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Representation categories

Base field: k = k.
Given a (finite) group G, we can form
Rep(G) = {finite dimensional representations of G}.

What kind of mathematical object is Rep(G)?

e Rep(G) is an abelian category;

e Rep(G) has a bifunctor ®;

e ¥ is associative, commutative < structures;

e we have the unit object 1 and duality X +— X* < properties of ® and
associativity;

e we have forgetful tensor functor Rep(G) — Vec.

Thus Rep(G) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec.
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Tannakian theory

Pre-Tannakian categories

A pre-Tannakian category is a k—linear rigid symmetric ® category C
satisfying

e C is abelian;

e dimHom(X,Y) < oc;

e length(X) < oo;

e 1 is simple.

Definition

Fiber functor: exact symmetric ® functor F : C — Vec.
C is Tannakian if it is pre-Tannakian and has a fiber functor.

Theorem (Grothendieck, Saavedra Rivano, Deligne-Milne)

Assume C is Tannakian. Then C = Rep(G) for some (unique) affine group
scheme G. Namely, G = Autg(F).

v
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Tannakian (char(k) # 2).
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Question: What are the pre-Tannakian categories which can't be
expressed in terms of “group theory” in smaller categories?
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Question: What are the pre-Tannakian categories which can't be
expressed in terms of “group theory” in smaller categories? Equivalently,
which pre-Tannakian categories do not admit exact ® functors to smaller
categories?
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Incompressible categories

Surjective functors

An exact ® functor F : C — D is surjective if any object of D is a
subquotient of F(X).
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Incompressible categories

Surjective functors

An exact ® functor F : C — D is surjective if any object of D is a
subquotient of F(X).

Any such functor F : C — D factorizes as C — Im(F) — D where

C — Im(F) is surjective and Im(F) — D is a fully faithful embedding.

A pre-Tannakian C is incompressible if any surjective ® functor F : C — D
is an equivalence for any pre-Tannakian D.

v

Equivalently, C is incompressible if any exact ® functor F : C — D is an
embedding.

Vec sVec

Any more examples?
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Characteristic zero

Definition

We say that C is of sub-exponential growth if for any X € C there is
ax € R such that length(X®") < a%.
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Characteristic zero

We say that C is of sub-exponential growth if for any X € C there is
ax € R such that length(X®") < a%.

Theorem (Deligne)

Assume char k = 0 and let C be pre-Tannakian of sub-exponential growth.
Then C is super-Tannakian. In particular, Vec and sVec are the only
incompressible categories of sub-exponential growth.

A,

Example

Deligne categories Rep(GL;), Rep(O;), Rep(St) (t € k) are of
super-exponential growth.

They typically admit surjective functors like Rep(S;) — Rep(S;—1), so are
not incompressible.

N\

Conjecture: No more incompressible categories in characteristic zero.
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We say that f : X — Y is negligible if for any g : Y — X we have
Tr(fg) = 0.

Negligible morphisms form a ® ideal N.

Define T the same objects as in 7 but Hom=—=(X, Y) = Homy(X, Y)/N.

T is again a rigid symmetric monoidal category.

Theorem (U. Jannsen)

Assume dim Hom(X, Y) < oo and any nilpotent endomorphism in T has
trace zero. Then T is semisimple (and so abelian). Moreover

Irreducibles of T <> Indecomposables of T of nonzero dimension.
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Let 7 be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that f : X — Y is negligible if for any g : Y — X we have
Tr(fg) = 0.

Negligible morphisms form a ® ideal N.

Define T the same objects as in 7 but Hom=—=(X, Y) = Homy(X, Y)/N.

T is again a rigid symmetric monoidal category.

Theorem (U. Jannsen)

Assume dim Hom(X, Y) < oo and any nilpotent endomorphism in T has
trace zero. Then T is semisimple (and so abelian). Moreover

Irreducibles of T <> Indecomposables of T of nonzero dimension.

Remark: assume F : 7 — C is a ® functor to abelian C. Then any
nilpotent endomorphism in 7 has trace zero.
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Semisimple Verlinde categories

Assume char k = p > 0.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 10 / 20



Semisimple Verlinde categories

Assume char k = p > 0.
S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. G = SL,,.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 10 / 20



Semisimple Verlinde categories

Assume char k = p > 0.
S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. G = SL,,. Let T = {tilting G—modules}.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 10 / 20



Semisimple Verlinde categories

Assume char k = p > 0.
S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. G = SL,,. Let T = {tilting G—modules}.
Then Ver(G) := T is a semisimple pre-Tannakian category; it has finitely
many irreducibles provided p > Coxeter number h(G) of G (e.g.

h(SL,) = n).
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Let G be a simple group, e.g. G = SL,,. Let T = {tilting G—modules}.
Then Ver(G) := T is a semisimple pre-Tannakian category; it has finitely
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Example
Ver, := Ver(SLy).

v
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Semisimple Verlinde categories

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. G = SL,,. Let T = {tilting G—modules}.
Then Ver(G) := T is a semisimple pre-Tannakian category; it has finitely
many irreducibles provided p > Coxeter number h(G) of G (e.g.

h(SL,) = n).

Example

Ver, := Ver(SLy).
Simple objects Ly =1,Lo,..., L, 1.

v

Pavel Etingof (MIT) Incompressible categories July 4, 2020 10 / 20



Semisimple Verlinde categories

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. G = SL,,. Let T = {tilting G—modules}.
Then Ver(G) := T is a semisimple pre-Tannakian category; it has finitely
many irreducibles provided p > Coxeter number h(G) of G (e.g.

h(SL,) = n).

Example
Ver, := Ver(SLy).
Simple objects Ly =1,Lo,..., L, 1.

Ly ® L= Lj—1 & Lj+1 with convention Lo = Lp =0.

v

Pavel Etingof (MIT) Incompressible categories July 4, 2020 10 / 20



Semisimple Verlinde categories

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. G = SL,,. Let T = {tilting G—modules}.
Then Ver(G) := T is a semisimple pre-Tannakian category; it has finitely
many irreducibles provided p > Coxeter number h(G) of G (e.g.
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Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. G = SL,,. Let T = {tilting G—modules}.
Then Ver(G) := T is a semisimple pre-Tannakian category; it has finitely
many irreducibles provided p > Coxeter number h(G) of G (e.g.

h(SL,) = n).

Example

Ver, := Ver(SLy).

Simple objects Ly =1,Lo,..., L, 1.

Ly ® L= Lj—1 & Lj+1 with convention Lo = Lp =0.

This implies: Lp—1 ® Lp—1 =1 and (1, L, 1) = sVec for p > 2.
For p=5: L3® L3 = 1@ L3 spans the Fibonacci category Fib.
Ver, = Vec; Vers = sVec; Vers = Fib XIsVec. More generally, for p > 2
Ver, = Ver| K sVec, where Ver} C Ver,, is spanned by L; with odd /.
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Alternatively Ver, = semisimplification of Rep(Z/p).
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irreducibles (i.e., a fusion category) there exists an exact ® functor
C — Very. In particular, theonly incompressible pre-Tannakian fusion
categories are Very, and its tensor subcategories.

Conjecture: These are the only semisimple incompressible pre-Tannakian
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For p =2 S. Venkatesh constructed an example V by modifying the
commutativity constraint in Rep("Z/2") "Z/2" = (G,)1
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Benson-E., 2018
For p = 2 there is a strictly increasing sequence of incompressible

pre-Tannakian categories
C():VecC61:VCC2:T(SL2)/IzCC3C
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Benson-E., 2018

For p = 2 there is a strictly increasing sequence of incompressible
pre-Tannakian categories
C():VecC61:VCC2:T(SL2)/IzCC3C

Technology: Hopf algebras (in categories) and graded extensions.
The category Cy was previously constructed by Ostrik.
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Fact: indecomposables are classified by highest weight. Thus we have
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Fact: Any nontrivial tensor ideal in 7(SLy) is one of Z,.
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Let V be a tautological 2-dimensional representation of SL;

T (SLy) := additive ® category generated by V.

{indecomposables of T(SLp)} = {indecomposable summands of V®"}
Fact: indecomposables are classified by highest weight. Thus we have
To=1,T1=V,T,, T3,....

Steinberg modules: To, Tp—1, Tp2_1,.-., Sty = Tpr—1,...
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Let V be a tautological 2-dimensional representation of SL;

T (SLy) := additive ® category generated by V.

{indecomposables of T(SLp)} = {indecomposable summands of V®"}
Fact: indecomposables are classified by highest weight. Thus we have
To=1,T1=V,T,, T3,....

Steinberg modules: Ty, Tp—1, sz_l, Sty = Tpreg, .

Each St, generates a (thick) tensor ideal P, = (Tpr—1, Tpr, Tprit,...)
Each thick tensor ideal above gives a tensor ideal Z,: Zo D71 D7, D ...
Fact: Any nontrivial tensor ideal in 7(SLy) is one of Z,. )
Define 7, := T(SL2)/Z;, e.g. Tp1 = Verp.

Tp,r is non-semisimple and non-abelian for r > 1 (except r =2 and p = 2).
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More on tilting modules for SL,

Let V be a tautological 2-dimensional representation of SL;

T (SLy) := additive ® category generated by V.

{indecomposables of T(SLp)} = {indecomposable summands of V®"}
Fact: indecomposables are classified by highest weight. Thus we have
To=1,T1=V,T,, T3,....

Steinberg modules: Ty, Tp—1, sz_l, Sty = Tpreg, .

Each St, generates a (thick) tensor ideal P, = (Tpr—1, Tpr, Tprit,...)
Each thick tensor ideal above gives a tensor ideal Z,: Zo D71 D7, D ...
Fact: Any nontrivial tensor ideal in 7(SLy) is one of Z,. )
Define 7, := T(SL2)/Z;, e.g. Tp1 = Verp.

Tp,r is non-semisimple and non-abelian for r > 1 (except r =2 and p = 2).
Tp,r contains a tensor ideal P,y =Z,_1/Z,.
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Theorem (Benson-E.-Ostrik, 2020)

There exists a unique pre-Tannakian category Ver,n containing T, , and
such that P,_1 coincides with the ideal of projective objects. The category
Veryn is incompressible.

The first statement was also independently proved by K. Coulembier.
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The first statement was also independently proved by K. Coulembier.

Split morphisms
A morphism f : X — Y (in an additive category) is split if it is a projection
to a direct summand followed by an inclusion of a direct summand.
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{ the ideal P,_1} = { subcategory of projective objects in Cp,}.

Theorem (Benson-E.-Ostrik, 2020)

There exists a unique pre-Tannakian category Ver,n containing T, , and
such that P,_1 coincides with the ideal of projective objects. The category
Veryn is incompressible.

The first statement was also independently proved by K. Coulembier.

Split morphisms

A morphism f : X — Y (in an additive category) is split if it is a projection
to a direct summand followed by an inclusion of a direct summand.

Example. If X and Y are indecomposable, f is split < f is an
isomorphism or f = 0.

Exercise. Let P be a projective object and f : X — Y be any morphism.
Thenidp®FfF: PR X — PR Y is split.
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Splitting ideals

Let 7 be a rigid (symmetric) monoidal category (perhaps non-abelian),
dimHom(X, Y) < oc.
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is faithful, i.e., any morphism f s.t. idp ® f = 0 for any P € P is zero.
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is faithful, i.e., any morphism f s.t. idp ® f = 0 for any P € P is zero.
We say that P is a splitting ideal if for any morphism f : X — Y in T and
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General construction

Given a splitting ideal P C T as above, we construct an abelian rigid
tensor category C O T such that P is the subcategory of projective objects.
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Splitting ideals

Let 7 be a rigid (symmetric) monoidal category (perhaps non-abelian),
dimHom(X, Y) < co. Let P C T be a thick tensor ideal. Assume that P
is faithful, i.e., any morphism f s.t. idp ® f = 0 for any P € P is zero.
We say that P is a splitting ideal if for any morphism f : X — Y in T and
P € P the morphism idp ® f is split.

General construction

Given a splitting ideal P C T as above, we construct an abelian rigid
tensor category C O T such that P is the subcategory of projective objects.
Hint on the construction of C: consider complexes of objects of P finite in
the positive direction.

Some challenges: What is the unit object of C? Why is C is rigid?

The ideal P,_1 C 7p,, is splitting.

Wanted: more examples of splitting tensor ideals!
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Properties of Ver,y

Projectives and Cartan matrix

Projective objects: T; with p" ! —1<i<p”—1; # =p"}p—1).
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Projective objects: T; with p" ! —1<i<p”—1; # =p"}p—1).
We set P; = T;_1 where i = [i1/i...in]p has precisely n digits (i1 # 0!)
The Cartan matrix Cj; := dim Hom(P;, P;).

Negative digits game: make some digits negative.

[23045], ~ 2(—3)0(—4)5 = 2p* — 3p3 — 4p + 5.

Descendants of i: all positive numbers you get in this way.

E.g. [23045], has 23 = 8 descendants.
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Properties of Ver,y

Projectives and Cartan matrix

Projective objects: T; with p" ! —1<i<p”—1; # =p"}p—1).
We set P; = T;_1 where i = [i1/i...in]p has precisely n digits (i1 # 0!)
The Cartan matrix Cj; := dim Hom(P;, P;).

Negative digits game: make some digits negative.

[23045], ~ 2(—3)0(—4)5 = 2p* — 3p3 — 4p + 5.

Descendants of i: all positive numbers you get in this way.

E.g. [23045], has 23 = 8 descendants.

Tubbenhauer-Wedrich: Cj; = |{descendants of i} N {descendants of j}|.
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Negative digits game: make some digits negative.

[23045], ~ 2(—3)0(—4)5 = 2p* — 3p3 — 4p + 5.

Descendants of i: all positive numbers you get in this way.

E.g. [23045], has 23 = 8 descendants.

Tubbenhauer-Wedrich: Cj; = |{descendants of i} N {descendants of j}|.
Exercise: Cj = 0 or power of 2.

Exercise: det Cjj = power of p.

Embeddings

We have Ver, C Verpz C Verp3 C ...
For p > 2, Verpn = Ver;n X sVec.
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Simples

Some simples: To =1, Tq,..., T,_1 are simples T,-["] in Verpn (n > 1)
Tensor Product Theorem: for i = [iy ... x|, with iy # p — 1.
L; = T,-[ll] ® Tl.[f] - TI.E"] is simple (and this is a complete list).
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Grothendieck ring (p > 2)

K(Ver;n) = Z[¢ + &Y. where € is a primitive p"—th root of 1
K(Verp) = Z[¢ +£71[Z/2].

| \

Simples

Some simples: To =1, T1,..., Tp—1 are simples T,-["] in Verpn (n > 1)
Tensor Product Theorem: for i = [iy ... x|, with iy # p — 1.
Li=Te 7P 7 is simple (and this is a complete list).

P(L;) = Ps where s = [(i1 + 1)i5 ... i%] where i* =p—1—1.
Extensions (p > 2): Ext'(L;,L;) =0 or k.

Ext'(L;,L;) # 0 < i and j differ only in two consecutive digits, of which
the first ones differ by 1 and the second ones add up to p — 2.

Blocks: n(p — 1) of them of sizes 1,p —1,p> — p,...,p" 1 — p"—2
Veryn is a mod p reduction of a semisimple category in char. zero.
Corollary: C = DD where D is the decomposition matrix.
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Universal property of Ver,n

When A2X = 17

Assume C is generated by X such that A2X =1, i.e. any object of C is a
subquotient of direct sums of X®" @ (X*)®m.

Then (C, X) is one of the following:

o C = Rep(l') where I' C SLy = SL(X);

o C = Verp (for p”" > 2), X = Ty;

o C =sVec, X —odd line (p # 2, 3).

Representation type

Ver,n is of finite representation type if n < 2.

Thus the semisimplification Ver,. is manageable.

Ver 2 = (Ver, X Ver, X Rep(Z2p—2, 2))z,. < de-equivariantization
Here Ver, X Ver, comes from the simple objects of Ver ..
Rep(Zap—2, z) comes from Heller shift of 1.

Verpn contains Ver%” generated by the simples.
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More examples?
Question 3. Are there any other incompressible pre-Tannakian categories
than tensor subcategories of Verpeo = UpVer,n? At least of
sub-exponential growth?
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Module categories

Question 1. What are exact module categories over Vern?

Extensions

Question 2. What is Ext(,erpn(l, 1)? (Work in progress with D. Benson
containing a conjecture and partial proof).

v
More examples?

Question 3. Are there any other incompressible pre-Tannakian categories
than tensor subcategories of Verpeo = UpVer,n? At least of
sub-exponential growth?

Universality

Let C be a pre-Tannakian category of sub-exponential growth.
Question 4. Is there an exact tensor functor C — Verpec?
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Thanks for listening!
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