprime to fD that can be represented by some form in the coset gG(D). For
any β ≥ 0 we have:∑

n≤x
(n,fD)=1

rg(n)β =
ϕ(fD)

fD
· 2

wD

(
1 +

2β−1 − 1

ug

)
πx√
D

+ Eβ(x,D),
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where

Eβ(x,D)�


2ω(f)

(
1 +

√
x

ag

)
+ 2ω(D)

(
x log x

D
+

x

D3/4

)
, 0 ≤ β ≤ 2,

2ω(f)
(

1 +

√
x

ag

)
+ 2ω(D)x(log x)(2/q)(2

(β−2)q+1−1)+1

D(3/4)(1−1/q) , β > 2,

for any real q > 1, where ω(D) denotes the number of prime divisors of D. The implied constants
depend at most on β and q.

Proof. We may take the proof in [1, pp. 279–282] and simply require all integers, as well as
ideals and indices of sums, to be coprime to the conductor. The correspondence in Lemma 2 is
preserved under this restriction, since an ideal is coprime to the conductor if and only if its norm
is so (see [4, Lemma 7.18, Chap. 2]). Moreover, prime ideal factorization is recovered, so that all
decompositions and facts derived from this property are valid in this case as well.

To give a sketch of the proof, recall first that a primitive ideal is an ideal that is not divisible
by any rational integer other than 1. Now, Blomer and Granville observe that a pair of different
ideals of norm n in the class Cg (corresponding to inequivalent representations as in Lemma
2) can be decomposed as bc and bc, where c is an ideal in some ambiguous class G, such that
c 6= c, and b is a primitive ideal coprime to D in the class CgG. This decomposition is done
algorithmically and uses prime ideal factorization and ramification theory4, which is available if
n is coprime to f .

Since the decomposition is not explicitly done in [1], we provide the details here. Note that two
ideals a1, a2 ∈ Cg with norm n coprime to the conductor have the form a1 =

∏
pi
∏

qj
∏

(rk) and
a2 =

∏
pi
∏

sj
∏

(rk), where {pi}i are prime ideals over the ramified primes, {qj , sj}j correspond
to the split primes, and {rk}k are the inert primes. Thus, the two outer products

∏
pi and

∏
(rk)

are identical in both factorizations, respectively, since N(a1) = N(a2). We want b to be primitive
and coprime to D, so that the product

∏
pi
∏

(rk) needs to divide c.
Now let Q := {q prime : q | n, (D0

q ) = 1} and for each q ∈ Q choose a prime ideal denoted by
q that contains q. Then the middle products are of the form∏

qj =
∏
q∈Q

qiqqjq ,
∏

sj =
∏
q∈Q

qkqqlq , (2)

where iq + jq = kq + lq for all q ∈ Q. To see how to construct b and c, let us assume without loss
of generality that iq = min(iq, jq, kq, lq) for a prime q ∈ Q. Then the factor in (2) corresponding
to q is of the form

qiqqjq = (qiq )qjq−iq , qkqqlq = (qiq )qkq−iqqlq−iq ,

using that qq = q. Since we want b ∈ A, the principal ideal (qiq ) should divide c. Denoting
bq = qlq−iq ⊂ OD and cq = (qiq )qm ⊂ OD where m = jq − iq − (lq − iq) = kq − iq ∈ N0, we have

qiqqjq = bqcq, qkqqlq = bqcq.

Defining bq and cq analogously for all q ∈ Q and denoting

b =
∏
q∈Q

bq, c =
∏
i

pi
∏
q∈Q

cq
∏
k

(rk),

4Since the isomorphism in [4, Prop. 7.20] preserves norms and commutes with complex conjugation, we may
use the same properties of ramified, inert and split primes as in the case of the maximal order.
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we find that a1 = bc and a2 = bc. By construction, we see that b is primitive and coprime to D.
Moreover, a1 6= a2 implies that a1b

−1 = c 6= c = a2b
−1. Since a1 and a2 are in the same class,

there exists ξ ∈ OD such that ξOD = a1a2 = N(b)c2, and it follows that c is in an ambiguous
class.

In view of this decomposition, let us denote by G(D) the set of ambiguous ideal classes with
discriminant −D and for each class G ∈ G(D) write XG := {c ∈ G | c 6= c}. We denote the
set of primitive ideals coprime to D by A. Out of all the possible factors b we can distinguish
one particular ideal u, which is the ideal in some class CGG0 of the coset CgG(D) having the
smallest norm Nu = ug coprime to the conductor. This ideal u is in fact the only possibility
for the factor b if n ≤ (D/4)1/4. This and more is the content of Lemma 5.1 in [1], which gives
estimates for the cardinalities

#{c ∈ XG | Nc ≤ X} and #{b ∈ CgG ∩ A | b 6= u, Nb ≤ X}, (3)

for each G ∈ G(D).
Our proof now needs estimates for the sets in (3), where we additionally require that the

norms of the ideals be coprime to the conductor. The same bounds as in [1, Lemma 5.1] suffice
in our case as well and may be proven in the same way. For the first set recall that each
ambiguous class contains a reduced form with a simple shape (see [4, Lemma 3.10]). This allows
us to crudely count representations and, most importantly, exclude enough of them which do not
correspond to ideals not equal to their conjugates and get a good bound. We exclude the same
ideals as Blomer and Granville, since these are either not coprime to the conductor or are equal
to their conjugates as in the original proof. The estimates for primitive ideals are done the same
way as in [1]. The proofs again implicitly use prime ideal factorization and ramification theory.

Next, we can approximate the sum we are interested in by one for which we can find a good
asymptotic. For this we define

A1(n) := #{a ∈ Cg | Na = n, a /∈ uXG0} and A2(n) := #{a ∈ Cg | Na = n, a ∈ uXG0}.

Further we define

B := {c ∈ G0 | c = c, N(c) ≤ x/ug, (N(c), f) = 1} and r∗g(n, β) := A1(n) + 2β−1A2(n).

A generalization of Lemma 3.1 in [1], given below as Lemma 4, provides the asymptotic

|{a ∈ Cg | Na ≤ x, (Na, f) = 1}| = 2

wD
· ϕ(f)

f
· 2πx√

D
+O

(
2ω(f)

(
1 +

√
x

a

))
,

using the correspondence between (inequivalent) representations and ideals. The same compu-
tations made by Blomer and Granville in [1, Eq. (5.1)] show that∑

n≤x
(n,f)=1

r∗g(n, β) =
∑
n≤x

(n,f)=1

(A1(n) +A2(n)) + (2β−1 − 1)

(
|B|+

∑
n≤x

(n,f)=1

A2(n)

)
+Oβ(|B|)

= |{a ∈ Cg | Na ≤ x, (Na, f) = 1}|+

+ (2β−1 − 1) · |{c ∈ G0 | Nc ≤ x/ug, (Nc, f) = 1}|+O

(√
x

ag

)
=
ϕ(f)

f
· 2

wD

(
1 +

2β−1 − 1

ug

)
πx√
D

+O

(
2ω(f)

(
1 +

√
x

ag

))
.
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Approximating the sum over rg(n)β by the sum over r∗g(n, β) gives an error for which the
bounds differ depending on whether 0 ≤ β ≤ 2 or β > 2. In both cases, we can bound the sum∑

1≤n≤x
(n,f)=1

|rg(n)β − r∗g(n, β)|

by a sum over the positive integers coprime to f up to X containing terms essentially of the form
rg(n)2 − r∗g(n, 2). This difference is equal to the number of pairs of different ideals in Cg with
norm n that, decomposed as (bc, bc), have b 6= u. To get an upper bound, we multiply the two
estimates from [1, Lemma 5.1] together, and our proof here continues almost identically to the
one given by Blomer and Granville. We merely need to apply the bound |G| � 2ω(D) instead
of the one used in [1], that is |G| � τ(D), which is not optimal any more for non-fundamental
discriminants.

Broadly speaking, the only ingredient in the proof of Blomer and Granville which does not
generalize immediately is the asymptotic in [1, Lemma 3.1], where a more precise approach is
needed (see Lemma 4).

Lemma 4. If g is a positive definite primitive quadratic form of discriminant −D < 0 with
conductor f and a is the smallest integer represented by g, then

#{(m,n) ∈ Z2 | g(m,n) ≤ x, (g(m,n), f) = 1} =
ϕ(f)

f
· 2πx√

D
+O

(
2ω(f)

(
1 +

√
x

a

))
.

The implied constant is absolute.

Proof. We may first assume that g(x1, x2) = ax21 + b′x1x2 + c′x2 is reduced. Let f = faf̃ be a
decomposition of the conductor such that (a, f̃) = 1 and all primes dividing fa divide a as well.
The second part of Lemma 2.1 in [7] shows5 that we can assume g to have the form

g(x1, x2) = ax21 + bf̃x1x2 + cf̃2x22.

Since the coefficient a is represented by g, Theorem 3.2 in [7] (given in (4) below) implies
that (a, f2) = (a, f2a ) = k2 for some k ∈ Z. By our construction of fa we find that all primes
p dividing fa must satisfy p2 | a and, since −D = b2 − 4ac and g is primitive, p also divides b
and does not divide c. Now let g(x1, x2) = n for some n ∈ N and suppose p is a prime such that
p | (n, f). If p | fa, then (cf̃2, p) = 1, p | b and p2 | a, so that from Lemma 2.2 of [7] it follows
that p | x2. If p | f̃ , then p | x1, again by Lemma 2.2 of [7]. Therefore, (g(x1, x2), f) = 1 if and
only if (x1, f̃) = 1 and (x2, fa) = 1.

Equipped with this criterion for coprimality, we may now follow the rest of the proof from
[1]. The two coprimality conditions lead to the slightly weaker error term and to the factor

ϕ(f)

f
=
ϕ(fa)

fa
· ϕ(f̃)

f̃

in front of the main term.

Remark 5. The factor 2/wD in the main term of Theorem 3 arises by switching from counting
all representations in Lemma 4 to only inequivalent representations in the theorem. If −D < −4,
then this factor can be neglected, since wD = 2.

5Note that in the proof of [7, Lemma 2.1, (ii)] we can start with any first coefficient a as long as (a,m) = 1,
in the notation of [7]. In our case, m is equal to f̃ .
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3. Proof of the main theorem

To prove Theorem 1 we reduce the general case to the coprime case, where we can apply
Theorem 3. For this we need the following facts, proved by Sun and Williams in [7].

Let the quadratic form g have discriminant −D with conductor f and let C be the equivalence
class of g. Lemma 2.1 of [7] states that for any integer m dividing f we can find a form in C
that has coefficients (a,mb,m2c), with a, b and c integers. The map θm sends the class C to the
class of forms equivalent to (a, b, c).6 Note that the form ax2 + bxy + cy2 now has discriminant
−D/m2 and conductor f/m. By abuse of notation, we will also use the form g itself as the
argument of θm.

For a positive integer n, let R(g, n) be the number of integer solutions to the equation n =
g(x, y). Theorem 3.2 of [7] asserts that

R(g, n) =

{
0 if (n, f2) is not a square,

R(θm(g), n/m2) if (n, f2) = m2 for m ∈ N.
(4)

Note that, in the second case, n/m2 is coprime to the conductor of θm(g), which is f/m.
We may now rearrange the sum we are interested in by divisors of the conductor. We have∑

n≤x

rg(n)β =
∑
n≤x

1

wβD
R(g, n)β =

∑
d|f

∑
n≤x

(n,f2)=d2

1

wβD
R(g, n)β

=
∑
d|f

(
wD/d2

wD

)β ∑
k≤x/d2

(k,(f/d)2)=1

rθd(g)(k)β .

Applying Theorem 3, we first compute the main term as

∑
d|f

(
wD/d2

wD

)β
·
ϕ(fD/d2)

fD/d2
· 2

wD/d2

(
1 +

2β−1 − 1

uθd(g)

)
πx/d2√
D/d2

=
πx√
D
· 2

wβD

∑
d|f

[
wβ−1D/d2 ·

ϕ(f/d)

f

(
1 +

2β−1 − 1

uθd(g)

)]
.

Next, for the error term we merely need the convolution identity
∑
d|f 2ω(f/d) = τ(f2). This

directly shows that

∑
d|f

2ω(f/d)
(

1 +

√
x

d2aθd(g)

)
= τ(f2) +

∑
d|f

2ω(f/d)

d

√
x

aθd(g)
.

Another straightforward application of the convolution identity and recalling the decomposition
−D = D0f

2, where D0 is a fundamental discriminant, quickly proves that∑
d|f

2ω(D/d
2) ≤ τ(D). (5)

6This map is well defined and is denoted by φm in Definition 2.1 of [7].
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We finally bound log(x/d2) by log x for each divisor d of the conductor7. Thus we have∑
d|f

2ω(D/d
2)

(
(x/d2) log(x/d2)

D/d2
+

x/d2

(D/d2)3/4

)
� τ(D)

(
x log x

D
+

x

D3/4

)
,

which gives the error term in the case 0 ≤ β ≤ 2. The estimate for β > 2 is analogous.

Remark 6. Note that the wD and wD/d2 factors can be often ignored as in Remark 5, but there
is indeed a contribution if the fundamental discriminant D0 is −3 or −4.

4. Proper representations and the ACP estimate

A quadratic form g properly represents an integer n if there are integers x and y such that
g(x, y) = n and (x, y) = 1. We denote the number of proper representations by R∗(g, n) and
define r∗g(n) = R∗(g, n)/wD, where D is the discriminant of g.

It is easy to see that

R(g, n) =
∑
d2|n

R∗(g, n/d2)

and applying Möbius inversion yields that

R∗(g, n) =
∑
d2|n

µ(d)R(g, n/d2).

This identity combined with Lemma 3.1 in [1] and Lemma 4 swiftly produces analogues of these
lemmata.

Lemma 7. For a binary quadratic form g with discriminant −D < 0 and conductor f , let a be
the smallest integer represented by g. Then we have the asymptotics∑

n≤x

R∗(g, n) =
1

ζ(2)
· 2πx√

D
+O

(√
x

a
log x

)
and ∑

1≤n≤x
(n,f)=1

R∗(g, n) =
1

ζ(2)
· φ(f)

f
· 2πx√

D
+O

(
2ω(f)

(√
x+

√
x

a
log x

))
.

Now notice that, in Lemma 2, proper representations correspond to primitive ideals. Indeed,
recall that the isomorphism between representations of n and proper ideals of the order OD with
discriminant −D < 0 having norm n is given by

(x, y) 7→ (xa+ yaτ)a−1,

where τ = (−b+
√
−D)/2a and a is the ideal generated by a and aτ as a Z-module. If gcd(x, y) >

1, then (xa + yaτ)a−1 = gcd(x, y)( x
gcd(x,y)a + y

gcd(x,y)aτ)a−1 is not primitive. Conversely, if

kI = (xa+yaτ)a−1 for some OD-ideal I and k ∈ Z, then kIa = (xa+yaτ)OD. Thus (xa+yaτ) =
k(x′a+ y′aτ), which is easily seen to imply that k | x and k | y.

We may restrict all ideals to primitive ideals in the proof of Theorem 3 and obtain its analogue
using Lemma 7.

7In Theorem 3 the log x terms in the error do not appear if x < 1, so that we correctly bound log(x/d2) by
log x when x/d2 ≥ 1 and simply bound 0 instead of log(x/d2) by log x otherwise.
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Corollary 8. For a given binary quadratic form g with discriminant −D = D0f
2
D < 0 and

conductor fD, let ag be the smallest positive integer that is represented by g, and let ug be the
smallest positive integer coprime to fD that can be represented by some form in the coset gG(D).
For any β ≥ 0 we have:

∑
n≤x

(n,fD)=1

r∗g(n)β =
1

ζ(2)
· ϕ(fD)

fD
· 2

wD

(
1 +

2β−1 − 1

ug

)
πx√
D

+ Eβ(x,D),

where

Eβ(x,D)�


2ω(f)

(√
x+

√
x

ag
log x

)
+ 2ω(D)

(
x log x

D
+

x

D3/4

)
, 0 ≤ β ≤ 2,

2ω(f)
(√

x+

√
x

ag
log x

)
+ 2ω(D)x(log x)(2/q)(2

(β−2)q+1−1)+1

D(3/4)(1−1/q) , β > 2,

for any real q > 1. The implied constants depend at most on β and q.

Remark 9. The proof simply uses the same bounds as in the proof of Theorem 3, since R∗(g, n) ≤
R(g, n). Note here that ag and ug are properly represented in virtue of their definition.

This result cannot be generalized to an analogue of the main theorem as in Section 3, since
the reduction identity (4) fails when restricting to proper representations. See Section 5.2 for a
counter example.

Turning to Apollonian circle packings, we now use Theorem 1 and Lemma 7 to complete the
proof of Lemma 3.1 in [3]. The objects we are concerned with here are quadratic forms fa of
discriminant −4a2 and the integers they properly represent. More precisely, we need the estimate∑

n≤X

R∗(fa, n)0 � X

a
, (6)

where a is an integer between (logX)2 and (logX)3. This is the only step in the proof that
needs further clarification.

To obtain (6) we use the Cauchy-Schwarz inequality to reduce the problem to known cases.
We have ∑

n≤X

R∗(fa, n)0 ≥
(∑

n≤X R
∗(fa, n)

)2∑
n≤X R

∗(fa, n)2
≥
(∑

n≤X R
∗(fa, n)

)2∑
n≤X R(fa, n)2

.

This is similar to the application of Cauchy-Schwarz in the appendix of [3].
To bound the denominator, note first that the discriminant −4a2 lies in absolute value

between (logX)4 and (logX)6, which implies that the error term E2(X,−4a2) in Theorem 1
is smaller than the main term. Indeed, the first summand in the error is

∑
d|a

2ω(a/d)

d

√
X

aθd(g)
≤
√
X
∑
d|a

2ω(a/d) = τ(D2)
√
X � X1/2+ε.

Next, the last summand can be bounded by

Dε

(
X logX

D
+

X

D3/4

)
� X

D3/4−ε ,
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where we used that logX � D1/4. Finally, the main term is bounded from above by a constant
times X/a, since we may bound the wD/d2 factors trivially and∑

d|f

ϕ(f/d)

f

(
1 +

22−1 − 1

uθd(g)

)
≤ 2

∑
d|f

ϕ(f/d)

f
= 2,

where we used the crude bound uθd(fa) ≥ 1.
The lower bound for the numerator is provided by Lemma 7, since the error term is smaller

than the main term, by an argument analogous to the above. The desired estimate (6) now
follows and the implied constant does not depend on a.

5. Remarks

5.1. The constant in the main term of the main theorem

In comparison to the original theorem of Blomer and Granville, the generalized Theorem 1
has a more complicated main term. One would like to simplify the sum over the divisors by
finding some relations between the numbers uθd(g), since computing these is far from trivial and
can be quite expensive. Thankfully, if g is in an ambiguous class, then ug = 1, since the coset
gG(D) includes the class of the principal form, which obviously represents 1. Analogously, for
all divisors d of the conductor we have uθd(g) = 1, since the images of g under the maps θd
are ambiguous classes as well. Indeed, Theorem 2.1 in [7] states that θd is in fact a surjective
homomorphism, preserving the property of having order 1 or 2. Therefore, assuming D0 < −4
so that all wD/d2 are 2 for convenience, the factor after πX/

√
D in the main term simplifies to

(1 + 2β−1)
∑
d|f

ϕ(f/d)

f
= (1 + 2β−1).

Since all uθd(g) are at least 1, this is the maximal value of this factor.
In contrast, for non-ambiguous classes of forms we cannot expect this kind of cancelling.

Under the assumption above, simplifying the factor comes down to understanding the sum∑
d|f

ϕ(f/d)

fuθd(g)
.

The values of uθd(g) usually vary with d and the sum does not necessarily equal a fraction of the
form 1/u, as one would naively try to generalize Theorem 2 of [1]. Table 1, computed using the
computer algebra system Magma, shows a few examples of non-ambiguous forms of discriminant
−8575 = −7 · (5 · 7)2. Here, the number ũg denotes the smallest integer represented by the coset
gG(D) without the condition of coprimality to the conductor.

g ũg ug uθ5(g) uθ7(g) uθ35(g)
∑ ϕ(f/d)

fuθd(g)

[2, 1, 1072] 2 2 2 2 1 59
70

[25, 5, 86] 25 86 1 2 1 381
430

[49, 35, 50] 49 53 2 1 1 1697
1855

Table 1: Computed examples for forms of discriminant −8575
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One possible idea for understanding this behaviour is to use the reduction identity (4) and try
to relate the numbers ug and uθd(g). This strategy would at least require the homomorphisms
θd to map ambiguous classes to ambiguous classes surjectively, so that the cosets gG(D) and
θd(g)G(D/d2) are correlated. Unfortunately, this is not necessarily true for even discriminants.
For instance, there are exactly two ambiguous classes of discriminant −256 = −4 · 82, namely
the classes of the forms with coefficients (17,−4, 4) and (1, 0, 64).8 Now notice that, if [a, b, c]
denotes the class of the form ax2 + bxy + cy2, then

θ2([1, 0, 64]) = [1, 0, 16] and θ2([17,−4, 4]) = [17,−2, 1] = [1, 0, 16].

On the other hand, there are two ambiguous classes of discriminant −64, so that the map θ2
restricted to ambiguous classes is not surjective in this case.

5.2. Considerations for a main theorem for proper representations

Applying the same strategy as in Section 3 to prove an analogue of the main theorem for
proper representations is not directly possible. Indeed, Theorem 3.2 of [7], i.e. equation (4),
does not hold when restricting to proper representations. For a counter-example consider the
form g(x, y) = x2 + 36y2 with discriminant −4 · (2 · 3)2 = −144. Its image under θ3 is the form
g̃(x, y) = x2 + 4y2 with discriminant −4 · 22. The number n = 37 has, up to equivalence, a
single representation, namely g̃(1, 3) = g̃(−1,−3) = 37, which is proper. On the other hand, the
number m = n · 32 = 333 has only one equivalence class of representations, namely g(3, 3) =
g(−3,−3) = 333, which is not proper.

It seems thus necessary to have a better understanding of primitive ideals and their factoriz-
ations in non-maximal quadratic orders to achieve the desired result in a fashion similar to the
proof in [1].
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