1 RHA, SS 13, Exercise Sheet 9

Due June 26. 2013.

Exercise 1:

Consider the curve $\gamma(t) = (t, t^k)$ on \mathbb{R}^2 , with k an integer ≥ 2 . If k = 2, its curvature vanishes nowhere; if k > 2, its curvature vanishes at the origin (and only there) of order k - 2. Consider the measure $d\mu$ defined by

$$\int_{\mathbf{R}^2} f d\mu = \int_{\mathbf{R}} f(t, t^k) \psi(t) dt,$$

where $\psi \in C_0^{\infty}(\mathbf{R})$ is such that $\psi(0) \neq 0$. Prove that:

- (i) $|\widehat{d\mu}(\xi)| = O(|\xi|^{-1/k});$
- (ii) $|\widehat{d\mu}(0,\xi_2)| \ge c|\xi_2|^{-1/k}$ if ξ_2 is large.

Hint: For part (ii), consider the case when k is even and check that

$$\int_{-\infty}^{\infty} e^{i\lambda x^k} e^{-x^k} dx = c_\lambda (1-i\lambda)^{-1/k}.$$

Exercise 2:

Let $d\mu$ denote the projection measure on the paraboloid $\mathbf{P} \subset \mathbf{R}^3$ given by

$$\mathbf{P} := \{ (\xi, \tau) \in \mathbf{R}^2 \times \mathbf{R} : \tau = |\xi|^2 \}.$$

Prove that there exists a constant $c_0 > 0$ such that

$$\mu * \mu(\xi, \tau) = c_0 \cdot \chi\left(\tau \ge \frac{|\xi|^2}{2}\right).$$

Determine the numerical value of c_0 .

Exercise 3:

Let $d \ge 2$, and let u = u(x, t) be a solution of the wave equation in $\mathbf{R}_{x,t}^{d+1}$,

$$\partial_t^2 u - \Delta_x u = 0,$$

subject to initial conditions $u|_{t=0} = 0$ and $\partial_t u|_{t=0} = f \in \mathcal{S}(\mathbf{R}^d)$. Prove that

$$\|u\|_{L^{\frac{2d+2}{d-1}}(\mathbf{R}^{d+1})} \lesssim_d \left(\int_{\mathbf{R}^d} |\widehat{f}(\xi)|^2 \frac{d\xi}{|\xi|}\right)^{1/2}$$

Hint: Use the stationary phase method to establish an appropriate decay for $\widehat{\sigma_{\Gamma_0}}$, where

 $\Gamma_0 := \{(\xi, \tau) \in \mathbf{R}^{d+1} : 1 \le \tau = |\xi| \le 2\}$

is a section of the light cone in \mathbf{R}^{d+1} . For p = (2d+2)/(d+3), establish an $L^p \to L^2(\sigma_{\Gamma_0})$ restriction estimate for Γ_0 . Rescale.