T-Rep: A midsummer night's session on representation theory and tensor categories (July 3rd 2020)

Incompressible symmetric tensor categories

Pavel Etingof

MIT

etingof@math.mit.edu

July 4, 2020

arxiv: 2003.10499 joint with Dave Benson and Victor Ostrik slides in collaboration with Victor Ostrik

Pavel Etingof (MIT)

Incompressible categories

Symmetric tensor categories

Representation categories

Base field: $k = \overline{k}$.

Base field: $k = \overline{k}$. Given a (finite) group G, we can form $\operatorname{Rep}(G) = \{\text{finite dimensional representations of } G\}.$

Base field: $k = \overline{k}$. Given a (finite) group G, we can form $\operatorname{Rep}(G) = \{\text{finite dimensional representations of } G\}.$

Base field: $k = \overline{k}$. Given a (finite) group G, we can form $\operatorname{Rep}(G) = \{\text{finite dimensional representations of } G\}.$

What kind of mathematical object is $\operatorname{Rep}(G)$?

• Rep(G) is an abelian category;

Base field: $k = \overline{k}$. Given a (finite) group G, we can form $\operatorname{Rep}(G) = \{\text{finite dimensional representations of }G\}.$

- Rep(G) is an abelian category;
- $\operatorname{Rep}(G)$ has a bifunctor \otimes ;

Base field: $k = \overline{k}$. Given a (finite) group G, we can form $\operatorname{Rep}(G) = \{\text{finite dimensional representations of } G\}.$

- Rep(G) is an abelian category;
- $\operatorname{Rep}(G)$ has a bifunctor \otimes ;
- ullet \otimes is associative, commutative

Base field: $k = \overline{k}$. Given a (finite) group G, we can form $\operatorname{Rep}(G) = \{\text{finite dimensional representations of } G\}.$

- Rep(G) is an abelian category;
- $\operatorname{Rep}(G)$ has a bifunctor \otimes ;
- ⊗ is associative, commutative ← structures;

Base field: $k = \overline{k}$. Given a (finite) group G, we can form $\operatorname{Rep}(G) = \{\text{finite dimensional representations of } G\}.$

What kind of mathematical object is Rep(G)?

- Rep(G) is an abelian category;
- $\operatorname{Rep}(G)$ has a bifunctor \otimes ;
- ⊗ is associative, commutative ← structures;
- ullet we have the unit object $oldsymbol{1}$ and duality $X\mapsto X^*$

Base field: $k = \overline{k}$. Given a (finite) group G, we can form $\operatorname{Rep}(G) = \{\text{finite dimensional representations of } G\}.$

What kind of mathematical object is $\operatorname{Rep}(G)$?

- Rep(G) is an abelian category;
- $\operatorname{Rep}(G)$ has a bifunctor \otimes ;
- ⊗ is associative, commutative ← structures;

• we have the unit object 1 and duality $X \mapsto X^* \leftarrow$ properties of \otimes and associativity;

Base field: $k = \overline{k}$. Given a (finite) group G, we can form $\operatorname{Rep}(G) = \{\text{finite dimensional representations of } G\}.$

What kind of mathematical object is $\operatorname{Rep}(G)$?

- Rep(G) is an abelian category;
- $\operatorname{Rep}(G)$ has a bifunctor \otimes ;
- ⊗ is associative, commutative ← structures;
- we have the unit object 1 and duality $X \mapsto X^* \leftarrow$ properties of \otimes and associativity;

• we have forgetful tensor functor $\operatorname{Rep}(G) \to \operatorname{Vec}$.

Base field: $k = \overline{k}$. Given a (finite) group G, we can form $\operatorname{Rep}(G) = \{\text{finite dimensional representations of }G\}.$

What kind of mathematical object is $\operatorname{Rep}(G)$?

- Rep(G) is an abelian category;
- $\operatorname{Rep}(G)$ has a bifunctor \otimes ;
- ⊗ is associative, commutative ← structures;
- we have the unit object 1 and duality $X \mapsto X^* \leftarrow$ properties of \otimes and associativity;
- we have forgetful tensor functor $\operatorname{Rep}(G) \to \operatorname{Vec}$.

Thus $\operatorname{Rep}(G)$ is a rigid symmetric tensor category equipped with a (symmetric) tensor functor to Vec.

Pavel Etingof (MIT)

Pre-Tannakian categories

Pre-Tannakian categories

A pre-Tannakian category is a $k-{\sf linear}$ rigid symmetric \otimes category ${\mathcal C}$ satisfying

• \mathcal{C} is abelian;

Pre-Tannakian categories

- \mathcal{C} is abelian;
- dim Hom $(X, Y) < \infty$;

Pre-Tannakian categories

- \mathcal{C} is abelian;
- dim Hom $(X, Y) < \infty$;
- length(X) < ∞ ;

Pre-Tannakian categories

- \mathcal{C} is abelian;
- dim Hom $(X, Y) < \infty$;
- length(X) < ∞ ;
- 1 is simple.

Pre-Tannakian categories

A pre-Tannakian category is a k-linear rigid symmetric \otimes category C satisfying

- \mathcal{C} is abelian;
- dim Hom $(X, Y) < \infty$;
- length(X) < ∞ ;
- 1 is simple.

Definition

Fiber functor: exact symmetric \otimes functor $F : C \rightarrow$ Vec.

Pre-Tannakian categories

A pre-Tannakian category is a k-linear rigid symmetric \otimes category C satisfying

- \mathcal{C} is abelian;
- dim Hom $(X, Y) < \infty$;
- length(X) < ∞ ;
- 1 is simple.

Definition

Fiber functor: exact symmetric \otimes functor $F : C \rightarrow$ Vec.

 $\ensuremath{\mathcal{C}}$ is Tannakian if it is pre-Tannakian and has a fiber functor.

Pre-Tannakian categories

A pre-Tannakian category is a k-linear rigid symmetric \otimes category C satisfying

- \mathcal{C} is abelian;
- dim Hom $(X, Y) < \infty$;
- length(X) < ∞ ;
- 1 is simple.

Definition

Fiber functor: exact symmetric \otimes functor $F : C \rightarrow$ Vec.

 ${\mathcal C}$ is Tannakian if it is pre-Tannakian and has a fiber functor.

Theorem (Grothendieck, Saavedra Rivano, Deligne-Milne)

Assume C is Tannakian. Then $C = \operatorname{Rep}(G)$ for some (unique) affine group scheme G. Namely, $G = \operatorname{Aut}_{\otimes}(F)$.

The category of supervector spaces sVec is pre-Tannakian but not Tannakian ($char(k) \neq 2$).

Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not Tannakian (char(k) \neq 2). Reminder: sVec = Rep($\mathbb{Z}/2$) but with modified commutativity constraint: $u \otimes v \mapsto (-1)^{|u| \cdot |v|} v \otimes u$.

Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not Tannakian (char(k) \neq 2). Reminder: sVec = Rep($\mathbb{Z}/2$) but with modified commutativity constraint: $u \otimes v \mapsto (-1)^{|u| \cdot |v|} v \otimes u$.

Definition

super fiber functor: an exact symmetric \otimes functor $F : C \rightarrow$ sVec.

Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not Tannakian (char(k) \neq 2). Reminder: sVec = Rep($\mathbb{Z}/2$) but with modified commutativity constraint: $u \otimes v \mapsto (-1)^{|u| \cdot |v|} v \otimes u$.

Definition

super fiber functor: an exact symmetric \otimes functor $F : C \rightarrow sVec$. C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

The category of supervector spaces sVec is pre-Tannakian but not Tannakian (char(k) \neq 2). Reminder: sVec = Rep($\mathbb{Z}/2$) but with modified commutativity constraint: $u \otimes v \mapsto (-1)^{|u| \cdot |v|} v \otimes u$.

Definition

super fiber functor: an exact symmetric \otimes functor $F : C \rightarrow$ sVec. *C* is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf superalgebra)

The category of supervector spaces sVec is pre-Tannakian but not Tannakian (char(k) \neq 2). Reminder: sVec = Rep($\mathbb{Z}/2$) but with modified commutativity constraint: $u \otimes v \mapsto (-1)^{|u| \cdot |v|} v \otimes u$.

Definition

super fiber functor: an exact symmetric \otimes functor $F : C \rightarrow$ sVec. *C* is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf superalgebra) then Rep(G) is super-Tannakian.

The category of supervector spaces sVec is pre-Tannakian but not Tannakian (char(k) \neq 2). Reminder: sVec = Rep($\mathbb{Z}/2$) but with modified commutativity constraint: $u \otimes v \mapsto (-1)^{|u| \cdot |v|} v \otimes u$.

Definition

super fiber functor: an exact symmetric \otimes functor $F : C \rightarrow sVec$. C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf superalgebra) then Rep(G) is super-Tannakian. More generally: $z \in G(k)$, $z^2 = 1$, Ad(z) =parity automorphism of G.

The category of supervector spaces sVec is pre-Tannakian but not Tannakian (char(k) \neq 2). Reminder: sVec = Rep($\mathbb{Z}/2$) but with modified commutativity constraint: $u \otimes v \mapsto (-1)^{|u| \cdot |v|} v \otimes u$.

Definition

super fiber functor: an exact symmetric \otimes functor $F : C \rightarrow$ sVec. *C* is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf superalgebra) then $\operatorname{Rep}(G)$ is super-Tannakian. More generally: $z \in G(k)$, $z^2 = 1$, Ad(z) =parity automorphism of G. $\operatorname{Rep}(G, z) = \{ \text{objects } X \text{ of } \operatorname{Rep}(G) \text{ such that the action of } z \text{ is the parity} automorphism of } X \}$

Pavel Etingof (MIT)

The category of supervector spaces sVec is pre-Tannakian but not Tannakian (char(k) \neq 2). Reminder: sVec = Rep($\mathbb{Z}/2$) but with modified commutativity constraint: $u \otimes v \mapsto (-1)^{|u| \cdot |v|} v \otimes u$.

Definition

super fiber functor: an exact symmetric \otimes functor $F : C \rightarrow$ sVec. *C* is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf superalgebra) then $\operatorname{Rep}(G)$ is super-Tannakian. More generally: $z \in G(k)$, $z^2 = 1$, Ad(z) =parity automorphism of G. $\operatorname{Rep}(G, z) = \{ \text{objects } X \text{ of } \operatorname{Rep}(G) \text{ such that the action of } z \text{ is the parity} automorphism of } X \}$ then $\operatorname{Rep}(G, z)$ is super-Tannakian.

Pavel Etingof (MIT)

Assume C is super-Tannakian. Then $C = \operatorname{Rep}(G, z)$ for some affine supergroup scheme G and z as above. Namely, $G = \operatorname{Aut}_{\otimes}(F)$ and $z \in G(k)$ is the parity element.

Assume C is super-Tannakian. Then $C = \operatorname{Rep}(G, z)$ for some affine supergroup scheme G and z as above. Namely, $G = \operatorname{Aut}_{\otimes}(F)$ and $z \in G(k)$ is the parity element.

Generalization

Let $F : \mathcal{C} \to \mathcal{D}$ be an exact symmetric \otimes functor.

Assume C is super-Tannakian. Then $C = \operatorname{Rep}(G, z)$ for some affine supergroup scheme G and z as above. Namely, $G = \operatorname{Aut}_{\otimes}(F)$ and $z \in G(k)$ is the parity element.

Generalization

Let $F : \mathcal{C} \to \mathcal{D}$ be an exact symmetric \otimes functor. Then $\mathcal{C} = \operatorname{Rep}(G, \pi)$ where G is an affine group scheme in \mathcal{D} and π is the fundamental group of \mathcal{D} .

Assume C is super-Tannakian. Then $C = \operatorname{Rep}(G, z)$ for some affine supergroup scheme G and z as above. Namely, $G = \operatorname{Aut}_{\otimes}(F)$ and $z \in G(k)$ is the parity element.

Generalization

Let $F : \mathcal{C} \to \mathcal{D}$ be an exact symmetric \otimes functor. Then $\mathcal{C} = \operatorname{Rep}(G, \pi)$ where G is an affine group scheme in \mathcal{D} and π is the fundamental group of \mathcal{D} . Namely, $G = \operatorname{Aut}_{\otimes}(F)$ and $\pi = \operatorname{Aut}_{\otimes}(\operatorname{Id}_{\mathcal{D}})$. Then π acts canonically on every object of \mathcal{D} , we have a canonical homomorphism $\pi \to G$, and $\operatorname{Rep}(G, \pi)$ is the category of representations of G on objects of \mathcal{D} whose restriction to π is the canonical action.

Assume C is super-Tannakian. Then $C = \operatorname{Rep}(G, z)$ for some affine supergroup scheme G and z as above. Namely, $G = \operatorname{Aut}_{\otimes}(F)$ and $z \in G(k)$ is the parity element.

Generalization

Let $F : \mathcal{C} \to \mathcal{D}$ be an exact symmetric \otimes functor. Then $\mathcal{C} = \operatorname{Rep}(G, \pi)$ where G is an affine group scheme in \mathcal{D} and π is the fundamental group of \mathcal{D} . Namely, $G = \operatorname{Aut}_{\otimes}(F)$ and $\pi = \operatorname{Aut}_{\otimes}(\operatorname{Id}_{\mathcal{D}})$. Then π acts canonically on every object of \mathcal{D} , we have a canonical homomorphism $\pi \to G$, and $\operatorname{Rep}(G, \pi)$ is the category of representations of G on objects of \mathcal{D} whose restriction to π is the canonical action. In other words, \mathcal{C} can be expressed in terms of "group theory in \mathcal{D} ".

Assume C is super-Tannakian. Then $C = \operatorname{Rep}(G, z)$ for some affine supergroup scheme G and z as above. Namely, $G = \operatorname{Aut}_{\otimes}(F)$ and $z \in G(k)$ is the parity element.

Generalization

Let $F : \mathcal{C} \to \mathcal{D}$ be an exact symmetric \otimes functor. Then $\mathcal{C} = \operatorname{Rep}(G, \pi)$ where G is an affine group scheme in \mathcal{D} and π is the fundamental group of \mathcal{D} . Namely, $G = \operatorname{Aut}_{\otimes}(F)$ and $\pi = \operatorname{Aut}_{\otimes}(\operatorname{Id}_{\mathcal{D}})$. Then π acts canonically on every object of \mathcal{D} , we have a canonical homomorphism $\pi \to G$, and $\operatorname{Rep}(G, \pi)$ is the category of representations of G on objects of \mathcal{D} whose restriction to π is the canonical action. In other words, \mathcal{C} can be expressed in terms of "group theory in \mathcal{D} ".
Question: What are the pre-Tannakian categories which can't be expressed in terms of "group theory" in smaller categories?

Question: What are the pre-Tannakian categories which can't be expressed in terms of "group theory" in smaller categories? Equivalently, which pre-Tannakian categories do not admit exact \otimes functors to smaller categories?

Pavel Etingof (MIT)

An exact \otimes functor $F : C \to D$ is surjective if any object of D is a subquotient of F(X).

An exact \otimes functor $F : \mathcal{C} \to \mathcal{D}$ is surjective if any object of \mathcal{D} is a subquotient of F(X). Any such functor $F : \mathcal{C} \to \mathcal{D}$ factorizes as $\mathcal{C} \to \text{Im}(F) \to \mathcal{D}$ where

 $\mathcal{C} \to \mathsf{Im}(F)$ is surjective and $\mathsf{Im}(F) \to \mathcal{D}$ is a fully faithful embedding.

An exact \otimes functor $F : \mathcal{C} \to \mathcal{D}$ is surjective if any object of \mathcal{D} is a subquotient of F(X). Any such functor $F : \mathcal{C} \to \mathcal{D}$ factorizes as $\mathcal{C} \to \text{Im}(F) \to \mathcal{D}$ where $\mathcal{C} \to \text{Im}(F)$ is surjective and $\text{Im}(F) \to \mathcal{D}$ is a fully faithful embedding.

Definition

A pre-Tannakian C is incompressible if any surjective \otimes functor $F : C \to D$ is an equivalence for any pre-Tannakian D.

An exact \otimes functor $F : \mathcal{C} \to \mathcal{D}$ is surjective if any object of \mathcal{D} is a subquotient of F(X). Any such functor $F : \mathcal{C} \to \mathcal{D}$ factorizes as $\mathcal{C} \to \text{Im}(F) \to \mathcal{D}$ where $\mathcal{C} \to \text{Im}(F)$ is surjective and $\text{Im}(F) \to \mathcal{D}$ is a fully faithful embedding.

Definition

A pre-Tannakian C is incompressible if any surjective \otimes functor $F : C \to D$ is an equivalence for any pre-Tannakian D.

Equivalently, C is incompressible if any exact \otimes functor $F : C \to D$ is an embedding.

An exact \otimes functor $F : \mathcal{C} \to \mathcal{D}$ is surjective if any object of \mathcal{D} is a subquotient of F(X). Any such functor $F : \mathcal{C} \to \mathcal{D}$ factorizes as $\mathcal{C} \to \text{Im}(F) \to \mathcal{D}$ where $\mathcal{C} \to \text{Im}(F)$ is surjective and $\text{Im}(F) \to \mathcal{D}$ is a fully faithful embedding.

Definition

A pre-Tannakian C is incompressible if any surjective \otimes functor $F : C \to D$ is an equivalence for any pre-Tannakian D.

Equivalently, C is incompressible if any exact \otimes functor $F : C \to D$ is an embedding.

Example		l
Vec	sVec	

An exact \otimes functor $F : \mathcal{C} \to \mathcal{D}$ is surjective if any object of \mathcal{D} is a subquotient of F(X). Any such functor $F : \mathcal{C} \to \mathcal{D}$ factorizes as $\mathcal{C} \to \text{Im}(F) \to \mathcal{D}$ where $\mathcal{C} \to \text{Im}(F)$ is surjective and $\text{Im}(F) \to \mathcal{D}$ is a fully faithful embedding.

Definition

A pre-Tannakian C is incompressible if any surjective \otimes functor $F : C \to D$ is an equivalence for any pre-Tannakian D.

Equivalently, C is incompressible if any exact \otimes functor $F : C \to D$ is an embedding.

Exampl	e		
Vec	sVec		
A	*** ********		

Any more examples?

Pavel Etingof (MIT)	Incompressible categories	July 4, 2020	7 / 20

Pavel Etingof (MIT)

Definition

We say that C is of sub-exponential growth if for any $X \in C$ there is $a_X \in \mathbb{R}$ such that $\text{length}(X^{\otimes n}) \leq a_X^n$.

Definition

We say that C is of sub-exponential growth if for any $X \in C$ there is $a_X \in \mathbb{R}$ such that $\text{length}(X^{\otimes n}) \leq a_X^n$.

Theorem (Deligne)

Assume char k = 0 and let C be pre-Tannakian of sub-exponential growth. Then C is super-Tannakian. In particular, Vec and sVec are the only incompressible categories of sub-exponential growth.

Definition

We say that C is of sub-exponential growth if for any $X \in C$ there is $a_X \in \mathbb{R}$ such that $\text{length}(X^{\otimes n}) \leq a_X^n$.

Theorem (Deligne)

Assume char k = 0 and let C be pre-Tannakian of sub-exponential growth. Then C is super-Tannakian. In particular, Vec and sVec are the only incompressible categories of sub-exponential growth.

Example

Deligne categories $\operatorname{Rep}(GL_t)$, $\operatorname{Rep}(O_t)$, $\operatorname{Rep}(S_t)$ $(t \in k)$ are of super-exponential growth.

Definition

We say that C is of sub-exponential growth if for any $X \in C$ there is $a_X \in \mathbb{R}$ such that $\text{length}(X^{\otimes n}) \leq a_X^n$.

Theorem (Deligne)

Assume char k = 0 and let C be pre-Tannakian of sub-exponential growth. Then C is super-Tannakian. In particular, Vec and sVec are the only incompressible categories of sub-exponential growth.

Example

Deligne categories $\operatorname{Rep}(GL_t)$, $\operatorname{Rep}(O_t)$, $\operatorname{Rep}(S_t)$ $(t \in k)$ are of super-exponential growth. They typically admit surjective functors like $\operatorname{Rep}(S_t) \to \operatorname{Rep}(S_{t-1})$, so are **not** incompressible.

Definition

We say that C is of sub-exponential growth if for any $X \in C$ there is $a_X \in \mathbb{R}$ such that $\text{length}(X^{\otimes n}) \leq a_X^n$.

Theorem (Deligne)

Assume char k = 0 and let C be pre-Tannakian of sub-exponential growth. Then C is super-Tannakian. In particular, Vec and sVec are the only incompressible categories of sub-exponential growth.

Example

Deligne categories $\operatorname{Rep}(GL_t)$, $\operatorname{Rep}(O_t)$, $\operatorname{Rep}(S_t)$ $(t \in k)$ are of super-exponential growth. They typically admit surjective functors like $\operatorname{Rep}(S_t) \to \operatorname{Rep}(S_{t-1})$, so are **not** incompressible.

Conjecture: No more incompressible categories in characteristic zero.

Pavel Etingof (MIT)

Incompressible categories

Pavel Etingof (MIT)

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \to Y$ is negligible if for any $g : Y \to X$ we have Tr(fg) = 0.

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \to Y$ is negligible if for any $g : Y \to X$ we have Tr(fg) = 0.

Negligible morphisms form a \otimes ideal \mathcal{N} .

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \to Y$ is negligible if for any $g : Y \to X$ we have Tr(fg) = 0. Negligible morphisms form a \otimes ideal \mathcal{N} .

Define $\overline{\mathcal{T}}$: the same objects as in \mathcal{T} but $\operatorname{Hom}_{\overline{\mathcal{T}}}(X, Y) = \operatorname{Hom}_{\mathcal{T}}(X, Y)/\mathcal{N}$.

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \to Y$ is negligible if for any $g : Y \to X$ we have $\operatorname{Tr}(fg) = 0$. Negligible morphisms form a \otimes ideal \mathcal{N} . Define $\overline{\mathcal{T}}$: the same objects as in \mathcal{T} but $\operatorname{Hom}_{\overline{\mathcal{T}}}(X, Y) = \operatorname{Hom}_{\mathcal{T}}(X, Y)/\mathcal{N}$. $\overline{\mathcal{T}}$ is again a rigid symmetric monoidal category.

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \to Y$ is negligible if for any $g : Y \to X$ we have $\operatorname{Tr}(fg) = 0$. Negligible morphisms form a \otimes ideal \mathcal{N} . Define $\overline{\mathcal{T}}$: the same objects as in \mathcal{T} but $\operatorname{Hom}_{\overline{\mathcal{T}}}(X, Y) = \operatorname{Hom}_{\mathcal{T}}(X, Y)/\mathcal{N}$. $\overline{\mathcal{T}}$ is again a rigid symmetric monoidal category.

Theorem (U. Jannsen)

Assume dim $Hom(X, Y) < \infty$ and any nilpotent endomorphism in \mathcal{T} has trace zero. Then $\overline{\mathcal{T}}$ is semisimple (and so abelian). Moreover

Irreducibles of $\overline{\mathcal{T}} \leftrightarrow$ Indecomposables of \mathcal{T} of nonzero dimension.

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \to Y$ is negligible if for any $g : Y \to X$ we have $\operatorname{Tr}(fg) = 0$. Negligible morphisms form a \otimes ideal \mathcal{N} . Define $\overline{\mathcal{T}}$: the same objects as in \mathcal{T} but $\operatorname{Hom}_{\overline{\mathcal{T}}}(X, Y) = \operatorname{Hom}_{\mathcal{T}}(X, Y)/\mathcal{N}$. $\overline{\mathcal{T}}$ is again a rigid symmetric monoidal category.

Theorem (U. Jannsen)

Assume dim $Hom(X, Y) < \infty$ and any nilpotent endomorphism in \mathcal{T} has trace zero. Then $\overline{\mathcal{T}}$ is semisimple (and so abelian). Moreover

Irreducibles of $\overline{\mathcal{T}} \leftrightarrow$ Indecomposables of \mathcal{T} of nonzero dimension.

Remark: assume $F : \mathcal{T} \to \mathcal{C}$ is a \otimes functor to abelian \mathcal{C} . Then any nilpotent endomorphism in \mathcal{T} has trace zero.

Pavel Etingof (MIT)

Incompressible categories

Assume char k = p > 0.

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. $G = SL_n$.

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. $G = SL_n$. Let $\mathcal{T} = \{\text{tilting } G - \text{modules}\}$.

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. $G = SL_n$. Let $\mathcal{T} = \{\text{tilting } G-\text{modules}\}$. Then $Ver(G) := \overline{\mathcal{T}}$ is a semisimple pre-Tannakian category; it has finitely many irreducibles provided $p \ge \text{Coxeter number } h(G)$ of G (e.g. $h(SL_n) = n$).

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. $G = SL_n$. Let $\mathcal{T} = \{\text{tilting } G-\text{modules}\}$. Then $Ver(G) := \overline{\mathcal{T}}$ is a semisimple pre-Tannakian category; it has finitely many irreducibles provided $p \ge \text{Coxeter number } h(G)$ of G (e.g. $h(SL_n) = n$).

Example

 $\operatorname{Ver}_p := \operatorname{Ver}(SL_2).$

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. $G = SL_n$. Let $\mathcal{T} = \{\text{tilting } G-\text{modules}\}$. Then $Ver(G) := \overline{\mathcal{T}}$ is a semisimple pre-Tannakian category; it has finitely many irreducibles provided $p \ge \text{Coxeter number } h(G)$ of G (e.g. $h(SL_n) = n$).

Example

 $Ver_p := Ver(SL_2).$ Simple objects $L_1 = 1, L_2, \dots, L_{p-1}.$

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. $G = SL_n$. Let $\mathcal{T} = \{\text{tilting } G-\text{modules}\}$. Then $Ver(G) := \overline{\mathcal{T}}$ is a semisimple pre-Tannakian category; it has finitely many irreducibles provided $p \ge \text{Coxeter number } h(G)$ of G (e.g. $h(SL_n) = n$).

Example

 $Ver_{p} := Ver(SL_{2}).$ Simple objects $L_{1} = 1, L_{2}, \dots, L_{p-1}.$ $L_{2} \otimes L_{i} = L_{i-1} \oplus L_{i+1}$ with convention $L_{0} = L_{p} = 0.$

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. $G = SL_n$. Let $\mathcal{T} = \{\text{tilting } G-\text{modules}\}$. Then $Ver(G) := \overline{\mathcal{T}}$ is a semisimple pre-Tannakian category; it has finitely many irreducibles provided $p \ge \text{Coxeter number } h(G)$ of G (e.g. $h(SL_n) = n$).

Example

 $\begin{array}{l} \operatorname{Ver}_{p} := \operatorname{Ver}(SL_{2}).\\ \text{Simple objects } L_{1} = \mathbf{1}, L_{2}, \ldots, L_{p-1}.\\ L_{2} \otimes L_{i} = L_{i-1} \oplus L_{i+1} \text{ with convention } L_{0} = L_{p} = 0.\\ \text{This implies: } L_{p-1} \otimes L_{p-1} = \mathbf{1} \text{ and } \langle \mathbf{1}, L_{p-1} \rangle = \operatorname{sVec for } p > 2. \end{array}$

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. $G = SL_n$. Let $\mathcal{T} = \{\text{tilting } G-\text{modules}\}$. Then $Ver(G) := \overline{\mathcal{T}}$ is a semisimple pre-Tannakian category; it has finitely many irreducibles provided $p \ge \text{Coxeter number } h(G)$ of G (e.g. $h(SL_n) = n$).

Example

 $\begin{array}{l} \operatorname{Ver}_{p} := \operatorname{Ver}(SL_{2}).\\ \text{Simple objects } L_{1} = \mathbf{1}, L_{2}, \ldots, L_{p-1}.\\ L_{2} \otimes L_{i} = L_{i-1} \oplus L_{i+1} \text{ with convention } L_{0} = L_{p} = 0.\\ \text{This implies: } L_{p-1} \otimes L_{p-1} = \mathbf{1} \text{ and } \langle \mathbf{1}, L_{p-1} \rangle = \operatorname{sVec for } p > 2.\\ \text{For } p = 5: \ L_{3} \otimes L_{3} = \mathbf{1} \oplus L_{3} \text{ spans the Fibonacci category Fib.} \end{array}$

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. $G = SL_n$. Let $\mathcal{T} = \{\text{tilting } G-\text{modules}\}$. Then $Ver(G) := \overline{\mathcal{T}}$ is a semisimple pre-Tannakian category; it has finitely many irreducibles provided $p \ge \text{Coxeter number } h(G)$ of G (e.g. $h(SL_n) = n$).

Example

Ver_p := Ver(*SL*₂). Simple objects $L_1 = 1, L_2, ..., L_{p-1}$. $L_2 \otimes L_i = L_{i-1} \oplus L_{i+1}$ with convention $L_0 = L_p = 0$. This implies: $L_{p-1} \otimes L_{p-1} = 1$ and $\langle 1, L_{p-1} \rangle =$ sVec for p > 2. For p = 5: $L_3 \otimes L_3 = 1 \oplus L_3$ spans the Fibonacci category Fib. Ver₂ = Vec; Ver₃ = sVec; Ver₅ = Fib \boxtimes sVec.

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. $G = SL_n$. Let $\mathcal{T} = \{\text{tilting } G-\text{modules}\}$. Then $Ver(G) := \overline{\mathcal{T}}$ is a semisimple pre-Tannakian category; it has finitely many irreducibles provided $p \ge \text{Coxeter number } h(G)$ of G (e.g. $h(SL_n) = n$).

Example

 $\begin{array}{l} \operatorname{Ver}_{p} := \operatorname{Ver}(SL_{2}).\\ \text{Simple objects } L_{1} = \mathbf{1}, L_{2}, \ldots, L_{p-1}.\\ L_{2} \otimes L_{i} = L_{i-1} \oplus L_{i+1} \text{ with convention } L_{0} = L_{p} = 0.\\ \text{This implies: } L_{p-1} \otimes L_{p-1} = \mathbf{1} \text{ and } \langle \mathbf{1}, L_{p-1} \rangle = \operatorname{sVec} \text{ for } p > 2.\\ \text{For } p = 5: \ L_{3} \otimes L_{3} = \mathbf{1} \oplus L_{3} \text{ spans the Fibonacci category Fib.}\\ \text{Ver}_{2} = \operatorname{Vec}; \ \operatorname{Ver}_{3} = \operatorname{sVec}; \ \operatorname{Ver}_{5} = \operatorname{Fib} \boxtimes \operatorname{sVec}. \text{ More generally, for } p > 2\\ \text{Ver}_{p} = \operatorname{Ver}_{p}^{+} \boxtimes \operatorname{sVec}, \text{ where } \operatorname{Ver}_{p}^{+} \subset \operatorname{Ver}_{p} \text{ is spanned by } L_{i} \text{ with odd } i. \end{array}$

Alternatively Ver_p = semisimplification of $\operatorname{Rep}(\mathbb{Z}/p)$.

Alternatively Ver_{p} = semisimplification of $\operatorname{Rep}(\mathbb{Z}/p)$. **Fact:** the category Ver_{p} is incompressible, and so are its tensor subcategories Vec , sVec , $\operatorname{Ver}_{p}^{+}$.
Alternatively Ver_{p} = semisimplification of $\operatorname{Rep}(\mathbb{Z}/p)$. **Fact:** the category Ver_{p} is incompressible, and so are its tensor subcategories Vec , sVec , $\operatorname{Ver}_{p}^{+}$.

Theorem (Ostrik, 2015)

For any pre-Tannakian C which is semisimple with finitely many irreducibles (i.e., a fusion category) there exists an exact \otimes functor $C \rightarrow Ver_p$. In particular, theonly incompressible pre-Tannakian fusion categories are Ver_p and its tensor subcategories.

Alternatively Ver_{p} = semisimplification of $\operatorname{Rep}(\mathbb{Z}/p)$. **Fact:** the category Ver_{p} is incompressible, and so are its tensor subcategories Vec , sVec , $\operatorname{Ver}_{p}^{+}$.

Theorem (Ostrik, 2015)

For any pre-Tannakian C which is semisimple with finitely many irreducibles (i.e., a fusion category) there exists an exact \otimes functor $C \rightarrow Ver_p$. In particular, theonly incompressible pre-Tannakian fusion categories are Ver_p and its tensor subcategories.

Conjecture: These are the only semisimple incompressible pre-Tannakian categories (at least of sub-exponential growth).

Alternatively Ver_{p} = semisimplification of $\operatorname{Rep}(\mathbb{Z}/p)$. **Fact:** the category Ver_{p} is incompressible, and so are its tensor subcategories Vec , sVec , $\operatorname{Ver}_{p}^{+}$.

Theorem (Ostrik, 2015)

For any pre-Tannakian C which is semisimple with finitely many irreducibles (i.e., a fusion category) there exists an exact \otimes functor $C \rightarrow Ver_p$. In particular, theonly incompressible pre-Tannakian fusion categories are Ver_p and its tensor subcategories.

Conjecture: These are the only semisimple incompressible pre-Tannakian categories (at least of sub-exponential growth). What about non-semisimple examples?

Alternatively Ver_{p} = semisimplification of $\operatorname{Rep}(\mathbb{Z}/p)$. **Fact:** the category Ver_{p} is incompressible, and so are its tensor subcategories Vec , sVec , $\operatorname{Ver}_{p}^{+}$.

Theorem (Ostrik, 2015)

For any pre-Tannakian C which is semisimple with finitely many irreducibles (i.e., a fusion category) there exists an exact \otimes functor $C \rightarrow Ver_p$. In particular, theonly incompressible pre-Tannakian fusion categories are Ver_p and its tensor subcategories.

Conjecture: These are the only semisimple incompressible pre-Tannakian categories (at least of sub-exponential growth). What about non-semisimple examples?

Example

For p = 2 S. Venkatesh constructed an example \mathcal{V} by modifying the commutativity constraint in Rep(" $\mathbb{Z}/2$ ")

Alternatively Ver_{p} = semisimplification of $\operatorname{Rep}(\mathbb{Z}/p)$. **Fact:** the category Ver_{p} is incompressible, and so are its tensor subcategories Vec , sVec , $\operatorname{Ver}_{p}^{+}$.

Theorem (Ostrik, 2015)

For any pre-Tannakian C which is semisimple with finitely many irreducibles (i.e., a fusion category) there exists an exact \otimes functor $C \rightarrow Ver_p$. In particular, theonly incompressible pre-Tannakian fusion categories are Ver_p and its tensor subcategories.

Conjecture: These are the only semisimple incompressible pre-Tannakian categories (at least of sub-exponential growth). What about non-semisimple examples?

Example

For p = 2 S. Venkatesh constructed an example \mathcal{V} by modifying the commutativity constraint in Rep(" $\mathbb{Z}/2$ ") " $\mathbb{Z}/2$ " = (\mathbb{G}_a)₁

Benson-E., 2018

For p = 2 there is a strictly increasing sequence of incompressible pre-Tannakian categories $C_0 = \text{Vec} \subset C_1 = \mathcal{V} \subset C_2 = \mathcal{T}(SL_2)/\mathcal{I}_2 \subset C_3 \subset \dots$

Benson-E., 2018

For p = 2 there is a strictly increasing sequence of incompressible pre-Tannakian categories $C_0 = \text{Vec} \subset C_1 = \mathcal{V} \subset C_2 = \mathcal{T}(SL_2)/\mathcal{I}_2 \subset C_3 \subset \dots$ Technology: Hopf algebras (in categories) and graded extensions.

Benson-E., 2018

For p = 2 there is a strictly increasing sequence of incompressible pre-Tannakian categories $C_0 = \text{Vec} \subset C_1 = \mathcal{V} \subset C_2 = \mathcal{T}(SL_2)/\mathcal{I}_2 \subset C_3 \subset \ldots$ Technology: Hopf algebras (in categories) and graded extensions. The category C_2 was previously constructed by Ostrik.

Let V be a tautological 2-dimensional representation of SL_2

Let V be a tautological 2-dimensional representation of SL_2 $\mathcal{T}(SL_2) := \text{additive} \otimes \text{category generated by } V.$

Let V be a tautological 2-dimensional representation of SL_2 $\mathcal{T}(SL_2) :=$ additive \otimes category generated by V. {indecomposables of $\mathcal{T}(SL_2)$ } = {indecomposable summands of $V^{\otimes n}$ }

Let V be a tautological 2-dimensional representation of SL_2 $\mathcal{T}(SL_2) :=$ additive \otimes category generated by V. {indecomposables of $\mathcal{T}(SL_2)$ } = {indecomposable summands of $V^{\otimes n}$ } Fact: indecomposables are classified by highest weight. Thus we have $T_0 = \mathbf{1}, T_1 = V, T_2, T_3, \dots$

Let V be a tautological 2-dimensional representation of SL_2 $\mathcal{T}(SL_2) :=$ additive \otimes category generated by V. {indecomposables of $\mathcal{T}(SL_2)$ } = {indecomposable summands of $V^{\otimes n}$ } Fact: indecomposables are classified by highest weight. Thus we have $T_0 = \mathbf{1}, T_1 = V, T_2, T_3, \dots$ Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, St_r = T_{p^r-1}, \dots$

Let V be a tautological 2-dimensional representation of SL_2 $\mathcal{T}(SL_2) :=$ additive \otimes category generated by V. {indecomposables of $\mathcal{T}(SL_2)$ } = {indecomposable summands of $V^{\otimes n}$ } Fact: indecomposables are classified by highest weight. Thus we have $T_0 = \mathbf{1}, T_1 = V, T_2, T_3, \dots$ Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, St_r = T_{p^r-1}, \dots$ Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$

Let V be a tautological 2-dimensional representation of SL_2 $\mathcal{T}(SL_2) :=$ additive \otimes category generated by V. {indecomposables of $\mathcal{T}(SL_2)$ } = {indecomposable summands of $V^{\otimes n}$ } Fact: indecomposables are classified by highest weight. Thus we have $T_0 = \mathbf{1}, T_1 = V, T_2, T_3, \dots$ Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, St_r = T_{p^r-1}, \dots$ Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$ Each thick tensor ideal above gives a tensor ideal $\mathcal{I}_r: \mathcal{I}_0 \supset \mathcal{I}_1 \supset \mathcal{I}_2 \supset \dots$

Let V be a tautological 2-dimensional representation of SL_2 $\mathcal{T}(SL_2) :=$ additive \otimes category generated by V. {indecomposables of $\mathcal{T}(SL_2)$ } = {indecomposable summands of $V^{\otimes n}$ } Fact: indecomposables are classified by highest weight. Thus we have $T_0 = \mathbf{1}, T_1 = V, T_2, T_3, \dots$ Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, St_r = T_{p^r-1}, \dots$ Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$ Each thick tensor ideal above gives a tensor ideal $\mathcal{I}_r: \mathcal{I}_0 \supset \mathcal{I}_1 \supset \mathcal{I}_2 \supset \dots$ Fact: Any nontrivial tensor ideal in $\mathcal{T}(SL_2)$ is one of \mathcal{I}_r .

Let V be a tautological 2-dimensional representation of SL_2 $\mathcal{T}(SL_2) :=$ additive \otimes category generated by V. {indecomposables of $\mathcal{T}(SL_2)$ } = {indecomposable summands of $V^{\otimes n}$ } Fact: indecomposables are classified by highest weight. Thus we have $T_0 = \mathbf{1}, T_1 = V, T_2, T_3, \dots$ Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, St_r = T_{p^r-1}, \dots$ Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$ Each thick tensor ideal above gives a tensor ideal $\mathcal{I}_r: \mathcal{I}_0 \supset \mathcal{I}_1 \supset \mathcal{I}_2 \supset \dots$ Fact: Any nontrivial tensor ideal in $\mathcal{T}(SL_2)$ is one of \mathcal{I}_r .

Quotients

Define
$$\mathcal{T}_{p,r} := \mathcal{T}(SL_2)/\mathcal{I}_r$$
, e.g. $\mathcal{T}_{p,1} = \operatorname{Ver}_p$.

Let V be a tautological 2-dimensional representation of SL_2 $\mathcal{T}(SL_2) :=$ additive \otimes category generated by V. {indecomposables of $\mathcal{T}(SL_2)$ } = {indecomposable summands of $V^{\otimes n}$ } Fact: indecomposables are classified by highest weight. Thus we have $T_0 = \mathbf{1}, T_1 = V, T_2, T_3, \dots$ Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, St_r = T_{p^r-1}, \dots$ Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$ Each thick tensor ideal above gives a tensor ideal $\mathcal{I}_r: \mathcal{I}_0 \supset \mathcal{I}_1 \supset \mathcal{I}_2 \supset \dots$ Fact: Any nontrivial tensor ideal in $\mathcal{T}(SL_2)$ is one of \mathcal{I}_r .

Quotients

Define $\mathcal{T}_{p,r} := \mathcal{T}(SL_2)/\mathcal{I}_r$, e.g. $\mathcal{T}_{p,1} = \text{Ver}_p$. $\mathcal{T}_{p,r}$ is non-semisimple and non-abelian for r > 1 (except r = 2 and p = 2).

Let V be a tautological 2-dimensional representation of SL_2 $\mathcal{T}(SL_2) :=$ additive \otimes category generated by V. {indecomposables of $\mathcal{T}(SL_2)$ } = {indecomposable summands of $V^{\otimes n}$ } Fact: indecomposables are classified by highest weight. Thus we have $T_0 = \mathbf{1}, T_1 = V, T_2, T_3, \dots$ Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, St_r = T_{p^r-1}, \dots$ Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$ Each thick tensor ideal above gives a tensor ideal $\mathcal{I}_r: \mathcal{I}_0 \supset \mathcal{I}_1 \supset \mathcal{I}_2 \supset \dots$ Fact: Any nontrivial tensor ideal in $\mathcal{T}(SL_2)$ is one of \mathcal{I}_r .

Quotients

Define $\mathcal{T}_{p,r} := \mathcal{T}(SL_2)/\mathcal{I}_r$, e.g. $\mathcal{T}_{p,1} = \operatorname{Ver}_p$. $\mathcal{T}_{p,r}$ is non-semisimple and non-abelian for r > 1 (except r = 2 and p = 2). $\mathcal{T}_{p,r}$ contains a tensor ideal $\mathcal{P}_{r-1} = \mathcal{I}_{r-1}/\mathcal{I}_r$.

Observation: (Benson-E., 2018): the category C_{2r} contains $\mathcal{T}_{2,r}$;

Observation: (Benson-E., 2018): the category C_{2r} contains $T_{2,r}$; { the ideal \mathcal{P}_{r-1} } = { subcategory of projective objects in C_{2r} }.

Observation: (Benson-E., 2018): the category C_{2r} contains $T_{2,r}$; { the ideal \mathcal{P}_{r-1} } = { subcategory of projective objects in C_{2r} }.

Theorem (Benson-E.-Ostrik, 2020)

There exists a unique pre-Tannakian category Ver_{p^n} containing $\mathcal{T}_{p,n}$ and such that \mathcal{P}_{n-1} coincides with the ideal of projective objects. The category Ver_{p^n} is incompressible.

The first statement was also independently proved by K. Coulembier.

Observation: (Benson-E., 2018): the category C_{2r} contains $\mathcal{T}_{2,r}$; { the ideal \mathcal{P}_{r-1} } = { subcategory of projective objects in C_{2r} }.

Theorem (Benson-E.-Ostrik, 2020)

There exists a unique pre-Tannakian category Ver_{p^n} containing $\mathcal{T}_{p,n}$ and such that \mathcal{P}_{n-1} coincides with the ideal of projective objects. The category Ver_{p^n} is incompressible.

The first statement was also independently proved by K. Coulembier.

Split morphisms

A morphism $f : X \to Y$ (in an additive category) is split if it is a projection to a direct summand followed by an inclusion of a direct summand.

Observation: (Benson-E., 2018): the category C_{2r} contains $T_{2,r}$; { the ideal \mathcal{P}_{r-1} } = { subcategory of projective objects in C_{2r} }.

Theorem (Benson-E.-Ostrik, 2020)

There exists a unique pre-Tannakian category Ver_{p^n} containing $\mathcal{T}_{p,n}$ and such that \mathcal{P}_{n-1} coincides with the ideal of projective objects. The category Ver_{p^n} is incompressible.

The first statement was also independently proved by K. Coulembier.

Split morphisms

A morphism $f : X \to Y$ (in an additive category) is split if it is a projection to a direct summand followed by an inclusion of a direct summand.

Example. If X and Y are indecomposable, f is split \Leftrightarrow f is an isomorphism or f = 0.

Observation: (Benson-E., 2018): the category C_{2r} contains $\mathcal{T}_{2,r}$; { the ideal \mathcal{P}_{r-1} } = { subcategory of projective objects in C_{2r} }.

Theorem (Benson-E.-Ostrik, 2020)

There exists a unique pre-Tannakian category Ver_{p^n} containing $\mathcal{T}_{p,n}$ and such that \mathcal{P}_{n-1} coincides with the ideal of projective objects. The category Ver_{p^n} is incompressible.

The first statement was also independently proved by K. Coulembier.

Split morphisms

A morphism $f : X \to Y$ (in an additive category) is split if it is a projection to a direct summand followed by an inclusion of a direct summand.

Example. If X and Y are indecomposable, f is split \Leftrightarrow f is an isomorphism or f = 0.

Exercise. Let *P* be a projective object and $f : X \to Y$ be any morphism. Then $id_P \otimes f : P \otimes X \to P \otimes Y$ is split.

Let \mathcal{T} be a rigid (symmetric) monoidal category (perhaps non-abelian), dim Hom $(X, Y) < \infty$.

Let \mathcal{T} be a rigid (symmetric) monoidal category (perhaps non-abelian), dim Hom $(X, Y) < \infty$. Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal. Assume that \mathcal{P} is faithful, i.e., any morphism f s.t. $\mathrm{id}_P \otimes f = 0$ for any $P \in \mathcal{P}$ is zero.

Let \mathcal{T} be a rigid (symmetric) monoidal category (perhaps non-abelian), dim Hom $(X, Y) < \infty$. Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal. Assume that \mathcal{P} is faithful, i.e., any morphism f s.t. $id_P \otimes f = 0$ for any $P \in \mathcal{P}$ is zero. We say that \mathcal{P} is a splitting ideal if for any morphism $f : X \to Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $id_P \otimes f$ is split.

Let \mathcal{T} be a rigid (symmetric) monoidal category (perhaps non-abelian), dim Hom $(X, Y) < \infty$. Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal. Assume that \mathcal{P} is faithful, i.e., any morphism f s.t. $id_P \otimes f = 0$ for any $P \in \mathcal{P}$ is zero. We say that \mathcal{P} is a splitting ideal if for any morphism $f : X \to Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $id_P \otimes f$ is split.

General construction

Given a splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above, we construct an abelian rigid tensor category $\mathcal{C} \supset \mathcal{T}$ such that \mathcal{P} is the subcategory of projective objects.

Let \mathcal{T} be a rigid (symmetric) monoidal category (perhaps non-abelian), dim Hom $(X, Y) < \infty$. Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal. Assume that \mathcal{P} is faithful, i.e., any morphism f s.t. $id_P \otimes f = 0$ for any $P \in \mathcal{P}$ is zero. We say that \mathcal{P} is a splitting ideal if for any morphism $f : X \to Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $id_P \otimes f$ is split.

General construction

Given a splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above, we construct an abelian rigid tensor category $\mathcal{C} \supset \mathcal{T}$ such that \mathcal{P} is the subcategory of projective objects. **Hint** on the construction of \mathcal{C} : consider complexes of objects of \mathcal{P} finite in the positive direction.

Let \mathcal{T} be a rigid (symmetric) monoidal category (perhaps non-abelian), dim Hom $(X, Y) < \infty$. Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal. Assume that \mathcal{P} is faithful, i.e., any morphism f s.t. $id_P \otimes f = 0$ for any $P \in \mathcal{P}$ is zero. We say that \mathcal{P} is a splitting ideal if for any morphism $f : X \to Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $id_P \otimes f$ is split.

General construction

Given a splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above, we construct an abelian rigid tensor category $\mathcal{C} \supset \mathcal{T}$ such that \mathcal{P} is the subcategory of projective objects. **Hint** on the construction of \mathcal{C} : consider complexes of objects of \mathcal{P} finite in the positive direction.

Some challenges: What is the unit object of C?

Let \mathcal{T} be a rigid (symmetric) monoidal category (perhaps non-abelian), dim Hom $(X, Y) < \infty$. Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal. Assume that \mathcal{P} is faithful, i.e., any morphism f s.t. $id_P \otimes f = 0$ for any $P \in \mathcal{P}$ is zero. We say that \mathcal{P} is a splitting ideal if for any morphism $f : X \to Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $id_P \otimes f$ is split.

General construction

Given a splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above, we construct an abelian rigid tensor category $\mathcal{C} \supset \mathcal{T}$ such that \mathcal{P} is the subcategory of projective objects. **Hint** on the construction of \mathcal{C} : consider complexes of objects of \mathcal{P} finite in the positive direction.

Some challenges: What is the unit object of C? Why is C is rigid?

Let \mathcal{T} be a rigid (symmetric) monoidal category (perhaps non-abelian), dim Hom $(X, Y) < \infty$. Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal. Assume that \mathcal{P} is faithful, i.e., any morphism f s.t. $\mathrm{id}_P \otimes f = 0$ for any $P \in \mathcal{P}$ is zero. We say that \mathcal{P} is a splitting ideal if for any morphism $f : X \to Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $\mathrm{id}_P \otimes f$ is split.

General construction

Given a splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above, we construct an abelian rigid tensor category $\mathcal{C} \supset \mathcal{T}$ such that \mathcal{P} is the subcategory of projective objects. **Hint** on the construction of \mathcal{C} : consider complexes of objects of \mathcal{P} finite in the positive direction.

Some challenges: What is the unit object of C? Why is C is rigid?

Key Lemma

The ideal $\mathcal{P}_{n-1} \subset \mathcal{T}_{p,n}$ is splitting.

Let \mathcal{T} be a rigid (symmetric) monoidal category (perhaps non-abelian), dim Hom $(X, Y) < \infty$. Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal. Assume that \mathcal{P} is faithful, i.e., any morphism f s.t. $id_P \otimes f = 0$ for any $P \in \mathcal{P}$ is zero. We say that \mathcal{P} is a splitting ideal if for any morphism $f : X \to Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $id_P \otimes f$ is split.

General construction

Given a splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above, we construct an abelian rigid tensor category $\mathcal{C} \supset \mathcal{T}$ such that \mathcal{P} is the subcategory of projective objects. **Hint** on the construction of \mathcal{C} : consider complexes of objects of \mathcal{P} finite in the positive direction.

Some challenges: What is the unit object of C? Why is C is rigid?

Key Lemma

The ideal $\mathcal{P}_{n-1} \subset \mathcal{T}_{p,n}$ is splitting.

Wanted: more examples of splitting tensor ideals!

Pavel Etingof (MIT)
Properties of Ver_{pⁿ}

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \le i < p^n - 1$; $\# = p^{n-1}(p-1)$.

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \le i < p^n - 1$; $\# = p^{n-1}(p-1)$. We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits $(i_1 \ne 0!)$

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \le i < p^n - 1$; $\# = p^{n-1}(p-1)$. We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely *n* digits $(i_1 \ne 0!)$ The Cartan matrix $C_{ij} := \dim \operatorname{Hom}(P_i, P_j)$.

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \le i < p^n - 1$; $\# = p^{n-1}(p-1)$. We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits $(i_1 \ne 0!)$ The Cartan matrix $C_{ij} := \dim \operatorname{Hom}(P_i, P_j)$. Negative digits game: make some digits negative. $[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$. Descendants of i: all positive numbers you get in this way. E.g. $[23045]_p$ has $2^3 = 8$ descendants.

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \le i < p^n - 1$; $\# = p^{n-1}(p-1)$. We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits $(i_1 \ne 0!)$ The Cartan matrix $C_{ij} := \dim \operatorname{Hom}(P_i, P_j)$. Negative digits game: make some digits negative. $[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$. Descendants of i: all positive numbers you get in this way. E.g. $[23045]_p$ has $2^3 = 8$ descendants. Tubbenhauer-Wedrich: $C_{ij} = |\{\operatorname{descendants of } i\} \cap \{\operatorname{descendants of } j\}|$.

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \le i < p^n - 1$; $\# = p^{n-1}(p-1)$. We set $P_i = T_{i-1}$ where $i = [i_1i_2 \dots i_n]_p$ has precisely n digits $(i_1 \ne 0!)$ The Cartan matrix $C_{ij} := \dim \operatorname{Hom}(P_i, P_j)$. Negative digits game: make some digits negative. $[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$. Descendants of i: all positive numbers you get in this way. E.g. $[23045]_p$ has $2^3 = 8$ descendants. Tubbenhauer-Wedrich: $C_{ij} = |\{\operatorname{descendants of } i\} \cap \{\operatorname{descendants of } j\}|$. Exercise: $C_{ij} = 0$ or power of 2.

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \le i < p^n - 1$; $\# = p^{n-1}(p-1)$. We set $P_i = T_{i-1}$ where $i = [i_1i_2...i_n]_p$ has precisely n digits $(i_1 \ne 0!)$ The Cartan matrix $C_{ij} := \dim \operatorname{Hom}(P_i, P_j)$. Negative digits game: make some digits negative. $[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$. Descendants of i: all positive numbers you get in this way. E.g. $[23045]_p$ has $2^3 = 8$ descendants. Tubbenhauer-Wedrich: $C_{ij} = |\{\operatorname{descendants of } i\} \cap \{\operatorname{descendants of } j\}|$. Exercise: $C_{ij} = 0$ or power of 2. Exercise: det $C_{ij} = \operatorname{power of } p$.

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \le i < p^n - 1$; $\# = p^{n-1}(p-1)$. We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely *n* digits $(i_1 \neq 0!)$ The Cartan matrix $C_{ii} := \dim \operatorname{Hom}(P_i, P_i)$. Negative digits game: make some digits negative. $[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5.$ Descendants of *i*: all positive numbers you get in this way. E.g. $[23045]_{p}$ has $2^{3} = 8$ descendants. **Tubbenhauer-Wedrich**: $C_{ii} = |\{\text{descendants of } i\} \cap \{\text{descendants of } j\}|.$ **Exercise:** $C_{ii} = 0$ or power of 2. **Exercise:** det C_{ii} = power of p.

Embeddings

We have $\operatorname{Ver}_p \subset \operatorname{Ver}_{p^2} \subset \operatorname{Ver}_{p^3} \subset \ldots$

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \le i < p^n - 1$; $\# = p^{n-1}(p-1)$. We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely *n* digits $(i_1 \neq 0!)$ The Cartan matrix $C_{ii} := \dim \operatorname{Hom}(P_i, P_i)$. Negative digits game: make some digits negative. $[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5.$ Descendants of *i*: all positive numbers you get in this way. E.g. $[23045]_{p}$ has $2^{3} = 8$ descendants. **Tubbenhauer-Wedrich**: $C_{ii} = |\{\text{descendants of } i\} \cap \{\text{descendants of } j\}|.$ **Exercise:** $C_{ii} = 0$ or power of 2. **Exercise:** det C_{ii} = power of p.

Embeddings

We have $\operatorname{Ver}_p \subset \operatorname{Ver}_{p^2} \subset \operatorname{Ver}_{p^3} \subset \ldots$ For p > 2, $\operatorname{Ver}_{p^n} = \operatorname{Ver}_{p^n}^+ \boxtimes \operatorname{sVec}$.

Grothendieck ring (p > 2)

Grothendieck ring (p > 2)

 $K(\operatorname{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}].$ where ξ is a primitive p^n -th root of 1

Grothendieck ring (p > 2)

$$\begin{split} & \mathcal{K}(\mathsf{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]. \text{ where } \xi \text{ is a primitive } p^n - \mathsf{th root of } 1 \\ & \mathcal{K}(\mathsf{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]. \end{split}$$

Grothendieck ring (p > 2)

$$\begin{split} & \mathcal{K}(\mathsf{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]. \text{ where } \xi \text{ is a primitive } p^n - \mathsf{th root of } 1 \\ & \mathcal{K}(\mathsf{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]. \end{split}$$

Simples

Some simples: $T_0 = \mathbf{1}, T_1, \dots, T_{p-1}$ are simples $T_i^{[n]}$ in $\operatorname{Ver}_{p^n}(n > 1)$

$$\begin{split} & \mathcal{K}(\mathsf{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]. \text{ where } \xi \text{ is a primitive } p^n - \mathsf{th root of } 1 \\ & \mathcal{K}(\mathsf{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]. \end{split}$$

Simples

Some simples: $T_0 = \mathbf{1}, T_1, \dots, T_{p-1}$ are simples $T_i^{[n]}$ in $\operatorname{Ver}_{p^n}(n > 1)$ Tensor Product Theorem: for $i = [i_1 \dots i_n]_p$ with $i_1 \neq p - 1$. $L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list).

$$\begin{split} & \mathcal{K}(\mathsf{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]. \text{ where } \xi \text{ is a primitive } p^n - \mathsf{th root of } 1 \\ & \mathcal{K}(\mathsf{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]. \end{split}$$

Simples

Some simples: $T_0 = \mathbf{1}, T_1, \ldots, T_{p-1}$ are simples $T_i^{[n]}$ in $\operatorname{Ver}_{p^n}(n > 1)$ Tensor Product Theorem: for $i = [i_1 \ldots i_n]_p$ with $i_1 \neq p - 1$. $L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \ldots T_{i_n}^{[n]}$ is simple (and this is a complete list). $P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \ldots i_n^*]$ where $i^* = p - 1 - i$.

$$\begin{split} & \mathcal{K}(\mathsf{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]. \text{ where } \xi \text{ is a primitive } p^n - \mathsf{th root of } 1 \\ & \mathcal{K}(\mathsf{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]. \end{split}$$

Simples

Some simples: $T_0 = \mathbf{1}, T_1, \ldots, T_{p-1}$ are simples $T_i^{[n]}$ in $\operatorname{Ver}_{p^n}(n > 1)$ Tensor Product Theorem: for $i = [i_1 \ldots i_n]_p$ with $i_1 \neq p-1$. $L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \ldots T_{i_n}^{[n]}$ is simple (and this is a complete list). $P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \ldots i_n^*]$ where $i^* = p - 1 - i$. Extensions (p > 2): $\operatorname{Ext}^1(L_i, L_j) = 0$ or k.

$$\begin{split} & \mathcal{K}(\mathsf{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]. \text{ where } \xi \text{ is a primitive } p^n - \mathsf{th root of } 1 \\ & \mathcal{K}(\mathsf{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]. \end{split}$$

Simples

Some simples: $T_0 = 1, T_1, ..., T_{p-1}$ are simples $T_i^{[n]}$ in $\operatorname{Ver}_{p^n}(n > 1)$ Tensor Product Theorem: for $i = [i_1 \dots i_n]_p$ with $i_1 \neq p-1$. $L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list). $P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p - 1 - i$. Extensions (p > 2): $\operatorname{Ext}^1(L_i, L_j) = 0$ or k. $\operatorname{Ext}^1(L_i, L_j) \neq 0 \Leftrightarrow i$ and j differ only in two consecutive digits, of which the first ones differ by 1 and the second ones add up to p - 2.

$$\begin{split} & \mathcal{K}(\mathsf{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]. \text{ where } \xi \text{ is a primitive } p^n - \mathsf{th root of } 1 \\ & \mathcal{K}(\mathsf{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]. \end{split}$$

Simples

Some simples: $T_0 = 1, T_1, ..., T_{p-1}$ are simples $T_i^{[n]}$ in $\operatorname{Ver}_{p^n}(n > 1)$ Tensor Product Theorem: for $i = [i_1 \dots i_n]_p$ with $i_1 \neq p-1$. $L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list). $P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p - 1 - i$. Extensions (p > 2): $\operatorname{Ext}^1(L_i, L_j) = 0$ or k. $\operatorname{Ext}^1(L_i, L_j) \neq 0 \Leftrightarrow i$ and j differ only in two consecutive digits, of which the first ones differ by 1 and the second ones add up to p - 2. Blocks: n(p-1) of them of sizes $1, p - 1, p^2 - p, \dots, p^{n-1} - p^{n-2}$.

$$\begin{split} & \mathcal{K}(\mathsf{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]. \text{ where } \xi \text{ is a primitive } p^n - \mathsf{th root of } 1 \\ & \mathcal{K}(\mathsf{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]. \end{split}$$

Simples

Some simples: $T_0 = 1, T_1, ..., T_{p-1}$ are simples $T_i^{[n]}$ in $\operatorname{Ver}_{p^n} (n > 1)$ Tensor Product Theorem: for $i = [i_1 \dots i_n]_p$ with $i_1 \neq p - 1$. $L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list). $P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p - 1 - i$. Extensions (p > 2): $\operatorname{Ext}^1(L_i, L_j) = 0$ or k. $\operatorname{Ext}^1(L_i, L_j) \neq 0 \Leftrightarrow i$ and j differ only in two consecutive digits, of which the first ones differ by 1 and the second ones add up to p - 2. Blocks: n(p-1) of them of sizes $1, p - 1, p^2 - p, \dots, p^{n-1} - p^{n-2}$. Ver_{p^n} is a mod p reduction of a semisimple category in char. zero.

$$\begin{split} & \mathcal{K}(\mathsf{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]. \text{ where } \xi \text{ is a primitive } p^n - \mathsf{th root of } 1 \\ & \mathcal{K}(\mathsf{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]. \end{split}$$

Simples

Some simples: $T_0 = \mathbf{1}, T_1, \dots, T_{p-1}$ are simples $T_i^{[n]}$ in $\operatorname{Ver}_{p^n}(n > 1)$ Tensor Product Theorem: for $i = [i_1 \dots i_n]_p$ with $i_1 \neq p - 1$. $L_i = T_{i_i}^{[1]} \otimes T_{i_i}^{[2]} \dots T_{i_i}^{[n]}$ is simple (and this is a complete list). $P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p - 1 - i$. Extensions (p > 2): Ext¹ $(L_i, L_i) = 0$ or k. $Ext^{1}(L_{i}, L_{i}) \neq 0 \Leftrightarrow i$ and j differ only in two consecutive digits, of which the first ones differ by 1 and the second ones add up to p - 2. Blocks: n(p-1) of them of sizes $1, p-1, p^2 - p, \dots, p^{n-1} - p^{n-2}$. Ver_{p^n} is a mod p reduction of a semisimple category in char. zero. **Corollary:** $C = DD^{T}$ where D is the decomposition matrix.

Universal property of Ver_{p^n}

When $\wedge^2 X = 1$?

Pavel Etingof (MIT)

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$.

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$. Then (C, X) is one of the following:

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$. Then (C, X) is one of the following: • $C = \operatorname{Rep}(\Gamma)$ where $\Gamma \subset SL_2 = SL(X)$;

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$. Then (C, X) is one of the following: • $C = \operatorname{Rep}(\Gamma)$ where $\Gamma \subset SL_2 = SL(X)$; • $C = \operatorname{Ver}_{p^n}$ (for $p^n > 2$), $X = T_1$;

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$. Then (C, X) is one of the following: • $C = \operatorname{Rep}(\Gamma)$ where $\Gamma \subset SL_2 = SL(X)$; • $C = \operatorname{Ver}_{p^n}$ (for $p^n > 2$), $X = T_1$; • $C = \operatorname{sVec}$, $X - \operatorname{odd}$ line $(p \neq 2, 3)$.

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$. Then (C, X) is one of the following: • $C = \operatorname{Rep}(\Gamma)$ where $\Gamma \subset SL_2 = SL(X)$; • $C = \operatorname{Ver}_{p^n}$ (for $p^n > 2$), $X = T_1$;

• C = sVec, X - odd line $(p \neq 2, 3)$.

Representation type

 Ver_{p^n} is of finite representation type if $n \leq 2$.

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$. Then (C, X) is one of the following: • $C = \operatorname{Rep}(\Gamma)$ where $\Gamma \subset SL_2 = SL(X)$; • $C = \operatorname{Ver}_{p^n}$ (for $p^n > 2$), $X = T_1$; • $C = \operatorname{sVec}$, $X - \operatorname{odd}$ line $(p \neq 2, 3)$.

Representation type

 Ver_{p^n} is of finite representation type if $n \leq 2$. Thus the semisimplification $\overline{\operatorname{Ver}_{p^2}}$ is manageable.

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$. Then (C, X) is one of the following: • $C = \operatorname{Rep}(\Gamma)$ where $\Gamma \subset SL_2 = SL(X)$; • $C = \operatorname{Ver}_{p^n}$ (for $p^n > 2$), $X = T_1$;

• C = sVec, X - odd line $(p \neq 2, 3)$.

Representation type

 $\begin{array}{l} \operatorname{Ver}_{p^n} \text{ is of finite representation type if } n \leq 2. \\ \operatorname{Thus} \text{ the semisimplification } \overline{\operatorname{Ver}_{p^2}} \text{ is manageable.} \\ \overline{\operatorname{Ver}_{p^2}} = (\operatorname{Ver}_p \boxtimes \operatorname{Ver}_p \boxtimes \operatorname{Rep}(\mathbb{Z}_{2p-2}, z))_{\mathbb{Z}_2}. \ \leftarrow \ \text{de-equivariantization} \end{array}$

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$. Then (C, X) is one of the following: • $C = \operatorname{Rep}(\Gamma)$ where $\Gamma \subset SL_2 = SL(X)$; • $C = \operatorname{Ver}_{p^n}$ (for $p^n > 2$), $X = T_1$;

• C = sVec, X - odd line $(p \neq 2, 3)$.

Representation type

 $\begin{array}{l} \operatorname{Ver}_{p^n} \text{ is of finite representation type if } n \leq 2.\\ \operatorname{Thus the semisimplification } \overline{\operatorname{Ver}_{p^2}} \text{ is manageable.}\\ \overline{\operatorname{Ver}_{p^2}} = (\operatorname{Ver}_p \boxtimes \operatorname{Ver}_p \boxtimes \operatorname{Rep}(\mathbb{Z}_{2p-2}, z))_{\mathbb{Z}_2}. \leftarrow \operatorname{de-equivariantization}\\ \operatorname{Here } \operatorname{Ver}_p \boxtimes \operatorname{Ver}_p \text{ comes from the simple objects of } \operatorname{Ver}_{p^2}. \end{array}$

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$. Then (C, X) is one of the following: • $C = \operatorname{Rep}(\Gamma)$ where $\Gamma \subset SL_2 = SL(X)$; • $C = \operatorname{Ver}_{p^n}$ (for $p^n > 2$), $X = T_1$;

• $C = \text{sVec}, X - \text{odd line } (p \neq 2, 3).$

Representation type

$$\begin{split} & \operatorname{Ver}_{p^n} \text{ is of finite representation type if } n \leq 2. \\ & \operatorname{Thus the semisimplification } \overline{\operatorname{Ver}_{p^2}} \text{ is manageable.} \\ & \overline{\operatorname{Ver}_{p^2}} = (\operatorname{Ver}_p \boxtimes \operatorname{Ver}_p \boxtimes \operatorname{Rep}(\mathbb{Z}_{2p-2}, z))_{\mathbb{Z}_2}. \leftarrow \text{de-equivariantization} \\ & \operatorname{Here } \operatorname{Ver}_p \boxtimes \operatorname{Ver}_p \text{ comes from the simple objects of } \operatorname{Ver}_{p^2}. \\ & \operatorname{Rep}(\mathbb{Z}_{2p-2}, z) \text{ comes from Heller shift of } \mathbf{1}. \end{split}$$

Assume C is generated by X such that $\wedge^2 X = \mathbf{1}$, i.e. any object of C is a subquotient of direct sums of $X^{\otimes n} \otimes (X^*)^{\otimes m}$. Then (C, X) is one of the following: • $C = \operatorname{Rep}(\Gamma)$ where $\Gamma \subset SL_2 = SL(X)$; • $C = \operatorname{Ver}_{p^n}$ (for $p^n > 2$), $X = T_1$;

• C = sVec, X - odd line $(p \neq 2, 3)$.

Representation type

$$\begin{split} & \operatorname{Ver}_{p^n} \text{ is of finite representation type if } n \leq 2. \\ & \operatorname{Thus the semisimplification} \overline{\operatorname{Ver}_{p^2}} \text{ is manageable.} \\ & \overline{\operatorname{Ver}_{p^2}} = (\operatorname{Ver}_p \boxtimes \operatorname{Ver}_p \boxtimes \operatorname{Rep}(\mathbb{Z}_{2p-2}, z))_{\mathbb{Z}_2}. \leftarrow \text{de-equivariantization} \\ & \operatorname{Here} \operatorname{Ver}_p \boxtimes \operatorname{Ver}_p \text{ comes from the simple objects of } \operatorname{Ver}_{p^2}. \\ & \overline{\operatorname{Rep}}(\mathbb{Z}_{2p-2}, z) \text{ comes from Heller shift of } \mathbf{1}. \\ & \overline{\operatorname{Ver}_{p^n}} \text{ contains } \operatorname{Ver}_p^{\boxtimes n} \text{ generated by the simples.} \end{split}$$

Some open questions

Some open questions

Module categories

Question 1. What are exact module categories over Ver_{p^n} ?

Some open questions

Module categories

Question 1. What are exact module categories over Ver_{p^n} ?

Extensions

Question 2. What is $\text{Ext}_{\text{Ver}_{p^n}}^{\bullet}(1,1)$? (Work in progress with D. Benson containing a conjecture and partial proof).
Some open questions

Module categories

Question 1. What are exact module categories over Ver_{p^n} ?

Extensions

Question 2. What is $\text{Ext}_{\text{Ver}_{p^n}}^{\bullet}(1,1)$? (Work in progress with D. Benson containing a conjecture and partial proof).

More examples?

Question 3. Are there any other incompressible pre-Tannakian categories than tensor subcategories of $\operatorname{Ver}_{p^{\infty}} = \bigcup_{n} \operatorname{Ver}_{p^{n}}$? At least of sub-exponential growth?

Some open questions

Module categories

Question 1. What are exact module categories over Ver_{p^n} ?

Extensions

Question 2. What is $\text{Ext}_{\text{Ver}_{p^n}}^{\bullet}(1,1)$? (Work in progress with D. Benson containing a conjecture and partial proof).

More examples?

Question 3. Are there any other incompressible pre-Tannakian categories than tensor subcategories of $\operatorname{Ver}_{p^{\infty}} = \bigcup_{n} \operatorname{Ver}_{p^{n}}$? At least of sub-exponential growth?

Universality

Let C be a pre-Tannakian category of sub-exponential growth. Question 4. Is there an exact tensor functor $C \to \operatorname{Ver}_{p^{\infty}}$?

Pavel Etingof (MIT)

Thanks for listening!