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Symmetric tensor categories

Representation categories

Base field: k = k̄ .
Given a (finite) group G , we can form
Rep(G ) = {finite dimensional representations of G}.

What kind of mathematical object is Rep(G )?

• Rep(G ) is an abelian category;
• Rep(G ) has a bifunctor ⊗;
• ⊗ is associative, commutative ← structures;
• we have the unit object 1 and duality X 7→ X ∗ ← properties of ⊗ and
associativity;
• we have forgetful tensor functor Rep(G )→ Vec.

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec.
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Tannakian theory

Pre-Tannakian categories

A pre-Tannakian category is a k−linear rigid symmetric ⊗ category C
satisfying

• C is abelian;
• dim Hom(X ,Y ) <∞;
• length(X ) <∞;
• 1 is simple.

Definition

Fiber functor: exact symmetric ⊗ functor F : C → Vec.
C is Tannakian if it is pre-Tannakian and has a fiber functor.

Theorem (Grothendieck, Saavedra Rivano, Deligne-Milne)

Assume C is Tannakian. Then C = Rep(G ) for some (unique) affine group
scheme G . Namely, G = Aut⊗(F ).
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Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not
Tannakian (char(k) 6= 2).

Reminder: sVec = Rep(Z/2) but with modified commutativity constraint:
u ⊗ v 7→ (−1)|u|·|v |v ⊗ u.

Definition

super fiber functor: an exact symmetric ⊗ functor F : C → sVec.
C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf
superalgebra) then Rep(G ) is super-Tannakian.
More generally: z ∈ G (k), z2 = 1, Ad(z) =parity automorphism of G .
Rep(G , z) = {objects X of Rep(G ) such that the action of z is the parity
automorphism of X} then Rep(G , z) is super-Tannakian.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 4 / 20



Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not
Tannakian (char(k) 6= 2).
Reminder: sVec = Rep(Z/2) but with modified commutativity constraint:
u ⊗ v 7→ (−1)|u|·|v |v ⊗ u.

Definition

super fiber functor: an exact symmetric ⊗ functor F : C → sVec.
C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf
superalgebra) then Rep(G ) is super-Tannakian.
More generally: z ∈ G (k), z2 = 1, Ad(z) =parity automorphism of G .
Rep(G , z) = {objects X of Rep(G ) such that the action of z is the parity
automorphism of X} then Rep(G , z) is super-Tannakian.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 4 / 20



Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not
Tannakian (char(k) 6= 2).
Reminder: sVec = Rep(Z/2) but with modified commutativity constraint:
u ⊗ v 7→ (−1)|u|·|v |v ⊗ u.

Definition

super fiber functor: an exact symmetric ⊗ functor F : C → sVec.

C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf
superalgebra) then Rep(G ) is super-Tannakian.
More generally: z ∈ G (k), z2 = 1, Ad(z) =parity automorphism of G .
Rep(G , z) = {objects X of Rep(G ) such that the action of z is the parity
automorphism of X} then Rep(G , z) is super-Tannakian.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 4 / 20



Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not
Tannakian (char(k) 6= 2).
Reminder: sVec = Rep(Z/2) but with modified commutativity constraint:
u ⊗ v 7→ (−1)|u|·|v |v ⊗ u.

Definition

super fiber functor: an exact symmetric ⊗ functor F : C → sVec.
C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf
superalgebra) then Rep(G ) is super-Tannakian.
More generally: z ∈ G (k), z2 = 1, Ad(z) =parity automorphism of G .
Rep(G , z) = {objects X of Rep(G ) such that the action of z is the parity
automorphism of X} then Rep(G , z) is super-Tannakian.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 4 / 20



Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not
Tannakian (char(k) 6= 2).
Reminder: sVec = Rep(Z/2) but with modified commutativity constraint:
u ⊗ v 7→ (−1)|u|·|v |v ⊗ u.

Definition

super fiber functor: an exact symmetric ⊗ functor F : C → sVec.
C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf
superalgebra)

then Rep(G ) is super-Tannakian.
More generally: z ∈ G (k), z2 = 1, Ad(z) =parity automorphism of G .
Rep(G , z) = {objects X of Rep(G ) such that the action of z is the parity
automorphism of X} then Rep(G , z) is super-Tannakian.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 4 / 20



Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not
Tannakian (char(k) 6= 2).
Reminder: sVec = Rep(Z/2) but with modified commutativity constraint:
u ⊗ v 7→ (−1)|u|·|v |v ⊗ u.

Definition

super fiber functor: an exact symmetric ⊗ functor F : C → sVec.
C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf
superalgebra) then Rep(G ) is super-Tannakian.

More generally: z ∈ G (k), z2 = 1, Ad(z) =parity automorphism of G .
Rep(G , z) = {objects X of Rep(G ) such that the action of z is the parity
automorphism of X} then Rep(G , z) is super-Tannakian.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 4 / 20



Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not
Tannakian (char(k) 6= 2).
Reminder: sVec = Rep(Z/2) but with modified commutativity constraint:
u ⊗ v 7→ (−1)|u|·|v |v ⊗ u.

Definition

super fiber functor: an exact symmetric ⊗ functor F : C → sVec.
C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf
superalgebra) then Rep(G ) is super-Tannakian.
More generally: z ∈ G (k), z2 = 1, Ad(z) =parity automorphism of G .

Rep(G , z) = {objects X of Rep(G ) such that the action of z is the parity
automorphism of X} then Rep(G , z) is super-Tannakian.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 4 / 20



Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not
Tannakian (char(k) 6= 2).
Reminder: sVec = Rep(Z/2) but with modified commutativity constraint:
u ⊗ v 7→ (−1)|u|·|v |v ⊗ u.

Definition

super fiber functor: an exact symmetric ⊗ functor F : C → sVec.
C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf
superalgebra) then Rep(G ) is super-Tannakian.
More generally: z ∈ G (k), z2 = 1, Ad(z) =parity automorphism of G .
Rep(G , z) = {objects X of Rep(G ) such that the action of z is the parity
automorphism of X}

then Rep(G , z) is super-Tannakian.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 4 / 20



Super-Tannakian categories

Example

The category of supervector spaces sVec is pre-Tannakian but not
Tannakian (char(k) 6= 2).
Reminder: sVec = Rep(Z/2) but with modified commutativity constraint:
u ⊗ v 7→ (−1)|u|·|v |v ⊗ u.

Definition

super fiber functor: an exact symmetric ⊗ functor F : C → sVec.
C is super-Tannakian if it is pre-Tannakian and has a super fiber functor.

Example

If G is an affine supergroup scheme (= supercommutative Hopf
superalgebra) then Rep(G ) is super-Tannakian.
More generally: z ∈ G (k), z2 = 1, Ad(z) =parity automorphism of G .
Rep(G , z) = {objects X of Rep(G ) such that the action of z is the parity
automorphism of X} then Rep(G , z) is super-Tannakian.

Pavel Etingof (MIT) Incompressible categories July 4, 2020 4 / 20



Super-Tannakian theory and generalization

Theorem (Deligne)

Assume C is super-Tannakian. Then C = Rep(G , z) for some affine
supergroup scheme G and z as above. Namely, G = Aut⊗(F ) and
z ∈ G (k) is the parity element.

Generalization

Let F : C → D be an exact symmetric ⊗ functor.
Then C = Rep(G , π) where G is an affine group scheme in D and π is the
fundamental group of D.
Namely, G = Aut⊗(F ) and π = Aut⊗(IdD). Then π acts canonically on
every object of D, we have a canonical homomorphism π → G , and
Rep(G , π) is the category of representations of G on objects of D whose
restriction to π is the canonical action.
In other words, C can be expressed in terms of “group theory in D”.
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Question: What are the pre-Tannakian categories which can’t be
expressed in terms of “group theory” in smaller categories?

Equivalently,
which pre-Tannakian categories do not admit exact ⊗ functors to smaller
categories?
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Incompressible categories

Surjective functors

An exact ⊗ functor F : C → D is surjective if any object of D is a
subquotient of F (X ).
Any such functor F : C → D factorizes as C → Im(F )→ D where
C → Im(F ) is surjective and Im(F )→ D is a fully faithful embedding.

Definition

A pre-Tannakian C is incompressible if any surjective ⊗ functor F : C → D
is an equivalence for any pre-Tannakian D.

Equivalently, C is incompressible if any exact ⊗ functor F : C → D is an
embedding.

Example

Vec sVec
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Characteristic zero

Definition

We say that C is of sub-exponential growth if for any X ∈ C there is
aX ∈ R such that length(X⊗n) ≤ anX .

Theorem (Deligne)

Assume char k = 0 and let C be pre-Tannakian of sub-exponential growth.
Then C is super-Tannakian. In particular, Vec and sVec are the only
incompressible categories of sub-exponential growth.

Example

Deligne categories Rep(GLt),Rep(Ot),Rep(St) (t ∈ k) are of
super-exponential growth.
They typically admit surjective functors like Rep(St)→ Rep(St−1), so are
not incompressible.

Conjecture: No more incompressible categories in characteristic zero.
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Semisimplification

Let T be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that f : X → Y is negligible if for any g : Y → X we have
Tr(fg) = 0.
Negligible morphisms form a ⊗ ideal N .
Define T : the same objects as in T but HomT (X ,Y ) = HomT (X ,Y )/N .
T is again a rigid symmetric monoidal category.

Theorem (U. Jannsen)

Assume dim Hom(X ,Y ) <∞ and any nilpotent endomorphism in T has
trace zero. Then T is semisimple (and so abelian). Moreover

Irreducibles of T ↔ Indecomposables of T of nonzero dimension.

Remark: assume F : T → C is a ⊗ functor to abelian C. Then any
nilpotent endomorphism in T has trace zero.
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Semisimple Verlinde categories

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

Let G be a simple group, e.g. G = SLn. Let T = {tilting G−modules}.
Then Ver(G ) := T is a semisimple pre-Tannakian category; it has finitely
many irreducibles provided p ≥ Coxeter number h(G ) of G (e.g.
h(SLn) = n).

Example

Verp := Ver(SL2).
Simple objects L1 = 1, L2, . . . , Lp−1.
L2 ⊗ Li = Li−1 ⊕ Li+1 with convention L0 = Lp = 0.
This implies: Lp−1 ⊗ Lp−1 = 1 and 〈1, Lp−1〉 = sVec for p > 2.
For p = 5: L3 ⊗ L3 = 1⊕ L3 spans the Fibonacci category Fib.
Ver2 = Vec; Ver3 = sVec; Ver5 = Fib� sVec. More generally, for p > 2
Verp = Ver+p � sVec, where Ver+p ⊂ Verp is spanned by Li with odd i .
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Verp = Ver+p � sVec, where Ver+p ⊂ Verp is spanned by Li with odd i .
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Semisimple Verlinde categories

Alternatively Verp = semisimplification of Rep(Z/p).

Fact: the category Verp is incompressible, and so are its tensor
subcategories Vec, sVec,Ver+p .

Theorem (Ostrik, 2015)

For any pre-Tannakian C which is semisimple with finitely many
irreducibles (i.e., a fusion category) there exists an exact ⊗ functor
C → Verp. In particular, theonly incompressible pre-Tannakian fusion
categories are Verp and its tensor subcategories.

Conjecture: These are the only semisimple incompressible pre-Tannakian
categories (at least of sub-exponential growth).
What about non-semisimple examples?

Example

For p = 2 S. Venkatesh constructed an example V by modifying the
commutativity constraint in Rep(“Z/2”) “Z/2” = (Ga)1
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p=2

Benson-E., 2018

For p = 2 there is a strictly increasing sequence of incompressible
pre-Tannakian categories
C0 = Vec ⊂ C1 = V ⊂ C2 = T (SL2)/I2 ⊂ C3 ⊂ . . .

Technology: Hopf algebras (in categories) and graded extensions.
The category C2 was previously constructed by Ostrik.
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General p > 0

More on tilting modules for SL2
Let V be a tautological 2-dimensional representation of SL2
T (SL2) := additive ⊗ category generated by V .
{indecomposables of T (SL2)} = {indecomposable summands of V⊗n}
Fact: indecomposables are classified by highest weight. Thus we have
T0 = 1,T1 = V ,T2,T3, . . ..
Steinberg modules: T0,Tp−1,Tp2−1, . . . ,Str = Tpr−1, . . .
Each Str generates a (thick) tensor ideal Pr = 〈Tpr−1,Tpr ,Tpr+1, . . .〉
Each thick tensor ideal above gives a tensor ideal Ir : I0 ⊃ I1 ⊃ I2 ⊃ . . .
Fact: Any nontrivial tensor ideal in T (SL2) is one of Ir .

Quotients

Define Tp,r := T (SL2)/Ir , e.g. Tp,1 = Verp.
Tp,r is non-semisimple and non-abelian for r > 1 (except r = 2 and p = 2).
Tp,r contains a tensor ideal Pr−1 = Ir−1/Ir .
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Main Theorem

Observation: (Benson-E., 2018): the category C2r contains T2,r ;

{ the ideal Pr−1} = { subcategory of projective objects in C2r}.

Theorem (Benson-E.-Ostrik, 2020)

There exists a unique pre-Tannakian category Verpn containing Tp,n and
such that Pn−1 coincides with the ideal of projective objects. The category
Verpn is incompressible.

The first statement was also independently proved by K. Coulembier.

Split morphisms

A morphism f : X → Y (in an additive category) is split if it is a projection
to a direct summand followed by an inclusion of a direct summand.

Example. If X and Y are indecomposable, f is split ⇔ f is an
isomorphism or f = 0.
Exercise. Let P be a projective object and f : X → Y be any morphism.
Then idP ⊗ f : P ⊗ X → P ⊗ Y is split.
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Splitting ideals

Let T be a rigid (symmetric) monoidal category (perhaps non-abelian),
dim Hom(X ,Y ) <∞. Let P ⊂ T be a thick tensor ideal. Assume that P
is faithful, i.e., any morphism f s.t. idP ⊗ f = 0 for any P ∈ P is zero.
We say that P is a splitting ideal if for any morphism f : X → Y in T and
P ∈ P the morphism idP ⊗ f is split.

General construction

Given a splitting ideal P ⊂ T as above, we construct an abelian rigid
tensor category C ⊃ T such that P is the subcategory of projective objects.
Hint on the construction of C: consider complexes of objects of P finite in
the positive direction.
Some challenges: What is the unit object of C? Why is C is rigid?

Key Lemma

The ideal Pn−1 ⊂ Tp,n is splitting.

Wanted: more examples of splitting tensor ideals!
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General construction

Given a splitting ideal P ⊂ T as above, we construct an abelian rigid
tensor category C ⊃ T such that P is the subcategory of projective objects.
Hint on the construction of C: consider complexes of objects of P finite in
the positive direction.
Some challenges: What is the unit object of C? Why is C is rigid?

Key Lemma

The ideal Pn−1 ⊂ Tp,n is splitting.

Wanted: more examples of splitting tensor ideals!
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Properties of Verpn

Projectives and Cartan matrix

Projective objects: Ti with pn−1 − 1 ≤ i < pn − 1; # = pn−1(p − 1).
We set Pi = Ti−1 where i = [i1i2 . . . in]p has precisely n digits (i1 6= 0!)
The Cartan matrix Cij := dim Hom(Pi ,Pj).
Negative digits game: make some digits negative.
[23045]p  2(−3)0(−4)5 = 2p4 − 3p3 − 4p + 5.
Descendants of i : all positive numbers you get in this way.
E.g. [23045]p has 23 = 8 descendants.
Tubbenhauer-Wedrich: Cij = |{descendants of i} ∩ {descendants of j}|.
Exercise: Cij = 0 or power of 2.
Exercise: detCij = power of p.

Embeddings

We have Verp ⊂ Verp2 ⊂ Verp3 ⊂ . . .
For p > 2, Verpn = Ver+pn � sVec.
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More properties of Verpn

Grothendieck ring (p > 2)

K (Ver+pn) = Z[ξ + ξ−1]. where ξ is a primitive pn−th root of 1

K (Verpn) = Z[ξ + ξ−1][Z/2].

Simples

Some simples: T0 = 1,T1, . . . ,Tp−1 are simples T
[n]
i in Verpn (n > 1)

Tensor Product Theorem: for i = [i1 . . . in]p with i1 6= p − 1.

Li = T
[1]
i1
⊗ T

[2]
i2
. . .T

[n]
in

is simple (and this is a complete list).
P(Li ) = Ps where s = [(i1 + 1)i∗2 . . . i

∗
n ] where i∗ = p − 1− i .

Extensions (p > 2): Ext1(Li , Lj) = 0 or k .
Ext1(Li , Lj) 6= 0 ⇔ i and j differ only in two consecutive digits, of which
the first ones differ by 1 and the second ones add up to p − 2.
Blocks: n(p − 1) of them of sizes 1, p − 1, p2 − p, . . . , pn−1 − pn−2.
Verpn is a mod p reduction of a semisimple category in char. zero.
Corollary: C = DDT where D is the decomposition matrix.
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[n]
i in Verpn (n > 1)

Tensor Product Theorem: for i = [i1 . . . in]p with i1 6= p − 1.

Li = T
[1]
i1
⊗ T

[2]
i2
. . .T

[n]
in

is simple (and this is a complete list).
P(Li ) = Ps where s = [(i1 + 1)i∗2 . . . i

∗
n ] where i∗ = p − 1− i .

Extensions (p > 2): Ext1(Li , Lj) = 0 or k .
Ext1(Li , Lj) 6= 0 ⇔ i and j differ only in two consecutive digits, of which
the first ones differ by 1 and the second ones add up to p − 2.

Blocks: n(p − 1) of them of sizes 1, p − 1, p2 − p, . . . , pn−1 − pn−2.
Verpn is a mod p reduction of a semisimple category in char. zero.
Corollary: C = DDT where D is the decomposition matrix.
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Universal property of Verpn

When ∧2X = 1?

Assume C is generated by X such that ∧2X = 1, i.e. any object of C is a
subquotient of direct sums of X⊗n ⊗ (X ∗)⊗m.
Then (C,X ) is one of the following:
• C = Rep(Γ) where Γ ⊂ SL2 = SL(X );
• C = Verpn (for pn > 2), X = T1;
• C = sVec, X – odd line (p 6= 2, 3).

Representation type

Verpn is of finite representation type if n ≤ 2.
Thus the semisimplification Verp2 is manageable.

Verp2 = (Verp � Verp � Rep(Z2p−2, z))Z2 . ← de-equivariantization
Here Verp � Verp comes from the simple objects of Verp2 .
Rep(Z2p−2, z) comes from Heller shift of 1.
Verpn contains Ver�np generated by the simples.
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Some open questions

Module categories

Question 1. What are exact module categories over Verpn?

Extensions

Question 2. What is Ext•Verpn (1, 1)? (Work in progress with D. Benson

containing a conjecture and partial proof).

More examples?

Question 3. Are there any other incompressible pre-Tannakian categories
than tensor subcategories of Verp∞ = ∪nVerpn? At least of
sub-exponential growth?

Universality

Let C be a pre-Tannakian category of sub-exponential growth.
Question 4. Is there an exact tensor functor C → Verp∞?
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Thanks for listening!
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